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Abstract
Object detection using Unmanned Aerial Vehicles (UAVs) introduces unique challenges compared to traditional
methods, primarily due to the varying angles and altitudes from which images are captured. Conventional
Convolutional Neural Network (CNN) implementations, while being the state-of-the-art in object detection,
demand substantial memory and computational resources, posing difficulties for deployment on UAVs with
limited onboard resources. Furthermore, these models typically generalize well within a limited distance range by
training on images captured from various distances. However, UAVs capture images at a wide range of distances,
complicating the model’s ability to generalize effectively. In this work therefore, we present a design space
exploration which aims to identify the effect of CNN parameters for UAV-based object detection at various altitudes
by examining two critical parameters: input image resolution and network width (number of channels). We
conduct extensive experiments to evaluate the effect of these parameters in terms of accuracy and computational
efficiency across multiple altitudes. Lower resolutions reduce computational load but may compromise detection
accuracy, while higher resolutions enhance accuracy at the expense of increased processing requirements.
Similarly, varying the network width influences the balance between model complexity and detection performance.
We showcase that the requirements vary significantly across different altitudes, demonstrating the potential of
dynamic network structures that adjust parameters according to the altitude. Our findings provide insights into
the optimal configuration of CNN parameters for UAV object detection across different altitudes, contributing
to the development of more efficient and adaptable UAV vision systems. This research paves the way for more
effective deployment of UAVs in various applications, from surveillance and search-and-rescue to environmental
monitoring and beyond.
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1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known as drones, are increasingly employed across a
broad spectrum of fields, including but not limited to search and rescue operations [1], emergency man-
agement [2], infrastructure inspection [3], agricultural monitoring [4], and environmental monitoring
[5]. Their versatility, characterized by their unmanned nature, ease of deployment, cost-effectiveness,
and capability to capture aerial imagery from various perspectives and altitudes, makes them an
indispensable tool in modern technology.

Object detection on UAVs is a critical task due to its role in enhancing situational awareness, which
is pivotal for safe navigation, obstacle avoidance, and the execution of missions that necessitate the
identification of subjects of interest. However, several challenges are inherent to object detection
using UAVs. Firstly, due to their nature, most UAV applications require the object detection task to be
performed in real-time. On-board computational and power resources are limited, thereby requiring
the deployment of models that are computationally efficient while maintaining the required accuracy
for the task at hand. Secondly, unlike in traditional object detection tasks, UAV-based tasks encounter
images from a wide variety of angles and altitudes, potentially impacting the generalization capabilities
of the model. Furthermore, diverse environmental conditions such as reflections, smoke, and adverse
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weather can obscure objects and degrade image clarity, further complicating the detection task.
Existing research in UAV-based object detection demonstrates significant advancements in handling

various challenges posed by UAV imagery. These studies collectively emphasize the importance of
efficient detection methods that satisfy the constraints of UAV platforms. Techniques such as adaptive
feature extraction [6], multi-scale detection [7], and lightweight model designs have shown promise in
improving detection accuracy and efficiency. Convolutional Neural Networks (CNNs) represent the
state-of-the-art in object detection, which is why we have chosen to explore them. These networks
typically generalize well within a limited distance range by training on images taken from various
distances. However, UAVs capture images at a wide range of distances, complicating the model’s ability
to generalize effectively due to significant variations in optimal parameter values across large distance
ranges. This highlights a gap in research: the need for dynamic parameter adjustments tailored for UAV
object detection, which is crucial for enhancing real-time performance.

In this study, we examine the effects of two critical parameters–input image resolution and net-
work width–on the performance and efficiency of CNN models for UAV-based object detection. We
hypothesize that higher input resolutions and wider networks can capture more details and features,
respectively; however, these advantages come with an increased computational load. Our objective
is to identify the optimal values for these parameters across different altitude ranges to optimize the
accuracy-to-performance trade-off. We aim to use these findings to develop a dynamic network struc-
ture capable of adjusting these parameters based on a learnable dynamic decision point (rather than a
static threshold) tailored to each input image. This will be implemented using reconfigurable network
structures (either hardware or software), enabling us to enhance the accuracy-to-performance balance.

Specifically, the contributions of this research are twofold:

• We perform extensive evaluation of the effect of changing the two parameters, input resolution
and network width (number of channels), on the accuracy, performance and memory requirements
of the object detection CNN (tiny YOLOv7) at various altitude ranges.

• We demonstrate that the optimal values of these parameters varies significantly with altitude,
highlighting the need for dynamic adjustments based on real-time altitude data.

The remainder of this paper is structured as follows: Section 2 reviews the existing related work. In
Section 3, we detail our methodology. Section 4 presents the experimental results. Finally, Section 5
discusses some of the challenges and potential future work and Section 6 concludes our study.

2. Related Work

Over the years, numerous advancements have been made in the field of UAV-based object detection,
particularly focusing on improving accuracy and efficiency. Several studies have aimed to address
the unique challenges posed by UAV imagery, such as small object size, high density, and varying
viewpoints.

A significant portion of the literature has focused on improving detection algorithms and network
architectures. Tan et al. [6] proposed a multi-scale UAV aerial image detection method using adaptive
feature fusion to better detect small target objects. They introduced an adaptive feature extraction
module to the backbone network, enabling more accurate small target feature information extraction.
Similarly, Xiaohu et al. [7] presented a dedicated object detector based on the FPN architecture,
incorporating Deformable Convolution Lateral Connection Modules (DCLCMs) and Attention-based
Multi-Level Feature Fusion Modules (A-MLFFMs) to enhance multi-scale object detection. The work
by Liu et al. [8] also targeted small object detection in UAV imagery by optimizing YOLOv3 and the
darknet structure to improve spatial information capture and receptive fields, leading to performance
improvements on small object detection.

Comprehensive reviews of deep learning techniques applied to UAV-based object detection have
highlighted the importance of lightweight models for deployment on UAVs with limited computational
resources. Wu et al. [9] explored various CNN architectures like YOLO and Faster R-CNN, demonstrating



Table 1
Explored Parameter Values

Input Resolutions (pixels)

1088x1088 896x896 768x768 640x640 512x512 384x384 256x256

Width Multipliers

1x (Default) 0.75x 0.5x 0.25x 0.1x 0.01x

the trade-offs between model complexity and computational efficiency. Furthermore, Mittal et al. [10]
provided an extensive review of state-of-the-art deep learning-based object detection algorithms,
particularly focusing on low-altitude UAV datasets, and discussed research gaps and challenges in the
field.

Real-time object detection in UAV imagery has also gathered significant attention due to its importance
in scenarios like emergency rescue and precision agriculture. Cao et al. [11] systematically reviewed
previous studies on real-time UAV object detection, covering aspects such as hardware selection, real-
time detection paradigms, and algorithm optimization technologies. They emphasized the importance
of lightweight convolutional layers and GPU-based edge computing platforms to meet the demands of
real-time detection.

Several innovative methodologies have been introduced to enhance UAV object detection. Bazi et
al. [12] proposed a convolutional support vector machine (CSVM) network for UAV object detection,
leveraging SVMs as filter banks for feature map generation. This approach was particularly useful for
problems with limited training samples. Zhang et al. [13] introduced a global density fused convolutional
network (GDF-Net) optimized for object detection in UAV images, using a Global Density Model to
refine density features and improve detection performance in congested scenes.

Despite the extensive research in UAV object detection, our work is the first to examine dynamic
parameters for UAV object detection, exploring the need for adaptable and flexible detection methods.
By focusing on dynamic parameter adjustment, our approach aims to address the limitations of static
models in varying UAV operational conditions, enhancing detection accuracy and efficiency across
diverse environments and scenarios.

3. Methodology

The parameter values explored in this study are shown in Table 1. The input image resolutions were
varied from 1088x1088 pixels to 256x256 pixels, allowing us to investigate the impact of different levels
of detail and computational demands on the object detection performance. Additionally, the network
width was systematically adjusted using multipliers ranging from 1x, which represents the original
model structure, to 0,01x. This adjustment helped us evaluate how the model’s number of channels in
the convolutional layers influenced its detection capabilities and efficiency.

For evaluation, we employed several metrics to provide a comprehensive assessment of the model’s
performance. Mean average precision (mAP) was utilized to quantify the accuracy of object detection
across the different parameter settings. To evaluate computational efficiency, we measured the multiply-
accumulate (MAC) operations, which reflect the computational load required for processing, and the
network size in megabytes (MB), which indicates the model’s memory requirements.

For the object detector, we selected the tiny YOLOv7 model [14], which is known for its balance
between detection accuracy and computational efficiency. This model is part of the YOLO (You Only Look
Once) family, which is renowned for real-time object detection capabilities. The tiny YOLOv7 variant is
specifically designed to be lightweight, making it particularly suitable for on-board implementation on
UAVs where computational resources and power are limited.

As the dataset for our study, we utilized the Multi-Altitude Aerial Vehicles Dataset [15], which
focuses on single-class object detection specifically targeting cars. This dataset was chosen due to its



unique composition of images captured at various altitudes, ranging from 50 meters to 500 meters,
with increments of 50 meters. This range provides a comprehensive platform for experimenting with
different parameter values across diverse altitude levels.

To comprehensively analyze the impact of varying parameters at different altitudes, we segmented
the original dataset into five distinct subsets, each corresponding to specific altitude ranges:

• 50–100 meters
• 150–200 meters
• 250–300 meters
• 350–400 meters
• 450–500 meters

In addition to these altitude-specific subsets, we also utilized the entire dataset, which includes images
from all altitude ranges. This dataset, referred to as mix_alt, serves as a baseline for comparison against
the individual altitude-specific subsets.

For each of these six datasets (the five altitude-specific subsets and the mix_alt dataset), we conducted
extensive training experiments. We systematically varied the input image resolution and network
width across all possible combinations while maintaining other parameters at their default values. This
approach allowed us to evaluate the influence of the two parameters on the performance metrics.

4. Experimental Results

4.1. Performance

The results in terms of mean Average Percision (mAP) by setting the threshold of Intersection over
Union (IoU) to 0.5 for each dataset and parameter combination are illustrated in Figure 1. As expected,
lower altitude datasets require less computationally intensive models, with less parameters, to achieve
high accuracy. This is due to the larger size, greater clarity and detail available in lower altitude images,
which simplifies the task.

Conversely, as the altitude increases, the detection accuracy tends to diminish unless higher parameter
values are utilized. This can be attributed to the increased complexity of identifying objects from higher
vantage points, where objects appear smaller and less distinct. Thus, higher altitudes necessitate models
with greater capacity to maintain comparable levels of accuracy, reflecting the need for more detailed
feature extraction and processing capabilities.

Interestingly, mix_alt demonstrates an intermediate performance, performing better than the higher
altitude-specific models. This is because mix_alt is trained on the whole dataset, including the easier,
lower-altitude images, whereas the higher altitude-specific models are trained only on the hardest
images of the dataset.

4.2. Computational Efficiency

MAC operations are a key indicator of computational efficiency in neural network models, representing
the total number of multiplications and additions needed to process an image. By reducing the number
of MAC operations, we can lower the computational load on the UAV, extending its operational time
and enabling real-time processing.

In addition to MAC operations, the size of the model is another important factor affecting computa-
tional efficiency. Model size refers to the amount of memory required to store the model parameters,
including weights, biases, and other configurations. This size directly influences the amount of onboard
storage needed for the UAV to operate.

Figure 2 presents the computational efficiency results for each model configuration. As anticipated,
both MAC operations and model size increase with larger parameter values. Notably, MAC operations
scale uniformly with both parameters, whereas model size is more significantly affected by the width
multiplier compared to the resolution. This suggests that for prioritizing a smaller model size, a lower
width combined with a higher resolution is more effective than the reverse.



Figure 1: Performance Results: mAP@.5. The data is presented in heatmap format, where green represents high
values and red represents low values.

Figure 2: Computational Efficiency Results: MAC Operations, Model Size, and Parameters Size. The data is
presented in heatmap format, where green represents high values and red represents low values.

5. Challenges and Future Work

The most significant challenge is the seamless transition between models during inference. Currently,
switching between models that are optimized for different altitude ranges can be computationally
intensive and may introduce latency, which is detrimental to real-time processing requirements. To
address this, we will explore the potential of dynamic networks that can reconfigure themselves
on-the-fly to adapt to changing altitudes.

Reconfigurable hardware presents a promising solution to this challenge. By utilizing hardware
that can adapt its configuration based on the UAV’s altitude, it is possible to optimize the processing
pipeline for speed and efficiency. Field Programmable Gate Arrays (FPGAs) that support dynamic



reconfiguration could be investigated for this purpose [16].
Additionally, exploring algorithmic, non-manual methods for selecting the optimal parameters for

each altitude range will streamline the process and reduce the large computational time and resources
typically required for manual exploration, which scales exponentially as the network size and number
of parameters increase. By employing automated approaches, the system could efficiently determine the
best parameters based on the specific UAV’s capabilities and the task’s required accuracy. These methods
would minimize human intervention, allowing UAVs to dynamically adjust to varying conditions and
mission requirements while achieving an optimal accuracy-performance trade-off. This would enable
the UAVs to adapt in real time without requiring labor-intensive manual tuning, enhancing operational
efficiency.

In addition to technical advancements in model adaptability, there is a critical need to expand
the datasets used for training and evaluation. Our current dataset has fixed altitudes and limited
environmental diversity, which does not fully capture the complexities encountered in real-world
scenarios. Therefore, we aim to create a comprehensive dataset that includes images captured at varying
altitudes and under diverse environmental conditions such as different weather patterns, times of day,
locations etc. This dataset would not only improve the robustness of the detection models but also
provide a more rigorous benchmark for future research in UAV-based object detection.

Addressing the challenges of parameter optimization, seamless model transition, and dataset diversity
will be crucial for advancing the field of UAV-based object detection. Through a combination of
innovative algorithms, adaptable hardware solutions, and comprehensive data collection, we aim to
significantly enhance the performance and applicability of UAV object detection systems.

6. Conclusions

Our study confirms that different altitude ranges necessitate distinct parameters to achieve optimal
accuracy levels in UAV-based object detection. We have demonstrated that input image resolution and
network width are critical factors that must be tuned according to the altitude from which images are
captured.

The findings indicate that dynamic network structures, which adjust their parameters based on real-
time altitude data, can substantially enhance both the efficiency and performance of object detection
systems deployed on UAVs. Such an approach would not only optimize the accuracy-to-performance
trade-off but also ensure that the computational resources of UAVs are utilized more effectively. This is
particularly important given the limited processing power and battery life of most UAVs.

In summary, our research highlights the importance of considering altitude-specific parameter
optimization in the design of UAV object detection systems. The use of dynamic network structures
that can adapt to altitude variations presents a promising avenue for developing more flexible, efficient,
and effective UAV vision systems.

This approach paves the way for advancements in UAV technology, enabling more accurate and
efficient object detection, and ultimately enhancing the capabilities and applications of UAVs across
various fields.
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