
A Classification of Malware Sandboxes and Their
Architectures
Stefano Bistarelli1, Emanuele P. Burberi2 and Francesco Santini1

1 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Perugia, Italy
2 Independent Researcher

Abstract
The development of sandboxes has evolved in parallel with malware improvements, providing secure environments
for the execution and analysis of malicious software. With the increasing number of sandboxes being developed,
each offering distinct features, selecting the most suitable solution for specific needs has become increasingly
complex. This paper aims to thoroughly understand sandbox technologies by introducing their foundational
concepts and offering a detailed review of currently available solutions. We categorize sandboxes into four groups:
the first two classes are readily available in current products on the market, and we compare them by evaluating
some important characteristics we identify in this work. The second group of two sandboxes includes novel
architectures we propose, for which solutions still need to be customized ad-hoc. To help users choose the right
solution for them, we refine this categorization by defining three distinct use cases for these sandboxes. Their
core features can improve the isolation and scalability of the last two new architectures.
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1. Introduction

Over time, sandboxes have evolved both in their objectives and in their implementations. Although the
original concept of a sandbox focused on isolating the environment from the system, modern sandboxes
are expected not only to provide this isolation and include built-in support for malware analysis tools.
These tools may either be integrated within the sandbox itself (internal tools) or available through
third-party installations (external tools) [1]. This enhancement enables users to conduct comprehensive
analyses of malware using static analysis, dynamic analysis, and behavioral analysis [2, 3, 4].

In the context of malware analysis, dynamic analysis involves executing the malware within a
sandbox and monitoring the system for any changes, suspicious system calls, or requests to malicious IP
addresses. Behavioral analysis is a subset of dynamic analysis that focuses specifically on understanding
the behavior of the malware, aiming to recognize patterns within its actions and extract valuable
information about the malware itself, such as its scope and target. In addition to dynamic analysis, static
analysis is performed by examining the malware’s code for patterns or signatures in the malware itself
and the files it downloads during its execution, attempting to correlate the malware with previously
known variants. Furthermore, sandboxes can enhance the analysis of malware leveraging Zero-Day
exploits by providing an isolated environment for safe execution while enabling behavior monitoring
through low-level data analysis [5, 6]. Additionally, they improve malware analysis pipelines [7, 8, 9],
commonly used for preliminary assessments and threat-level evaluations, as demonstrated by tools
such as DRAKVUF and Noriben (explained in Sect. 3.1).

The results of this study develop along two different lines. In the first line, we collect existing
malware sandbox proposals from both the scientific literature and Internet projects. What we found
can be grouped into two categories: local sandboxes and online sandboxes, with distinct characteristics
and limitations between the categories and within each category. As a first result, we identify these
features (for example, the analysis of network traffic, the post-mortem state, or the possibility of
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capturing a memory dump) and compare the existing proposals based on them. Secondly, we extend
this classification from two to four categories, outlining the architecture of two new sandbox proposals
that can offer greater benefits in terms of scalability and security. These new proposals are not currently
available as standalone products, although they can be assembled using existing solutions.

By matching the technical foundations of these categories with three distinct use cases, we aim to
guide the selection of the most suitable sandbox for different application needs, facilitating informed
decision-making for specific desired requirements.

The remainder of this article is structured as follows. Section 2 presents the related work. In Section 3,
we provide a comprehensive list of all available sandboxes. Next, in Section 4, we analyze and compare
the sandboxes, defining various use cases based on the characteristics examined. Lastly, Section 5 wraps
up the paper with conclusions and possible future work.

2. Related Work

Several authors have contributed significant research to the literature on malware analysis tools, particu-
larly in comparing sandboxes. In [10], the differences between the Cuckoo and DRAKVUF sandboxes are
analyzed, with the DRAKVUF Sandbox used to assess the latter, aiming to determine the optimal solution
from the perspective of the user. The work in [11] conducts a similar comparative analysis, where four
malware analysis solutions are evaluated, including static analysis tools, Cuckoo/Malwr, Anubis1, and
an unnamed commercial solution due to privacy and security reasons. The authors in [12] provide a
comparison of three solutions: Cuckoo, Any.Run, and Intezer Analyze2. In contrast, [13] examines the
different approaches between Cuckoo and VMRay3 sandboxes, concluding that the agent-less design of
the latter delivers better results.

In a Ph.D. thesis work [14], the author focuses on comparing sandboxes available for Linux based
malware analysis, including REMnux4, Limon, Cuckoo, Detux, and HaboMalhunter5. A similar approach
is taken in [15], although the focus is on Android malware and the challenges specific to that domain.
In a master thesis [16], the authors explore the potential of a container-based sandbox approach,
leveraging container virtualization via a lightweight virtual machine (VM), resulting in the development
of SecBox6. Furthermore, [17] provides a detailed comparison of available sandboxes and tools, focusing
on techniques such as Information Flow Tracking (IFT) and Function Call Monitoring, highlighting which
techniques are used by each sandbox.

In [18], malware analysis techniques are investigated similarly, as discussed in [17], but instead of a
direct comparison, the key features of the methods are listed without further evaluation.

Both [3] and [1] similarly investigate the tools available for various types of malware analysis,
including sandboxes, network analysis tools, binary/static analysis tools, and online services. Both
papers provide neutral comparisons using different metrics, with extensive tables and data highlighting
the advantages and disadvantages of each tool. However, [3] also proposes a heuristic-based malware
detection pipeline based on the tools discussed.

The work in [8] describes the structure of signature-based and behavioral malware analysis pipelines,
providing a literature review and describing how these methods can be implemented. The author of [9]
explores malware analysis in IoT environments using existing tools such as Cuckoo. After reviewing
the strengths and weaknesses of these tools for IoT malware analysis, the paper introduces a custom
sandbox, LiSa7, which adopts QEMU for virtualization, SystemTap8 for dynamic analysis, and a custom
C++ program for network analysis. Moreover, this sandbox pipeline is deployable as a Docker image.

1This sandbox has been discontinued and is currently unavailable.
2https://analyze.intezer.com.
3https://www.vmray.com.
4https://remnux.org.
5https://github.com/Tencent/HaboMalHunter.
6https://github.com/SaltySpatula/SecBox
7https://github.com/danielpoliakov/lisa
8https://github.com/groleo/systemtap
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3. Collecting Malware Sandboxes

The investigation of information concerning sandboxes was conducted primarily through Google
Scholar, utilizing specific parameters to ensure comprehensive coverage. Keywords were selected
to achieve a balanced and thorough exploration, employing generalized Boolean search formulas
such as: ("malware analysis" AND "sandbox"), ("sandbox" AND ("comparison" OR
"dynamic analysis" OR "sandboxing techniques")), and ("zero day" AND ("malware
analysis" OR "malware") AND ("sandbox" OR "sandboxing techniques")). These
formulas were designed to encompass key concepts, including sandboxing techniques, dynamic analysis,
comparisons, and their relationships with malware analysis and zero-day vulnerabilities. Furthermore,
only publications dated 2014 onward were considered, ensuring the inclusion of recent advances and
developments in the field. Following this initial review of previous comparative studies, an additional
search was conducted using Google with the same set of keywords. This step identified and incorporated
relevant sandboxes not referenced in the earlier academic literature review.

In this section, we list all available malware-sandbox solutions, categorized into four categories: local-
based sandboxes (Sect. 3.1), online-based sandboxes (Sect. 3.2), container-based sandboxing (Sect. 3.3)
and hypervisor-based sandboxes (Sect. 3.4). Each category starts with explaining the primary goals and
advantages of the sandboxes within that category to clarify what can be expected from them.

3.1. Local Sandboxes

These open-source sandboxes are designed to run locally on the analysis machine, typically in conjunc-
tion with a virtual machine (VM) or hypervisor. Such solutions generally offer the capability to manage
both the sandboxed environment and the internal or external tools, either through the terminal when
used as a CLI application or via APIs commonly exposed for Web-based dashboards and control panels.

• Cuckoo: Cuckoo9 is an open-source sandbox environment designed for advanced malware
analysis. While the main repository has been archived, nevertheless, the project has been forked
by the Estonian CyberSecurity Agency10, and currently developed as version 3.x11. Thanks to its
modular architecture, Cuckoo allows for extensive customization in all aspects, including the
selection of preferred virtual machines or tools (such as Yara12 and Volatility13), as well as the
option to enhance its functionalities by integrating external modules for additional analysis.
Additionally, it can be used through the Malwr14 website, which utilizes Cuckoo to provide
malware analysis services.

• SEE: SEE15 (Sandboxed Execution Environment) is an open-source, event-driven, plugin-based
sandbox provider designed for building test automation within secured environments. It offers
basic support for QEMU, VirtualBox16, and LXC17, and since it is built on top of libvirt’s APIs,
it can be extended to support any hypervisor supported by libvirt18. SEE employs a system of
pluggable providers to retrieve disk images from arbitrary sources and make them available in the
sandboxed environment. By default, it supports providers for libvirt storage pools and OpenStack
Glance, with the flexibility to add more image providers as needed. Internally, SEE is divided
into two core components: the SEE Environment, which encapsulates all required resources and
acts as a handler, and the SEE Sandbox, which is managed by predefined plugins (also known as

9https://cuckoosandbox.org.
10https://www.cert.ee.
11https://github.com/cert-ee/cuckoo3.
12https://github.com/VirusTotal/yara.
13https://github.com/volatilityfoundation/volatility.
14https://www.malwr.ee.
15https://github.com/WithSecureOpenSource/see.
16https://www.virtualbox.org/
17https://linuxcontainers.org/lxc/introduction/
18https://libvirt.org
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hooks). These plugins communicate and coordinate through internal events. Additional plugins
can be added to the predefined ones and configured via a JSON configuration file.

• DRAKVUF: DRAKVUF19 is an open-source, virtualization-based, agentless black-box binary
analysis system. Its architecture leverages the open-source Xen20 hypervisor to provide a stealthy
tool for malware analysis. DRAKVUF also supports the integration of external tools beyond
those already included, such as Volatility. In addition to this project, the Polish CyberSecurity
Agency21 has developed a ready-to-use solution based on DRAKVUF. The DRAKVUF Sandbox22

is designed to offer a flexible approach to malware analysis, featuring a REST API along with
a user-friendly Web UI, and facilitating further integration with the Karton23 pipeline. Karton
is a versatile framework that simplifies building lightweight malware analysis backends and
streamlining their integration into a reliable pipeline.

• Detux: Detux24 is an open-source sandbox designed for the traffic analysis of Linux malware
and the capture of Indicators of Compromise (IoCs)25 by utilizing dumpcap and Detux’s scripts. It
operates on top of the open-source virtual machine QEMU 26, providing prebuilt QEMU images for
ease of use. Detux can execute several static analysis tasks, such as basic string extraction from
binaries, reading ELF information using the readelf command, and allowing the configuration of
the report script to incorporate additional third-party commands for malware analysis. Conversely,
for dynamic analysis, it can capture pcaps and extract IoCs and readable information after parsing
them with DPKT. Although this sandbox provides a sufficient degree of customization, its emphasis
on traffic analysis limits the ability to extend it with external tools for dynamic analysis.

• Limon: Limon27 is an open-source sandbox designed for analyzing malware within a Linux
environment. It enables the inspection of Linux malware before, during, and after execution,
allowing for Post Mortem analysis —the analysis of the machine state after it is shutdown— and
supports static and dynamic analysis utilizing open-source tools. Limon conducts its analysis in a
controlled environment, built on top of the VMWare28 hypervisor while monitoring the activities
of the malware and its child processes to ascertain the nature and purpose of the malware. It can
determine the malware process tree, interactions with the file system, and network activity, in
addition to providing the capability to perform memory analysis, with the analyzed artifacts being
stored for further investigation. However, despite being open-source, Limon does not provide the
option to extend its functionality with external tools.

• Noriben: Noriben29 is a Python-based script that works alongside Sysinternals Procmon to auto-
matically collect, analyze, and report runtime indicators of malware within a virtual environment,
which must be installed separately. To mitigate the absence of a complete sandboxed environment,
Noriben includes a Python script (NoribenSandbox.py) to manage virtual environments. This
script automates the execution of Noriben within a guest VM and retrieves the resulting reports,
although it currently runs only on OSX. Noriben also provides various customization options,
such as defining custom scripts to automate the malware analysis process, utilizing Yara signature
files to scan each file created against those signatures, and integrating with the VirusTotal API to
automatically submit MD5 file hashes and retrieve the number of viral results.

19https://drakvuf.com.
20https://github.com/xen-project/xen.
21https://cert.pl.
22https://github.com/CERT-Polska/drakvuf-sandbox.
23https://github.com/CERT-Polska/karton.
24https://github.com/detuxsandbox/detux.
25IoCs are signals of malicious activity, such as a sudden increase in network traffic.
26https://www.qemu.org.
27https://github.com/monnappa22/Limon.
28https://www.vmware.com.
29https://github.com/Rurik/Noriben.
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3.2. Online Sandboxes

The following sandboxes are accessible online and can be used through the website or public API.
Similarly to locally-based sandboxes, they provide the ability to manage the environment and the tools
involved, using either the API or the Web Interface, with some sandboxes even allowing live direct
interaction with the system. However, it is essential to note that these closed-source solutions can be
provided in three forms: as a paid product, such as Kaspersky Threat Analysis; free with premium paid
features, as with Any Run; and entirely free, such as Triage and Hybrid Analysis. Additionally, those
offered as a free service typically log every analysis conducted, including the malicious application
uploaded and any files or information generated during execution as a by-product of the malware.

• Triage: Triage30 is an online sandbox environment service provided by Hatching31. This service
is accessible to the public via a free API, allowing users to upload malware samples and retrieve
the corresponding reports. Additionally, the website offers the capability to interact directly with
the sandbox. During the static analysis phase, it executes activities such as archive extraction,
running heuristics, checking signatures using the provided Yara rules, and extracting the mal-
ware’s configuration for classification purposes. Conversely, behavioral analysis is conducted by
gathering data about the sample during its execution, including registry events, file operations
(such as modification and writing), network requests, and memory dumps. However, a notable
drawback is that it operates as a closed-environment solution, limiting customization options to
those offered by the configuration parameters.

• Kaspersky Threat Analysis: Kaspersky Threat Analysis32 is a comprehensive suite of tools for
malware analysis, featuring a robust sandbox equipped with anti-evasion techniques that enables
the analysis of process memory, network activity, and more. This allows for the investigation of an
object’s origins, the collection of IoCs based on behavioral analysis, and the detection of malicious
entities. The solution provides extended logging and detailed reporting, which effectively uncover
the malicious nature of a file while ensuring that the sandboxed environment remains undetected.
Additionally, it allows customization of guest OS images to meet user-specific requirements.
However, Kaspersky Threat Analysis is a paid service with two deployment options: cloud-based
or on-premise, within the organization’s IT infrastructure.

• Any Run: Any Run33 is an online sandbox that focuses exclusively on behavioral malware
analysis, allowing users to interact with the sandbox in real time to influence the malware’s
behavior. The final report visualizes the attack pattern through an interactive tree structure,
facilitating comprehension of the core malicious processes. It also includes details on the types of
files launched (such as browser sessions, script interpreters, and office applications), the family
of malicious activity (if identified), the injection path, any files downloaded or dropped by the
malware, and a complete network activity dump available as pcap files. The reports generated by
Any Run are customizable and can be exported as a JSON file, along with screenshots and process
behavior graphs. This solution is a paid service, with the option to create a free account with
limited functionality. Any Run is closed-source, preventing the integration of external tools.

• Hybrid Analysis: Hybrid Analysis34 is an online sandbox that provides a free API for submitting
files and retrieving reports from malware analysis. The sandbox is powered by the CrowdStrike
Falcon Sandbox, a high-end malware analysis framework capable of functioning as a large-scale
system for automating the processing of numerous files. Hybrid Analysis combines runtime
data with extensive static analysis, examining memory dumps to extract annotated disassembly
listings, including strings and API call chains, along with decrypted SSL traffic (for Windows
analysis). It also extracts behavior indicators aiding in the detection of unknown threats. For
behavioral analysis, it offers various input file parser scripts that extract information from various

30https://tria.ge/docs/.
31https://hatching.io/triage/.
32https://www.kaspersky.co.uk/enterprise-security/threat-analysis.
33https://app.any.run.
34https://www.hybrid-analysis.com/docs/api/v2.
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file types that can be integrated with Yara signature matches for any input and extracted files,
and the possibility to emulate user-input actions (such as opening a browser, moving the mouse,
etc.) by using action scripts.

3.3. Container Sandboxing

Container Sandboxing adds a layer of protection to containers. Although direct communication with
the kernel via system calls significantly optimizes execution speed, it also exposes the container to
vulnerabilities such as kernel exploitation. To address this risk, container sandboxing techniques are
employed to enhance container security.

• Kata Container: Kata Container35 is an open-source container sandboxing framework that
encapsulates containers within lightweight virtual machines (VMs), delivering the benefits of
isolation and security to the containers. It is compatible with various architectures and hypervisors,
including their own dragonball36 hypervisor. Since Kata Container utilizes an agent to manage the
virtual environment, it does not require a custom-built hypervisor. Additionally, it can integrate
with CI environments (through an optional component), offering the capability to construct
automated malware analysis pipelines. Furthermore, it supports integration with containerized
application managers such as Docker37, Kubernetes38, and other cloud-native systems.

• Firecracker: Firecracker39 is an open-source virtualization technology developed by Amazon,
specifically designed to create and manage secure, multi-tenant container and function-based
services. Firecracker’s microVM implements a minimal device model, loading only the essential
components to operate, thereby reducing the attack surface and minimizing startup time. The
entire process can be managed via a RESTful API, which supports operations such as configuring
the number of vCPUs and starting the virtual machine. Firecracker further strengthens isolation
by employing a tool called jailer40, which is designed to isolate the Firecracker process, serving as
an additional layer of defense if the virtualization boundary is breached. Similar to Kata Container,
Firecracker is capable of integrating with various containerized application managers and is
compatible with AWS cloud-based services.

• Quark: Quark41 is an open-source, high-performance, and secure container runtime. It delivers
virtual machine-level workload isolation and security while also ensuring efficient execution of
container workloads. Quark is built upon two tightly integrated modules: a hypervisor (QVisor)
and a guest kernel (QKernel). Due to this architecture, Quark does not support other kernels.
Additionally, Quark supports the TCP Socket over Remote-DMA (TSoR) architecture, initially
defined in [19], which enables TCP sockets to operate over remote DMA (RDMA42) connections.
TSoR allows existing TCP-based container applications to transfer data via RDMA without any
modifications. By offloading the TCP/IP protocol stack to RDMA, TSoR achieves higher throughput
and lower latency. Finally, Quark can host multiple Docker containers within a single Quark
container, and it offers integration capabilities with cloud-based container solution providers.

• gVisor: gVisor43 is an open-source application kernel for containers, developed by Google, which
implements a Linux-like interface, offering a robust layer of isolation between running applications
and the host operating system, while functioning in userspace. It restricts the access of container
applications to the host kernel’s surface while providing them with all essential features. Despite
the security features it provides, gVisor should not be confused with tools or technologies designed

35https://github.com/kata-containers/kata-containers.
36https://github.com/kata-containers/kata-containers/tree/main/src/dragonball
37https://www.docker.com.
38https://kubernetes.io.
39https://firecracker-microvm.github.io.
40https://github.com/firecracker-microvm/firecracker/blob/main/docs/jailer.md
41https://github.com/QuarkContainer/Quark.
42https://www.rdmaconsortium.org
43https://github.com/google/gvisor.
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to harden containers against external threats, offer additional integrity checks, or restrict access
to services. Similar to other container sandboxing solutions, gVisor can integrate with existing
container tools like Kubernetes, simplifying the process of running sandboxed containers.

3.4. Hypervisor based Sandboxes

Hypervisor-based sandboxes leverage the hypervisor’s capability to manage the overlaid system,
providing a more secure environment by effectively isolating the Guest system from the underlying
Host Kernel. In Linux-based operating systems, it is possible to utilize the KVM44 module provided by
the Linux kernel to execute sandboxes at the same level as the kernel. To mitigate possible vulnerabilities
within the hypervisor’s implementation, it is generally advisable to harden the virtualized system and
the hypervisor itself and, if needed, to employ external tools or specialized hypervisors to monitor and
prevent any potentially malicious actions.

• Alcatraz: Alcatraz45, although being an actual hypervisor as KVM, it can still be classified as
a KVM-based sandbox, since it is proposed as an underlying layer for the KVM architecture.
As it is laid under the KVM layer, it provides a secure environment to run virtual machines,
elevating the KVM layer at Ring 046, preventing any malware from potentially subverting the
system. This allows Alcatraz to be executed as a sandboxing environment, making it suitable
for custom solutions and for enhancing the security of containerized sandboxing solutions, as it
integrates natively with solutions that leverage the KVM hypervisor.

• QEMU: QEMU 26 is a virtual machine based on top of the KVM hypervisor. Maybe not a secure
environment in general, but it is possible to enhance the security level by enabling the seccomp
option. Even if this measure is fully functional, it is still not ideal for malware analysis, as it
would still be subject to the threat of malware that escapes the VM.

• KVMSandbox: KVMSandbox [20] is an application-level sandbox with x86 hardware virtualization
and KVM. It offers a secure environment to run malware, as the malware is executed inside a
guest environment, detached from the Host’s kernel and memory; furthermore, any syscall made
is controlled and validated by the sandbox. Although the original paper provides an overview
and implementation details, it omits the actual implementation of KVMSandbox.

4. Sandbox Comparison

This section determines the key differences between the sandboxes mentioned above. To achieve
this, it is necessary to establish a shared basis for evaluation. The adopted solution is to compare
the characteristics and features each sandbox offers to ensure the most neutral evaluation while also
identifying the use cases for each sandbox. For reference, Appx. A provides figures relative to the
architectural designs defined in the following use cases. Appendix B instead provides two tables:
Table 1, which details the extractable features a sandbox can provide in its report, including Logging,
Process Tree/List, Memory Dump, Dropped Files, Network Traffic Information, Signatures Check, and
Post-Mortem State—and Tab. 2, which describes the typical characteristics of various sandboxes in a
tabular format—such as Sandbox Type, File Type Support, Supported OS, Last Update, Analysis Tools
Included, External Analysis Tools Support, Feature Extraction Capabilities, and Configurability. After we
have listed and analyzed all the characteristics of sandboxes, we can now compare them. We distinguish
three use cases: Ready-to-Use Sandbox, Security-Enhanced Sandbox and Deployable Sandbox.

44https://linux-kvm.org/.
45https://github.com/kkamagui/alcatraz.
46Protection Rings are hierarchical privilege levels in CPU architecture that manage access to system resources. Ring 0, the

most privileged, grants full access to hardware and is where the kernel operates. Higher rings, where applications run,
restrict access to protect critical resources.
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Ready-to-Use Sandbox. If the user needs to quickly set up a malware analysis, perhaps shortly
after identifying a potential threat, or prefers to avoid investing significant time in fine-tuning a
malware analysis framework, the optimal choice would likely be a Local (see Sect. 3.1) or Online (see
Sect. 3.2) sandbox. Both options offer a user-friendly interface coupled with advanced malware analysis
capabilities; however, the latter may be preferred, as it can be quickly made operational even more.

Although these types of sandboxes are usually bounded by a virtual machine, like QEMU used by
Cuckoo, and VMs based on the Xen hypervisor used by DRAKVUF, they can differ in how they implement
the introspection module. In this regard, two approaches exist: agent-based (Fig. 1 in Appx. A) and
agent-less (Fig. 2 in Appx. A). The first approach provides an external module (agent) that runs inside
the sandboxed environment collecting the data and communicating with the sandbox engine running on
the host. The latter is part of the sandbox engine, retrieving the data using a set of APIs the hypervisor
exposes. Although minimal, this difference can potentially affect the behavior of the malware, as an
agent-based design could compromise the stealthiness of the sandbox, hence giving the malware the
possibility to detect it and consequently change its behavior.

At this point, we can compare these ready-to-use sandboxes. For local sandboxes like DRAKVUF and
Cuckoo, the key difference lies in their underlying architectures. The agentless architecture, as seen
in DRAKVUF, offers a stealthier solution, whereas the agent-based architecture, like Cuckoo’s, allows
for a deeper analysis and data collection since it is not limited by the API restrictions exposed by the
hypervisor. Both DRAKVUF and Cuckoo are superior to other sandboxes like See, Detux, Noriben, and
Limon, even though the latter, differently from the other sandboxes, supports Post Mortem State analysis.

As for online sandboxes, Triage and the Hybrid Analysis stand out as the best options for malware
analysis, offering more features than other online alternatives and providing access to free API. While
both sandboxes allow for a reasonable degree of customization and API usage, Triage excels by offering
integration with Yara and enabling direct interaction with the sandbox.

Security-Enhanced Sandbox. If the main need is a sealed environment, then the best solution is a
hypervisor-based (see Sect. 3.4) sandbox. While it requires more time to build and configure, the wide
range of customization, due to the lack of a malware analysis framework, makes this a better solution,
also, for those who may need a custom set of features.

For this kind of sandboxes, two types of architectures are used: User Space (Fig. 3 in Appx. A) based
and Hypervisor based sandboxes (Fig. 4 in Appx. A). The first approach leverages the ability of the KVM
kernel module to create a virtual process isolated from the rest of the system. The latter employs an
external hypervisor to control the isolation of the VM, as this hypervisor will observe and then analyze
every syscall execution request that exits the sandboxed environment. Both of these architectures
communicate with the sandboxed environment using the API provided by KVM or any other hypervisor
managing the VM, such as KVM/QEMU or Xen, to analyze the state of the virtualized system. Hence, it
is essential to use an introspector, which employs VMI (Virtual Machine Introspection) to interact with
the virtualized environment.

The User Space architecture can be used to create a virtualized environment or to use a virtual
machine in User Space, such as QEMU. This approach offers lower overhead but requires a custom-built
sandbox to interface with the KVM hypervisor and create the virtual environment. Conversely, a
Hypervisor based sandbox is easier to implement but less efficient, as it involves creating a complete
virtual machine. Furthermore, the first approach may introduce overhead, as it continuously operates
in the background as a User Space program, while the second approach could stop the execution of
necessary tools, potentially blocking them by mistakenly identifying them as threats.

Deployable Sandboxes. If there is no need to deeply analyze any malware, while enhancing the
security level, and maintaining the scalability and deployability of container-based systems, the best
solution may be a containerized (see Sect. 3.3) sandbox.

Although this technique improves the security of containerized applications, its main advantage lies
in its deployability, as the level of security may not be adequate to counter malware capable of exploiting



vulnerabilities in the mechanisms designed to secure the containerized environment. However, it can
be seen as a middle ground between a ready-to-use solution and a security-enhanced approach.

Currently, two types of architecture are used: VM based (see Fig. 5 in Appx. A) and Application Kernel
based (see Fig. 6 in Appx. A) containerized sandboxing. The first solution encapsulates the containerized
application within a light-weight VM. The latter encapsulates containerized applications within a User
Space kernel, limiting direct interaction with the host kernel. Whereas the first architecture provides
enhanced isolation through a lightweight VM—albeit with increased overhead—the second architecture
is more efficient, demanding fewer resources; however, it requires additional resources for malware
analysis. As a result, the first is better suited for a scalable malware analysis framework, such as a
cloud based solution, while the second is ideal for high-performance, parallel in-depth analysis on a local
server or cluster, where one external introspector can monitor multiple malicious applications running
concurrently inside their containers. At the same time, it is necessary to note that each sandbox solution
that employs a VM based architecture (like Quark and Firecracker), can also differ in the implementation
of the virtual machine. Unlikely, gVisor is the only containerized sandbox that employs the other
architecture, acting as an application kernel.

5. Conclusion

This paper comprehensively analyzes various sandbox solutions by extensively comparing their features.
We classify sandboxes into four categories, the first two of which consist of currently available solutions.
We then analyze and compare these classes in detail. In addition, we introduce two novel architectural
approaches that incorporate new isolation techniques.

Ultimately, we define three application use cases, refining the four aforementioned categories to
facilitate the selection of the most suitable sandbox for each specific scenario.

Our findings indicate that among currently available sandboxes—categorized under the ready-to-use
case—those leveraging an agent-less architecture represent the state-of-the-art. However, in the context
of future sandbox development, we determine that the core features of the proposed novel architectures,
if combined effectively, could significantly enhance the next generation of sandboxes, potentially
surpassing existing state-of-the-art solutions in terms of isolation (i.e., security) and scalability.

Furthermore, future sandbox designs should explore i) incorporating emulated user behavior to better
disguise the execution environment from malware, ii) implementing algorithms to counteract time-based
detection techniques, which adversaries exploit by analyzing execution time anomalies in virtualized
environments, and iii) optimizing analysis time to prevent malware from delaying malicious activity
until after sandbox inspection is complete.
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A. Architectural Diagrams

This appendix provides a visual representation of the architectures associated with the categories
defined in Sect. 4, illustrating the key structural characteristics of each category through figures.
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Figure 1: Agent based Sandbox Architecture.

Figure 1 presents the possible implementation of a sandbox that uses an agent for VM Introspection,
as highlighted by the arrow that connects the sandbox engine directly to the sandbox agent.
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Figure 2: Agent-less Sandbox Architecture.

Figure 2 shows the architecture of a sandbox that takes advantage of an agent-less paradigm. As the
arrows indicate, the sandbox engine interacts directly with the guest VM, via the guest hypervisor.
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Figure 3: User Space based Sandbox Architecture.

Figure 3 shows how user-space sandboxing techniques, such as KVMSandbox, execute the process
as a virtual process, which can then be inspected using a sandbox inspector, communicating with the



virtual environment, through the hypervisor or other software used to create the virtualized process, in
this case KVM.
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Figure 4: Hypervisor based Sandbox Architecture.

Figure 4 presents how a hypervisor-based sandbox can be implemented. The malicious application
is executed within a guest VM that is managed by a guest hypervisor that runs over the sandbox
hypervisor. The sandbox can leverage the VM Introspection feature offered by the guest hypervisor to
retrieve the information relative to the guest VM.
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Figure 5: VM based Containerized Sandboxing Architecture.

Figure 5 shows how the architecture of a containerized sandbox, like Firecracker, can be implemented.
As we can see, similarly to the previous figure of the hypervisor-based sandbox, this architecture
leverages the VM Introspection feature offered by the VM.
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Figure 6: Application Kernel based Containerized Sandboxing Architecture.

Figure 6 presents the possible implementation of containerized sandboxes that employ an applica-
tion kernel, like gVisor. The container is executed on top of the application kernel, which contains



the sandbox’s agent for introspection, directly communicating with the sandbox introspector. More-
over, the sandbox introspector also communicates with the application kernel to retrieve low-level
information.

B. Feature Comparison

We present a list of features that can be extracted from a sandbox report, which are used to build Tab. 1:

• Logging: This feature includes the logging of everything that happens inside the machine, from
process creation to syscall events and file changes.

• Process Tree/List: The process tree/list of the machine during the analysis.
• Memory Dump: Information about the memory and registers content after a certain event

(malware’s actions/syscalls, etc.).
• Dropped Files: Files dropped by the malware onto the disk.
• Network Traffic Information: Information about network traffic (packets sent/received, etc.)

during the analysis.
• Signatures Check: Hash signatures of the file system before and after changes in files during

the analysis, and signatures of files dropped by malware. This feature can be further expanded by
integrating it with Yara12.

• Post-Mortem State: Snapshot of the state of the machine after shutdown.

Table 1
Extractable features table.
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Cuckoo ✓ ✓ ✓ ✓ ✓ ✓

DRAKVUF ✓ ✓ ✓ ✓ ✓

Detux ✓ ✓ ✓

Limon ✓ ✓ ✓ ✓ ✓ ✓

Noriben ✓ ✓ ✓

Triage ✓ ✓ ✓ ✓ ✓ ✓

Kaspersky
Threat

Analysis
✓ ✓ ✓ ✓ ✓

Any Run ✓ ✓ ✓ ✓ ✓

Hybrid
Analysis

✓ ✓ ✓ ✓ ✓ ✓

In the following, we list the characteristics of the sandboxes that are used to create Tab. 2:

• Sandbox Type: whether it is local, online, containerized or hypervisor-based.
• File Type Support: type of files supported for malware analysis.
• Supported OS: which OSs are supported for running the sandbox.
• Last Update: last update of the sandbox, and if it’s still maintained.
• Feature Extraction Capabilities: whether the sandbox can extract some features from the

analysis (see Tab. 1).
• Analysis Tools Included: which analysis tools are included (like Yara12, Volatility13).



• External Analysis Tools Support: whether the sandbox supports the installation of additional
analysis tools.

• Configurability: whether the sandbox supports, maybe via a configuration file, the configuration
of the sandbox and, eventually, of external analysis tools. For simplicity, we will use three levels
of configurability:

– Limited: for a minimal set of configurable parameters.
– Highly: for an extended set of configurable parameters.
– Fully: if it includes configurable parameters also for included and/or external tools.

Table 2
Sandbox characteristics table.
Sandbox

Name
Sandbox Type File Supported Type Supported OS

Last
Update

Feature
Extraction

Capabilities

Analysis Tools
Included

External
Analysis Tools

Support

Configu-
rability

Local Sandboxes

Cuckoo local

Windows and Linux
Executables, MS Office,
HTML, DLL, PDF, zip,
bin, jar, .py, apk, etc.

Windows,
Linux, Mac OS

Apr 27,
2021

(Arch-
ived)

See Tab. 1

Process Utility,
Machine
Utility,

Cuckoo Router
(INetSim)

Yara12 ,
Volatility13 ,
Community
Developed

Tools

Fully

SEE local None Linux

Oct 5,
2020

(unmain-
tained)

None None
Hooks for

external tools
Highly

DRAKVUF local
Windows and Linux

Executables, DLL, MS
Office, HTML

Windows,
Linux

Sep 12,
2024

(active)
See Tab. 1

DRAKVUF’s
Plugins

Volatility and
Procmon

Limited

Detux local All Linux

Feb 16,
2018

(unmain-
tained)

See Tab. 1 Dumpcap

Support for
3rd party

commands to
analyze the

binary

Highly

Limon local
ELF, .pl, .py, shell and

bash scripts, .PHP, LKM
Linux

Mar 25,
2016

(unmain-
tained)

See Tab. 1
Yara12 ,

Volatility13 ,
INetSim, etc.

None Fully

Noriben local

Requires manual
interaction, hence every

file Windows can
support

OSX

Nov 29,
2023

(unmain-
tained)

See Tab. 1
Yara12 ,

ProcMon,
md5deep47

None Highly

Online Sandboxes

Triage online

Windows and Linux
Executables, MS Office,
HTML, DLL, PDF, zip,

jar, apk, etc.

cloud based
closed
source

See Tab. 1 Yara12 None Highly

Kaspersky
Threat

Analysis
online

200+, but are not
specified

cloud based
closed
source

See Tab. 1
Yara12 ,

Kaspersky
Analysis Tools

None Limited

Any Run online

Requires manual
interaction, hence every
file Windows and Linux

can support

cloud based
closed
source

See Tab. 1 None None Limited

Hybrid
Analysis

online

Windows and Linux
Executables, MS Office,
HTML, DLL, PDF, zip,
.ps1, jar, .py, .pl, etc.

cloud based
closed
source

See Tab. 1 None None Limited

Container Sandboxing

Kata
Container

containerized
Requires manual

interaction, hence every
file any OS can support

containerized
Sep 14,
2024

(active)
None None None Limited

Firecracker containerized
Requires manual

interaction, hence every
file any OS can support

containerized
Sep 13,
2024

(active)
None None None Limited

Quark containerized
Requires manual

interaction, hence every
file any OS can support

containerized
Sep 1,
2024

(active)
Logging None None Limited

gVisor containerized
Requires manual

interaction, hence every
file any OS can support

containerized
Sep 14,
2024

(active)
None None None Limited

Hypervisor based Sandboxes

Alcatraz KVM-based
Requires manual

interaction, hence every
file any OS can support

Linux

Aug 5,
2021

(unmain-
tained)

None None None Limited

QEMU KVM-based
Requires manual

interaction, hence every
file any OS can support

Linux
Sep 13,
2024

(active)
None None None Limited

KVMSandbox KVM-based 32-bit ELF Linux
unrel-
eased

None None None Limited
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