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Abstract

The ubiquitous diffusion of Graphics Processing Units (GPUs) accounts for new threats and offensive templates.
An emerging attack scheme leverages covert channels, i.e., parasitic communication paths hidden within legitimate
flows of data or digital objects. In this perspective, this work explores the feasibility of creating covert channels
through the manipulation of the workload offered to the GPU. Specifically, we propose to take advantage of
the widespread CuPy open source library to encode information in the evolution of the most relevant GPU
performance metrics. Results demonstrate the feasibility of the approach and also allow to propose some prime
countermeasures to prevent unwanted data leakages and to make modern GPUs more secure.
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1. Introduction

With the increasing demands for computationally intensive applications, Graphic Processing Units
(GPUs) are becoming critical assets to protect. Unfortunately, the most complex ecosystems could be
plagued by a wide array of security concerns, such as the lack of documentation in open source tools,
difficulties in deallocating data in a secure manner, and subtle vulnerabilities arising from the adoption
of virtualization schemes [1]. Even if improving the security posture of high-performance applications
is now a major research topic, many issues prevent proceeding quickly or applying pre-existing security
schemes over the GPU functional blueprint. For instance, the presence of multiple memory areas with
different access rights poses challenges in securing the entire software toolchain, and standard taint
analysis techniques may require a non-negligible re-engineering effort [1, 2]. Another important aspect
regards the data-intensive nature of GPU-based applications, which often require processing sensitive
information or supporting mission-critical decisions. As a significant use case, GPUs are the basis of
deep learning and machine learning frameworks and thus make them a sensitive target for inferring
behaviors or leaking data [3].

An important class of security threats takes advantage of the multitude of possible side-channel
offensive templates or covert channels that can be built due to the broad attack surface characterizing
the most complex and heterogeneous GPU-based architectures (see, e.g., [1] and [4] and the references
therein). In this vein, a relevant corpus of works has emerged to mitigate the impact of covert channels
that can leverage the CUDA framework [5] or how they can be combined with other vulnerabilities
[6]. Moreover, many research works now focus on how deep learning techniques can be used to
“understand” the complex interplay of GPU hardware/software layers to implement effective offensive
schemes exploiting a side channel (7, 8, 4, 9, 10].

Since covert channels are increasingly deployed by real-world malware [11] and also demonstrated
their effectiveness to elude security frameworks of many hardware/virtualized ecosystems [12, 13],
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in this work, we further investigate how GPU covert communications could be simply established by
leveraging a popular open source framework. In essence, we take advantage of the cuPy library for
GPU-accelerated environments to create a controlled load of operations that can alter some behavior
of the GPU with a global visibility scope. Specifically, CuPy-induced alterations of GPU metrics, such
as utilization, power consumption, and temperature, are used as the carrier to encode and transmit
information between two different execution kernels. Such a proof-of-concept implementation” can be
used as the basis to conduct tests for demonstrating how simple mechanisms can endow an attacker with
the ability to remain “beneath the radar” of traditional monitoring tools. At the same time, investigating
the feasibility of a novel covert communication scheme may open up the development of specific
countermeasures and contribute to a deeper understanding of GPU-related security vulnerabilities and
their potential implications.

Summing up, the contributions of this work are: i) understanding whether shared and unharmful
information can be used to encode a proper alphabet to leak data; ii) demonstrate the feasibility of
implementing a proof-of-concept covert channel by using the CuPy library; iii) provide a preliminary
performance evaluation assessment.

The remainder of the paper is structured as follows. Section 2 introduces the attack model, Section 3
shows the design of the workload-based covert channel, and Section 4 discusses its implementation
details. Section 5 presents numerical results obtained through laboratory tests, while Section 6 concludes
the article and outlines possible future research directions.

2. Background and Attack Model

A covert channel is a hidden communication path that allows two endpoints to secretly exchange data
or bypass blockages, security policies, or execution enclaves [14, 15]. To this end, the secret sender and
receiver must agree on a shared resource, which constitutes the carrier. Possible examples of carriers
are an unused protocol field, data used to pad a software object, or physical behavior such as the core(s)
temperature that make up a CPU [16]. With the increasing complexity of modern hardware/software
ecosystems, covert channels now represent a significant vulnerability as they can evade traditional
security controls such as firewalls, access policies, or data monitoring systems [17, 18]. Among the
various implemented threat models, covert channels are primarily used to exfiltrate sensitive data, such
as cryptographic keys or small chunks of high-value information. For instance, they can bypass the
security of hypervisors and establish cross-virtual-machine communication paths [19] or circumvent
isolation approaches deployed in cloud infrastructures [13].

In general, evaluating the performance of a covert channel involves three tightly-coupled basic prop-
erties [20]: i) the steganographic bandwidth, which quantifies the volume of information transmitted
per unit of time; ii) the robustness, which refers to the ability of the channel to maintain effective com-
munication despite noise, (unwanted) system variations, or external interference; iii) the undetectability
assessing how the channel blends into the expected behavior of the abused host/device.

To create channels targeting the same host, leveraging shared resources commonly used by users and
system processes, e.g., CPU caches, GPU metrics, or the system memory, is a viable idea. Accordingly,
such quantities can be directly manipulated or influenced to encode and transmit information between
two processes.

Figure 1 depicts the general attack model. Specifically, we consider two execution kernels that want
to communicate, i.e., they represent the secret sender and the secret receiver. Without loss of generality,
the secret endpoints could be co-located or implemented within two GPU processes. To effectively
implement such an attack scheme, the sender and receiver must agree on an alphabet/encoding. A
possible approach leverages the workload offered to the various GPU cores, which accounts for the
visible alteration of shared resources. For instance, producing a burden of operations will cause an
increase in the GPU temperature, leading to a globally observable behavior. Hence, the sender could

'CuPy homepage: https://cupy.dev
%GitHub repository: https://github.com/gigernau/Cupy-Covert-Channel
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Figure 1: General attack model considered in this work for creating a covert channel in a GPU.

encode the binary value 1 by applying a load to increase the temperature beyond a given threshold. In
contrast, the binary value 0 could be encoded by not performing operations. The receiver may then
infer a message by inspecting the temporal evolution of the targeted shared metric of the GPU, i.e., the
temperature.

For the specific case of the proof-of-concept implementation proposed in this work, covert com-
munication is made possible since the secret sender performs operations directly mapped to binary
values that will influence the visible behavior of the GPU. Such operations allow for building a shared
alphabet. The receiver infers the binary digit to decode the secret value by classifying a specific GPU
trait observed through a given time window. In other words, a covert communication (see Figure 1) is
made possible by two disjoint/distinct GPU processes, where the first one (i.e., the sender) executes
operations to force specific metrics on the GPU, while the second one (i.e., the receiver) reads and
classifies the metric, understanding the hidden operation.

Therefore, in this work, we consider a malicious threat actor who wants to implement the general
attack scheme of Figure 1 through GPU cores and uses as the carrier for secret data GPU metrics such
as temperature, power consumption, and percentage of usage. As detailed later, the first phase of
this attack chain should consider some form of reconnaissance, i.e., the attacker “sniffs” metrics to
understand the action-reaction relationship between a load of operations and a global GPU behavior.

3. Covert Channel Design

As hinted, to design the covert channel, we referenced the CuPy library since it allows us to produce
burdens of operations straightforwardly to indirectly influence the behavior of a shared resource. This
choice is motivated by CuPy providing a simple Python interface towards CUDA and operating directly
on the GPU cores. Establishing a covert communication path involves the transmission of a binary
digit composing a secret message. To this aim, each bit should be mapped against one or more CuPy
operations, leading to a specific signature in global GPU metrics that the receiver can infer. In more
detail, in this work, we focus on encoding the information by altering the following GPU metrics:
temperature [°C], power usage [watt], GPU usage [%], memory usage [Mb], cache usage [%], and the
frequency of the video clocks [MHz].

To design a suitable “secret alphabet”, we performed several tests to understand possible CuPy-
operations-to-metric mappings. As an example, Figure 2 showcases how the GPU metrics vary when a
burden of operations is created by a process executing the cupy.dot function, which is responsible
for performing a dot product of two arrays. Instead, Figure 3 reports a similar investigation for the
cupy .mean, which computes the arithmetic mean over a sequence. As it can be noticed, only cupy.dot
leads to some visible alterations, which can be used to encode information. When using cupy . dot, the
selected metrics seem insensitive to the load. Despite the used CuPy functions, the usage of resources
should be coherent with the undetectability of the channel, for instance, to not cause delays or lags at a
system-wide level that can reveal that the covert communication attempt is ongoing.
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Figure 2: Patterns within the selected metrics when the cupy.dot function is invoked.
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Figure 3: Patterns within the selected metrics when the cupy.mean function is invoked.

As a final remark, we point out that part of the design pipeline at the basis of this covert channel
may resemble a side-channel attack. The proposed encoding/decoding process leverages a mapping
between the CuPy-generated workload and the behavior of the metric (e.g., the power usage as depicted
in Figure 2). However, our reference scenario is different from classic side-channel attacks since we are
not assuming the presence of an external malicious entity, see, e.g., [21] and the references therein for
the case of inferring data through power consumptions of GPUs. Instead, we consider two colluding
GPU processes wanting to transfer information even without a direct software/hardware shared path

[1].

4. Implementation and Testbed

We decoupled the transmission and receiving phases to prepare a proof-of-concept implementation of
the proposed covert channel targeting GPU architectures. Specifically, the transmitting process (i.e., the
secret sender) is responsible for encoding the hidden message within a variable amount of operations
generated via functions of the CuPy library. As regards the receiving process, we implemented two
main functional components. The first is wrapped around the system management interface offered by
NVIDIA for collecting information on its hardware. Thus, we used the nvidia-smi command to collect
all the metrics discussed in Section 3. The second is the decoding stage, which relies upon artificial
intelligence tools to prevent the need to develop suitable decoding rules.

The adopted Al-based pipeline has been implemented by using the Random Convolutional Kernel



Transform method® to extract temporal patterns from the considered GPU metrics [22, 23]. To decode
the binary digits 1 and 0, we took advantage of the RidgeClassifierCV model*, mainly owing to its
automatic regularization capability via cross-validation. Although this approach may seem excessive
for a proof-of-concept, it allowed us to quickly validate the possibility of decoding the metric patterns
induced by CuPy operations. Replacing the Al-based decoding stage with lighter heuristics, possibly
optimized for real-time processing, is part of our future research.

Implementing the overall testbed required to face several technical challenges. The main one deals
with the synchronization between the secret sender and the covert receiver (i.e., the two processes
in charge of implementing the covert communication approaches). In fact, without proper timing
constraints, metric patterns from consecutive operations could overlap, thus causing a misalignment
that prevents the decoding of the secret message. To fix this issue, controlled delays between the various
cupy.dot operations were introduced to guarantee adequate temporal separation and prevent the need
for more sophisticated synchronization schemes. Another difficulty we had to face was the “noise”
generated by competing processes on the GPU. In this case, the volume of operations executed over the
various execution cores could degrade the “envelope” conveying the information needed to implement
the covert channel. As a prime workaround, experiments have been done in a partially-controlled
environment. Nevertheless, non-deterministic variations in the behavior of the GPU required to repeat
the execution of operations to obtain consistent averaged data, useful for both model training and
analysis. Testing channels in more challenging environments or scenarios is part of our ongoing
research.

The obtained dataset consists of 300 different runs of the following CuPy operations: matmul, dot,
linalg, sort, transpose, sum, sin, exp, log, rand, mean, and std. For each run, we sampled values
with a rate of 3 seconds, which allowed us to avoid overlaps and guaranteed a proper stabilization of
the measured metrics. The resulting dataset has been split so that the 70% of the entries were used for
the training phase, whereas the remaining 30% was used for tests.

The sender process has been implemented with a Python script and the CuPy library. In contrast,
the receiver process exploits the Scikit-learn °
investigation, we did not further tune the model hyperameters, since they already provided satisfactory
results. To perform tests, we used a host with Intel Core i7-9750H and 8 Gbyte of RAM and an NVIDIA
RTX 2060 with 30 trace cores, 240 tensor cores, 1,920 CUDA cores, 6 Gbyte of RAM, and a clock
frequency in the 960 — 1,200 MHz range. The host ran Linux with Ubuntu 24.04 LTS. The various CuPy
operations were repeated several times on matrices of 4,000 x 4,000 elements for proper statistical
relevance. This allowed the generation of workloads capable of altering the metric sensibly, i.e., to
produce proper patterns.

and Scikit-time ® frameworks. For this preliminary

5. Experimental Results

In this section, we present results obtained through our proof-of-concept implementation. First, we
investigate the “best” metrics to implement covert communications, especially from the perspective
of developing a suitable Al-based receiver. Then, we focus on analyzing the obtained covert channel.
Lastly, we briefly introduce some countermeasures and mitigation techniques.

5.1. Feature Selection

GPU metrics serve as input features for training the classification model. To build an efficient classifier,
feature selection was performed by using feature importance and permutation importance, which are

*Random Convolutional Kernel Transform reference documentation: https://www.sktime.net/en/latest/api_reference/auto_
generated/sktime.transformations.panel.rocket.Rocket.html

*RidgeClassifierCV reference documentation: https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
RidgeClassifierCV.html

5Scikit-learn reference documentation: https:/scikit-learn.org/stable/

¢Scikit-time reference documentation: https://www.sktime.net/en/latest/index.html
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Figure 4: Feature Importance.
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Figure 5: Permutation Importance.

defined as follows:

« Feature Importance: it quantifies the relative contribution of each GPU metric to the correct
classification of GPU operations according to four statistical values: mean, standard deviation,
minimum, and maximum. The relationship between values and GPU metrics is calculated through
a Random Forest classifier that can handle high-dimensionality data and directly provide feature
importance scores for each statistical value. The importance score of each GPU metric is calculated
by averaging its statistical values. Figure 4 suggests that the most important are the mean power
usage and the mean GPU usage.

« Permutation Importance: it evaluates the relevance of the metrics by measuring the accuracy
drop when the feature values are shuffled randomly. Significant accuracy losses imply critical
features for classification. According to Figure 5 power and GPU usage are the most relevant
indicators for the classification task.
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Figure 6: Temporal evolution for an instance of a covert communication.

Table 1 shows the accuracy of the classifier when used against the various CuPy operations. Specifi-
cally, the table reports the bit-to-operation mapping, which is the result of encoding a single binary
digit with a specific CuPy function, e.g., cupy.dot to encode the digit 1. As shown, the best encodings
are those with an accuracy higher than 60%, denoted in bold in the table. Specifically, best results are
achieved when the covert channel is built via operations producing a relevant burden on the GPU, e.g.,
the cupy.dot and the cupy.matmul. The table also reports “advanced” mappings, i.e., when different
binary values are associated with different CuPy functions. For instance, an accuracy higher than 99% is
achieved by encoding the value 1 with the cupy.matmul and the value 0 with the cupy.sort.

Single Operation Encoding Per-digit Encoding
Name Accuracy Name Accuracy
dot 68.71% matmul, dot 56.45%
exp 29.03% matmul, linalg 81.45%
linalg 90.32% matmul, sort 99.84%
log 29.68% matmul, transpose 99.19%
matmul 61.61% dot, linalg 82.26%
mean 22.90% dot, sort 98.39%
rand 24.52% dot, transpose 99.68%
sin 26.13% linalg, sort 99.84%
sort 99.68% linalg, transpose 99.19%
std 44.84% sort, transpose 99.84%
sum 36.77%

transpose 61.94%

Table 1
Accuracy of single operation encodings and per-digit encodings.

5.2. Covert Channel Analysis

To showcase the behavior of the proposed hidden communication approach, Figure 6 depicts an example
of a transmission cloaked within three different GPU metrics when the covert endpoints operate in a
controlled environment. Specifically, the example considers the exfiltration of the 101001 message. Each
digit has been encoded via suitable operations generated by the cupy.sort and cupy.dot functions



Encoding {1, 0} Transmission Time [s] BER [%]

matmul-sort 50.7 12.5
matmul-transpose 50.7 12.5
dot-transpose 52.3 50.0
linalg-sort 50.8 37.5
linalg-transpose 50.7 50.0
sort-transpose 50.7 0.0

Table 2
Performance of the covert channel with 8-bit long messages. Best results are in bold.

for the binary value 1 and 0, respectively. As shown, the cache, GPU, and power utilization GPU
metrics suggest the presence of some encoded hidden data. The receiver exploits this behavior to
decode the secret but leaves a visible signature that could be exploited to reveal the presence of covert
communication. However, the various patterns will be less detectable when the attacker operates in a
more realistic environment, i.e., when other processes compete for the GPU.

In this vein, we also performed a round of tests in a more realistic scenario. Specifically, during
the covert communication, the host is loaded with user-defined operations, such as using Google
Chrome to simulate a browsing session. Despite being simple, this configuration allowed us to conduct
a prime assessment of the robustness of the channel. Evaluating the channel in more realistic settings
is left as a future development. Table 2 provides results when the covert endpoints exfiltrate a 8-bit
long message. As shown, the time needed to transmit the secret information (i.e., the steganographic
bandwidth) is insensitive from the used CuPy functions, mainly due to the pseudo-syncing mechanism
used to “decouple” the patterns within the metrics for preventing overlaps. Instead, the BER is highly
influenced by the encoding scheme. In our setting, best results are achieved when the binary digit 1
is encoded through a volume of operations performed with the cupy.sort and the digit 0 with the
cupy.transpose.

5.3. Covert Channel Mitigation

An essential aspect concerns the mitigation of threats taking advantage of covert channels targeting
the GPU. Our findings prove the intuition that having a resource with a “global” visibility should
be considered a suitable carrier for hiding information (see, e.g., for the case of virtualized software
components sharing portions of the /proc filesystem [24]). Therefore, countermeasures could be
designed to act at different software layers. For instance, the most important computing libraries (i.e.,
CuPy in our work) could be checked at the design stage to identify and limit the behaviors that can be
manipulated by disjoint processes sharing some visibility properties [25]. Moreover, according to the
security requirements, most sensitive deployments could use hardened device drivers that introduce
some variability in the scheduled operations, for instance, when they have a commutative relation.
Another possible approach is to make the overall OS more secure, e.g., by not reporting precise GPU
metrics. In our case, it could be sufficient to patch the nvidia-smi command for returning noisy data
to untrusted processes.

When eliminating the channel is impossible, detecting colluding GPU processes at runtime would
be desirable. To this aim, the results obtained when designing the Al-based detector can play a major
role (see Section 5.1). In fact, despite being simple, the model trained demonstrated its effectiveness
in decoding the hidden information starting from patterns within the various GPU metrics. Hence,
suitable models could be deployed to recognize processes trying to exfiltrate data via a covert channel
[17, 18].

6. Conclusions

In this paper, we presented a new, proof-of-concept implementation of a covert channel targeting
GPU architectures. To this aim, we exploited the CuPy library to create “suitable” signatures within



globally-observable metrics (e.g., the % of used cache) to encode secret information. Results indicate the
feasibility of this class of covert attacks, especially when using the cupy.sort and cupy. transpose
functions. The limitations of this prime investigation are the use of a partially controlled environment
and the adoption of an Al-based decoder. Removing such constraints is part of our current research
work.

A relevant ongoing research item focuses on creating suitable countermeasures against threats
endowed with covert communication capabilities. To this aim, we are working towards a more robust
implementation (e.g., through a larger encoding alphabet based on additional CuPy operations) to
have more advanced test conditions. For instance, a viable approach concerns the introduction of
random “fluctuations” on the GPU workload to disrupt the secret data or impair the various hidden
communication paths. Yet, this approach should be carefully engineered, as it could degrade the
performance of legitimate operations flows. Another idea is to act at the device driver/software level,
for instance, by not reporting precise GPU metrics (e.g., by patching the nvidia-smi command) to
process not considered trusted or by reducing its accuracy.
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Online Resources

sources for the proof-of-concept implementation of the GPU covert channel are available online at:

« GitHub: Covert Channel.


https://github.com/gigernau/Cupy-Covert-Channel
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