
Revocable Anonymous Credentials from
Attribute-Based Encryption
Giovanni Bartolomeo1

1CNIT, Università di Roma Tor Vergata, Via del Politecnico, 1, 00133 Roma, Italy

Abstract
By leveraging on Ciphertext-Policy Attribute-Based Encryption, we build a credential management
protocol with anonymous proof of predicates. The protocol supports efficient revocation through
accumulators.

Keywords
Cryptography, Attribute-Based Encryption, Anonymous Credentials

1. Introduction

Anonymous credentials have experimented a renewed interest during the very last few years
due to the going to mainstream of various user "wallet" models. For example, an ongoing effort
at IEFT is intended to promote a very recent efficient construction of the BBS signature [1]
as a standard cryptographic primitive for the problem space of privacy preserving identity
credentials. Historically, anonymous credentials were mostly built on special signature schemas.
The prover, after obtaining a signature over a set of attributes from an issuer, is able to randomize
it and proves in zero-knowledge its possession to a verifier, optionally revealing a subset of those
attributes (so called selective disclosure). The verifier is unable to determine which signature
was used to generate the proof, removing any source of correlation (unlinkability).

However, in practical contexts, selective disclosure is not the only desired feature. For
example, a service may require that their users are over 18 years old and that they are based in
one of the European Countries. In such a case, an anonymous proof of predicates proving user’s
attribute age and country satisfying the following policy:

age GT 18 AND country ONEOF {Austria, Belgium,. . . , Sweden}

would be needed. Recent advances [2] suggest it is relatively easy to build credential systems
efficiently supporting anonymous proof of predicates by functional encryption: given a cipher-
text encoded using a policy, a prover can simply decrypt such a ciphertext to convince a verifier
that she knows a key for a set of attributes that matches the policy. According to the authors
of [2], such functional credentials would subsume all known credentials, such as anonymous,
delegatable, or attribute-based credentials.

In this paper, we provide the following contributions:

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
$ giovanni.bartolomeo@uniroma2.it (G. Bartolomeo)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:giovanni.bartolomeo@uniroma2.it
https://creativecommons.org/licenses/by/4.0

1. We directly build a functional credentials schema from the Ciphertext Policy Attribute-
Based Encryption (CP-ABE) construct proposed in [3], without incurring in few extra
commitment steps introduced by the author of [2] (originally required to leave their
framework agnostic from any specific functional encryption schema). We consider this
result important in practice, because many existing authentication protocols (such as
HTTP and OAuth) use a three steps procedure (request-challenge-response), so avoiding
any extra step would perfectly fit them.

2. Revocation for functional credentials is still unclear and not investigated, while it is very
relevant in real world applications. We propose to augment the above schema with an
efficient anonymous revocation feature leveraging on the simple dynamic accumulator
originally proposed in [4].

3. We achieve performance comparable to state of the art solutions without incurring in
complex zero-knowledge proof algorithms, but solely relying on a consolidated attribute-
based encryption schema. Again, this result is important in practice: for example, to
quickly build credential systems with anonymous proof of predicates, developers can
directly rely on the well-known OpenABE framework [5] leveraging on the wide policy
expressiveness this framework supports.

2. CP-WATERS-KEM and Accumulators

2.1. Preliminaries

The original construction reported in Section 5 of [3] (henceforth CP-WATERS-KEM) makes
use of a bilinear group, defined as follows:

Let 𝐺 and 𝐺𝑇 be two multiplicative cyclic groups of prime order 𝑝. Let 𝑔 be a generator of 𝐺
and 𝑒 be a bilinear map: 𝑒 : 𝐺×𝐺→ 𝐺𝑇 . The bilinear map 𝑒 has the following properties:

1. Bilinearity: for all 𝑢, 𝑣 ∈ 𝐺 and 𝑎, 𝑏 ∈ 𝑍𝑝, we have 𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢𝑏, 𝑣𝑎) = 𝑒(𝑢, 𝑣)𝑎𝑏.
2. Non-degeneracy: 𝑒(𝑔, 𝑔) ̸= 1.

If the group operation in 𝐺 and the bilinear map 𝑒 are both efficiently computable, 𝐺 is said a
bilinear group.

Here, we consider CP-WATERS-KEM in its small universe construction, however, an extension
to the large universe construction (reported in Appendix A of [3]) is straightforward.

We implement a revocation scheme preventing decryption of ciphertext created after the
key has been revoked. Note that this is not a general revocation scheme for ABE. Rather, it is
a “forward revocation”, where only ciphertext generated after the actual revocation happens
becomes hard to decrypt if the key has been revoked. To implement this kind of revocation,
the original CP-WATERS-KEM scheme is slightly altered and combined with the cryptographic
accumulator based on bilinear mappings described by Camenisch in [4].

The accumulator makes use of a set of indexes {𝑖} kept by the Authority and assigned to
each released secret key. In the setup phase, the Authority initially creates an accumulator
𝑎𝑐𝑐0 = 1 and two public initially empty sets: 𝑉 = {} and 𝑈 = {}, where 𝑈 is the set of all
indexes 𝑖 that will be ever added to the accumulator (but may have been subsequently removed).

The sequence 𝑔𝛾 , . . . , 𝑔𝛾
𝑛
, 𝑔𝛾

𝑛+2
, . . . , 𝑔𝛾

2𝑛
(but not 𝑔𝛾

𝑛+1
) is made public by the Authority (e.g.,

as part of 𝑀𝑃𝐾). Appendix D of [4] suggests a possible technique to reduce the size of this
sequence. The mathematical definition of the accumulator is the following:

𝑎𝑐𝑐𝑉 =
∏︁
𝑗∈𝑉

𝑔𝛾
𝑛+1−𝑗

= 𝑔

∑︀
𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

𝛾𝑖

𝑤𝑖𝑡𝑖 =
∏︁
𝑗 ̸=𝑖

𝑔𝛾
𝑛+1+𝑖−𝑗

= 𝑔
∑︀

𝑗 ̸=𝑖 𝛾
𝑛+1+𝑖−𝑗

∑︁
𝑗∈𝑉

𝛾𝑛+1+𝑖−𝑗 = 𝛾𝑛+1 +
∑︁
𝑗 ̸=𝑖

𝛾𝑛+1+𝑖−𝑗 ⇔ 𝑖 ∈ 𝑉

Where 𝑔 ∈ 𝐺 is a generator of the group 𝐺 of prime order 𝑝, and 𝛾 is picked at random from
𝑍𝑝.

2.2. Revocable Functional Credentials

The schema is adapted from [2]. A revocable functional credentials scheme for an attribute
universe Ω and a family of policies Φ consists of the following probabilistic algorithms:

1. MSK, MPK← CKGen(1𝜆): The key generation algorithm takes input the security parameter
𝜆 ∈ N and outputs a key pair (MSK, MPK) of an issuer (master key pair).

2. credi, MPK
′ ← GrantCred(MSK, Si): The grant credential algorithm takes input the mas-

ter secret key MSK and a non-empty set of attributes Si ⊂ Ω and outputs a credential
credi with i ∈ N for the corresponding set of attributes. It also outputs an updated
master public key MPK′.

3. b←< ShowCred(MPK, credi, f), VrfyCred(MPK, f) >: ShowCred takes input the mas-
ter public key MPK, a credential credi, and a policy f ∈ Φ; VrfyCred inputs the master
public key MPK and a policy f. At the end, VrfyCred outputs either 0 or 1.

4. MPK′ ← Revoke(MPK, MSK, credi): takes input the master public key MPK, the master
secret key MSK, and a credential credi ∈ GrantCred and outputs an update master
public key MPK′. credi is said a "revoked credential". A non-revoked credentials is said a
"valid credential".

By definition, for all 𝜆 ∈ N, for all (MSK, MPK) ∈ CKGen(1𝜆) for all S ⊂ Ω, for all
cred ∈ GrantCred, for all f ∈ Φ such that f(S) = 1, a functional credentials scheme

• is said correct if, assumed cred is valid (i.e., cred ̸∈ Revoke) it holds that

Pr[1←< ShowCred(MPK, cred, f), VrfyCred(MPK, f) >] = 1

• is said unforgeable if, chosen an arbitrary policy f, any adversary having access to
all system issued credentials credi ∈ GrantCred but the ones satisfying the policy (i.e,
f(credi) ̸= 1) and to all revoked credentials credj ∈ Revoke, has a negligible probability
to succeed in the credential verification process.

• is said anonymous if, arbitrarily chosen a policy f and two provers P0 and P1 owing
non-revoked credentials credi, credj ̸∈ Revoke, both satisfying or not the policy (i.e.,
f(credi) = f(credj)), any adversary cannot distinguish between them.

Note that we leave out one optional feature described in the original paper (policy hiding).

2.3. Construction

To support revocable functional credentials as above defined, CP-WATERS-KEM is modified as
follows:

1. (MPK, MSK)← Setup(1𝜆): The algorithm outputs the master secret key 𝑀𝑆𝐾 and the
master public key 𝑀𝑃𝐾 , and publishes the 𝑀𝑃𝐾 .

• The algorithm chooses a group 𝐺 of prime order 𝑝 and generator 𝑔, random group
elements ℎ1, ℎ2, . . . , ℎ𝑢 (where 𝑢 is the maximum number of system attributes) and
a bilinear pairing 𝑒 such that 𝑒 : 𝐺 × 𝐺 → 𝐺𝑇 . In addition, it chooses random
exponents 𝛼, 𝑎, 𝑏, 𝛾 ∈ 𝑍𝑝.

• The algorithm initially creates an accumulator 𝑎𝑐𝑐0 = 1, and two initially empty
public sets: 𝑉 = {} and 𝑈 = {}, where 𝑈 is the set of all indexes 𝑖 that will be ever
added to the accumulator (but may have been subsequently removed).

• The public key is 𝑔, 𝑔𝑏, ℎ1, ℎ2, . . . , ℎ𝑢, 𝑎𝑐𝑐𝑉 , 𝑎𝑐𝑐𝑎𝑉 and

𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝛼𝑒(𝑔𝑏, 𝑔𝛾

𝑛+1
)

The master secret key is 𝑔𝛼, 𝛼, 𝑎, 𝑏, 𝛾.
• The sequence 𝑔𝛾 , . . . , 𝑔𝛾

𝑛
, 𝑔𝛾

𝑛+2
, . . . , 𝑔𝛾

2𝑛
(but not 𝑔𝛾

𝑛+1
) is made public by the

Authority.

2. (MPK′, SKi = (Ki, Li,∀x∈S Ki,x, witi))← KeyGen(MPK, MSK, S): Key generation hap-
pens by taking as input the master keys (𝑀𝑆𝐾,𝑀𝑃𝐾) and a set of attributes 𝑆 that
describe the key. The output is a randomized secret key. The Authority associates an
index 𝑖 to each new generated secret decryption key 𝑆𝐾𝑖.

• The algorithm includes 𝑖 in the set 𝑉 and 𝑈 : 𝑉 = 𝑉𝑜𝑙𝑑 ∪ {𝑖}, 𝑈 = 𝑈𝑜𝑙𝑑 ∪ {𝑖} and
updates the accumulator 𝑎𝑐𝑐𝑉 :

𝑎𝑐𝑐𝑉 =
∏︁
𝑗∈𝑉

𝑔𝛾
𝑛+1−𝑗

= 𝑔

∑︀
𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

𝛾𝑖

• The algorithm updates the terms in the master public key using the accumulator:
𝑎𝑐𝑐𝑎𝑉 and 𝑒(𝑎𝑐𝑐𝑉 , 𝑔)

𝛼𝑒(𝑔𝑏, 𝑔𝛾
𝑛+1

), while the master secret key 𝑀𝑆𝐾 remains the
same.

• Chosen a random 𝑡 ∈ 𝑍𝑝, the algorithm computes the secret decryption key compo-
nent 𝐾𝑖 as as follows: 𝐾𝑖 = 𝑔𝛼+𝑎𝑏𝑡+𝑏𝛾𝑖

, 𝐿𝑖 = 𝑔𝑏𝑡 and, for each 𝑥 ∈ 𝑆, 𝐾𝑖,𝑥 = ℎ𝑡𝑥.
• Also, the algorithm releases a new key component (the witness):

𝑤𝑖𝑡𝑖 =
∏︁
𝑗 ̸=𝑖

𝑔𝛾
𝑛+1+𝑖−𝑗

= 𝑔
∑︀

𝑗 ̸=𝑖 𝛾
𝑛+1+𝑖−𝑗

.

3. MPK′ ← KeyRemove(PK, MSK, i): A similar step is also executed when the Authority needs
to revoke a key𝐾𝑖. In this case, the algorithm simply removes 𝑖 from the set 𝑉 , recomputes
the accumulator value 𝑎𝑐𝑐𝑉 and, consequently, the terms in the master public key using
it: 𝑎𝑐𝑐𝑎𝑉 and 𝑒(𝑎𝑐𝑐𝑉 , 𝑔)

𝛼𝑒(𝑔𝑏, 𝑔𝛾
𝑛+1

) as above (the master secret key 𝑀𝑆𝐾 remains the
same).
With the addition or removal of elements to the accumulator, previously released witnesses
become stale and any Client who has previously received a witness 𝑤𝑖𝑡𝑖 shall update it.
Therefore, the following step is introduced into the schema:

4. wit′i ← UpdateWitness(MPK, Vold, V, witi): The algorithm takes as input the old wit-
ness and updates it to match the new master public key 𝑀𝑃𝐾 and the current set of
authorized indices 𝑉 . The new witness is locally computed using the following equation:

𝑤𝑖𝑡′𝑖 ← 𝑤𝑖𝑡𝑖

∏︀
𝑗∈𝑉/𝑉𝑜𝑙𝑑

𝑔𝛾
𝑛+1+𝑖−𝑗∏︀

𝑗∈𝑉𝑜𝑙𝑑/𝑉
𝑔𝛾𝑛+1+𝑖−𝑗

Note that the Client does not know 𝑔𝛾
𝑛+1

, hence, this algorithm fails when the condition
𝑖 ∈ 𝑉 ∩ 𝑉𝑜𝑙𝑑 is not verified, i.e. a Client cannot update its 𝑤𝑖𝑡𝑖 if 𝑖 is not (no more) in 𝑉
as a result of a revocation. In this case the update operation returns 𝑤𝑖𝑡′𝑖 = ⊥.

5. (C = (C′, C′′,∀k∈[1,... l] Ck), 𝜇)← Encrypt(MPK, Ml×m, 𝜌): The algorithm takes as input
an access structure (𝑀,𝜌) and the public key 𝑀𝑃𝐾 . 𝑀 is an 𝑙× 𝑛 matrix, while 𝜌 is an
injective function associating each row of 𝑀 to an attribute 𝜌𝑘 (i.e.,𝜌𝑘 = 𝜌(𝑘) ∈ 𝑆); note
that in this construct one attribute is associated with at most one row. The output is a
random secret and the ciphertext.

• Chosen a random vector �⃗� = (𝑠, 𝑦2, . . . , 𝑦𝑚) in 𝑍𝑛
𝑝 and being 𝑀𝑘 the 𝑘-th row of

𝑀 , the algorithm computes 𝜆𝑘 = 𝑣 ·𝑀𝑘.
• Together with a with description of (𝑀,𝜌), the algorithm makes public the cipher-

text:
𝐶 ′ = 𝑔𝑏𝑠, 𝐶𝑘 = 𝑎𝑐𝑐𝑎𝜆𝑘

𝑉 ℎ−𝑠
𝜌𝑘

, 𝐶 ′′ = 𝑎𝑐𝑐𝑠𝑉 = (
∏︁
𝑗∈𝑉

𝑔𝛾
𝑛+1−𝑗

)
𝑠

• Finally, the algorithm computes the random secret

𝜇 = [𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝛼𝑒(𝑔𝑏, 𝑔𝛾

𝑛+1
)]
𝑠

and keeps it private.

6. 𝜇← Decrypt(SKi, C): Dually, the decryption takes as input the ciphertext 𝐶 and the
secret key 𝑆𝐾 . The output is the shared secret if and only if the set of attributes 𝑆 satisfies
the access structure, or ⊥ otherwise.

• For each 𝑘 such that 𝜌𝑘 ∈ 𝑆 (i.e., consider only attributes in 𝑆), compute 𝜔𝑘 such
that

∑︀
𝑘 𝜔𝑘𝜆𝑘 = 𝑠 (there could different sets of {𝜔𝑘} satisfying this equation)

• Compute the random secret:

𝜇 =
𝑒(𝐶 ′′,𝐾𝑖)∏︀

𝑘 [𝑒(𝐶𝑘, 𝐿𝑖)𝑒(𝐶 ′,𝐾𝑖,𝜌𝑘)]
𝜔𝑘𝑒(𝐶 ′, 𝑤𝑖𝑡𝑖)

=

[𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝛼𝑒(𝑔𝑏, 𝑔𝛾

𝑛+1
)]
𝑠

2.4. Correctness and Security

To understand why decryption works, consider the solution equation, and note the numerator
is

𝑒(𝐶 ′′,𝐾) = 𝑒(𝑔, 𝑔)

∑︀
𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

𝛾𝑖
𝑠(𝛼+𝑎𝑏𝑡+𝑏𝛾𝑖)

=

𝑒(𝑔, 𝑔)

∑︀
𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

𝛾𝑖
𝛼𝑠
𝑒(𝑔, 𝑔)

∑︀
𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

𝛾𝑖
𝑠𝑎𝑏𝑡

𝑒(𝑔, 𝑔)𝑏𝑠
∑︀

𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

=

𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝛼𝑠𝑒(𝑎𝑐𝑐𝑉 , 𝑔)

𝑠𝑎𝑏𝑡𝑒(𝑔𝑠, 𝑔)𝑏
∑︀

𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

As in the original CP-ABKEM decryption algorithm, the second factor 𝑒(𝑎𝑐𝑐𝑉 , 𝑔)𝑠𝑎𝑏𝑡 cancels
out with the first part of the denominator:∏︁

𝑘

[𝑒(𝐶𝑘, 𝐿)𝑒(𝐶
′,𝐾𝜌𝑘)]

𝜔𝑘 =
∏︁
𝑘

𝑒([𝑎𝑐𝑐𝑎𝜆𝑘
𝑉 ℎ−𝑠

𝜌𝑘
, 𝑔𝑏𝑡)𝑒(𝑔𝑏𝑠, ℎ𝑡𝜌𝑘)]

𝜔𝑘 =

∏︁
𝑘

𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝑎𝑏𝜆𝑘𝜔𝑘𝑡 = 𝑒(𝑎𝑐𝑐𝑉 , 𝑔)

𝑠𝑎𝑏𝑡

Regarding the third factor 𝑒(𝑔𝑠, 𝑔)𝑏
∑︀

𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

we note that, if and only if the index is
contained in the current accumulator (i.e., 𝑖 ∈ 𝑉), we have:

𝑒(𝑔𝑠, 𝑔)𝑏
∑︀

𝑗∈𝑉 𝛾𝑛+1+𝑖−𝑗

= 𝑒(𝑔𝑏𝑠, 𝑔𝛾
𝑛+1+

∑︀
𝑗 ̸=𝑖 𝛾

𝑛+1+𝑖−𝑗

) =

𝑒(𝑔𝑏𝑠, 𝑔𝛾
𝑛+1

)𝑒(𝑔𝑏𝑠, 𝑤𝑖𝑡𝑖)

Partially cancelling out with the factor 𝑒(𝑔𝑏𝑠, 𝑤𝑖𝑡𝑖) in the denominator. Therefore, the result
of the computation is

[𝑒(𝑎𝑐𝑐𝑉 , 𝑔)
𝛼𝑒(𝑔𝑏, 𝑔𝛾

𝑛+1
)]
𝑠

To prove security, we use a security game based on the one presented in Section 5 of [3]. The
adversary chooses to be challenged on an encryption to an access structure 𝐴*, and can ask
arbitrarily 𝑞 times for any private key 𝑆 that does not satisfy 𝐴*. However, the original model
is extended by letting the adversary query for private keys that satisfy the access structure,
with the restriction that any of those keys shall be revoked before the challenge:

• Setup. The challenger runs Setup algorithm and gives the public parameters, PK to the
adversary.

• Phase 1. The adversary makes repeated private keys corresponding to sets of attributes
S1, . . . , Sq′ (with 1 < 𝑞′ < 𝑞).

• Revocation Using the keyremove algorithm in the schema, any key may (or not) be
revoked. Phase 1 and Revocation may be arbitrarily interleaved.

• Challenge. The adversary submits two equal length messages M0 and M1. In addition the
adversary gives a challenge access structure A* such that none of the sets S1, . . . , Sq′ from
Phase 1 satisfies the access structure, or such that any of those keys corresponding to sets
satisfying the access structure has been revoked. The challenger flips a random coin 𝛽,
and encrypts M𝛽 under A*. The ciphertext CT* is given to the adversary.

• Phase 2. Phase 1 is repeated with the restriction that none of sets of attributes Sq′+1, . . . , Sq
satisfies the access structure corresponding to the challenge. Revocation may also occur
in this phase.

• Guess. The adversary outputs a guess 𝛽′ of 𝛽.

The advantage of the adversary in the above game is 𝜖 = Pr[𝛽′ = 𝛽]− 1
2

and, by definition, the
scheme is secure if all polynomial time adversaries have at most a negligible advantage. We use
a selective proof, therefore the above game is augmented by an initial step Init in which the
adversary commits to the challenge access structure 𝐴* and to the final set of credentials that
will eventually appear in the accumulator 𝑉 *.

Our security proof works under the General Diffie-Hellman Exponent Problem introduced by
Boneh, Boyen and Goh in [6]. Using this hardness assumption, in a longer version of this paper
[7] we prove that chosen an access structure 𝐴*, no polynomial time adversary can (selectively)
break our system, provided all keys satisfying 𝐴* have been revoked before the challenge.

Note that the presented security model supports only chosen-plaintext attacks. The model is
extended to handle chosen-ciphertext attacks by allowing for decryption queries in Phase 1 and
Phase 2. To achieve chosen-ciphertext security we use the Fujisaki-Okamoto transformation
reported in subsection 3.1 and 3.2. As this transformation exactly applies as in the original
paper, we let the reader refer to [5] for the security proof.

2.5. Verification Protocol

We use the above CP-ABE schema to implement the revocable functional credential schema in
section 2.2(the protocol is also adapted from [8]):

1. CP-ABE Setup(1𝜆) algorithm takes place in order to generate the key pair
(𝑀𝑃𝐾,𝑀𝑆𝐾).

2. The grant credential algorithm is implemented through the
MPK′, SKi ← KeyGen(MPK, MSK, S) algorithm which releases credentials 𝑐𝑟𝑒𝑑𝑖 = 𝑆𝐾𝑖

corresponding to a non-empty set of attributes 𝑆. It also outputs an updated master
public key 𝑀𝑃𝐾 ′.

3. To check credential, chosen an access policy (i.e., a matrix 𝑀 𝑙×𝑚, and a func-
tion 𝜌), a verifier generates and encrypts a random secret 𝜇 through the CP-ABE
Encrypt(MPK, Ml×m, 𝜌); and sends the resulting ciphertext 𝐶 to the prover. Using a
credential 𝑆𝐾 ′, the prover executes 𝜇′ ← Decrypt(SK′, C) and sent back the result to
the verifier. The verifier output 1 if 𝜇 = 𝜇′ and 0 otherwise.

4. Revocation of credential 𝑐𝑟𝑒𝑑𝑖 is implemented through the KeyRemove(PK, MSK, i) algo-
rithm, which updates the master public key to 𝑀𝑃𝐾 ′.

Note that since each challenge encapsulates a randomly generated secret token, the protocol is
natively immune to replay attacks.

3. Anonymity

To ensure anonymity, the Fujisaki Okamoto transformation may be applied to CP-WATERS-
KEM. This transformation was already described in [5] and there proved to make the schema

secure under Chosen Ciphertext Attacks (CCA). The transformation uses two random numbers
𝑟𝑐 and 𝐾𝑐 both chosen by the encrypting party to generate randomness for encryption. It is
possible to prove that there is a negligible probability for an attacker to produce a ciphertext
that may decrypt, and that this probability is the same as guessing a ciphertext without any
knowledge of the randomness used to produce it. Using this property, in Appendix A we prove
correctness, unforgeability and anonymity of the proposed scheme.

3.1. CCA-secure Encryption Algorithm

The CCA-secure encryption algorithm is specified by the following steps:

• The decrypting party (prover) shall choose a random number 𝑟𝑐 and send it to the
encrypting party.

• Received 𝑟𝑐, the encrypting party (verifier) chooses an access structure 𝐴𝑃 and a secret
𝐾𝑐 and concatenates them to form the string 𝑟𝑐||𝐾𝑐||𝐴𝑃

• The encrypting party runs the encryption algorithm of the original CP-WATERS-KEM or
of the modified schema with revocation to get a random secret and the ciphertext. The
seed 𝑟𝑐||𝐾𝑐||𝐴𝑃 is used as a source of randomness for the encryption algorithm with
u← PRG(H′(rc||Kc||AP), 𝜆), where PRG is a pseudo random generator, 𝜆 is the length of
the returned random bit string (𝑢 ∈ {0, 1}𝑙) and 𝐻 ′ is a collision-resistant hash function.

– The random secret is 𝑒(𝑔, 𝑔)𝛼𝑠 for CP-WATERS-KEM or (𝑒(𝑎𝑐𝑐𝑉 , 𝑔)𝛼𝑒(𝑔𝑏, 𝑔𝛾
𝑛+1

))𝑠

for the modified CP-WATERS-KEM. The encrypting party keeps it private and uses
in the next step.

– The encrypting party releases the ABKEM ciphertext 𝐶𝐴𝐵𝐾𝐸𝑀 .

• The encrypting party uses random secret above for XORing the concatenation 𝑟𝑐||𝐾𝑐

– Transform 𝑟𝑐||𝐾𝑐 into bytes (octects).
– Using the pseudo random generator 𝑃𝑅𝐺, get

r← PRG(H(e(g, g)𝛼s), 𝜆)

for CP-WATERS-KEM or

r← PRG(H([e(accV, g)
𝛼e(gb, g𝛾

n+1

)]s), 𝜆)

for the modified CP-WATERS-KEM, with 𝐻 being a collision-resistant hash function.
– Finally, compute 𝐶 = 𝑟 ⊕ (𝐾𝑐||𝑟𝑐)

3.2. CCA-secure Decryption Algorithm

The CCA-secure decryption algorithm is specified by the following steps:

• Run decryption of the original CP-WATERS-KEM or of the modified schema to decrypt
the ciphertext and obtain the shared secret:

𝑒(𝑔, 𝑔)𝛼𝑠

for CP-WATERS-KEM or
(𝑒(𝑎𝑐𝑐𝑉 , 𝑔)

𝛼𝑒(𝑔𝑏, 𝑔𝛾
𝑛+1

))𝑠

for the modified schema.
• Use that shared secret to generate randomness

r← PRG(H(e(g, g)𝛼s), 𝜆)

or
r← PRG(H([e(accV, g)

𝛼e(gb, g𝛾
n+1

)]s), 𝜆)

• Use generated randomness 𝑟 for XORing the ciphertext and retrieve 𝐾𝑐 and 𝑟𝑐: 𝐶 ⊕ 𝑟 =
(𝐾𝑐||𝑟𝑐)

• Verify 𝑟𝑐 matches the random number chosen at beginning.
• Run again the CCA-secure Encryption using 𝑟𝑐||𝐾𝑐||𝐴𝑃 as a source of randomness and

verify the result is equal to the received ciphertext 𝐶𝐴𝐵𝐾𝐸𝑀 .

4. Related Works

Due to space limitations, we let the reader refer to [9] for a survey on revocation strategies for
anonymous credentials. Furthermore, [10] reports several works considering the application
of dynamic universal accumulators to anonymous credentials to implement blacklists. While
these approaches require to prove in zero-knowledge that a prover’s non-membership witness
satisfies the accumulator verification equation, the authors describe a different construction
where both the accumulator and the anonymous credentials, previously described in [11], rely
on the same construct (structure-preserving signatures on equivalence classes). To same extent,
our approach is similar to their one, but we highlight the different scope as [10] limits to consider
selective disclosure, not proof of predicates. In terms of performance, scheme 2 in [11], using
primitives VerifyR and VerifySubset, requires a total of 2 * (𝑖+ 2) pairing operations per
number of credential entries 𝑖, plus two additional revocation-induced pairings (scheme 2 in
[10]). Our scheme presented in section 2.3, using the optimization described in [5], reduces the
number of pairings to 𝑘 + 2, with 𝑘 being the number of attributes satisfying the policy, plus
one more for checking the witness.

5. Conclusion

Combining Ciphertext Policy Attribute-Based Encryption (CP-ABE) and accumulators we build
a revocable credential management framework supporting anonymous proof of predicates over
attributes; we further achieve anonymity by applying a simple transformation to the resulting
schema. To the best of our knowledge, our work is the first one efficiently combining rich policy
expressiveness (from ABE), revocation (from accumulator) and anonymous proof of predicates
over attributes into a single framework.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] S. Tessaro, C. Zhu, Revisiting bbs signatures, Cryptology ePrint Archive, Paper 2023/275,
2023. URL: https://eprint.iacr.org/2023/275, https://eprint.iacr.org/2023/275.

[2] D. Deuber, M. Maffei, G. Malavolta, M. R. D. Schröder, M. Simkin, Functional cre-
dentials, Proceedings on Privacy Enhancing Technologies 2018 (2018). doi:10.1515/
popets-2018-0013.

[3] B. Waters, Ciphertext-policy attribute-based encryption: An expressive, efficient, and
provably secure realization, Cryptology ePrint Archive, Paper 2008/290, 2008. URL: https:
//eprint.iacr.org/2008/290, https://eprint.iacr.org/2008/290.

[4] J. Camenisch, M. Kohlweiss, C. Soriente, An accumulator based on bilinear maps and
efficient revocation for anonymous credentials, Cryptology ePrint Archive, Paper 2008/539,
2008. URL: https://eprint.iacr.org/2008/539, https://eprint.iacr.org/2008/539.

[5] B. Waters, M. Green, The OpenABE Design Document, Technical Report, Zeutro LLC
Encryption and Data Security, 2018. URL: https://github.com/zeutro/openabe/blob/master/
docs/libopenabe-v1.0.0-design-doc.pdf.

[6] D. Boneh, X. Boyen, E.-J. Goh, Hierarchical identity based encryption with constant size
ciphertext, Cryptology ePrint Archive, Paper 2005/015, 2005. URL: https://eprint.iacr.org/
2005/015, https://eprint.iacr.org/2005/015.

[7] G. Bartolomeo, A zero-knowledge revocable credential verification protocol using attribute-
based encryption, 2024. URL: https://arxiv.org/abs/2308.06797. arXiv:2308.06797.

[8] ETSI, CYBER; Attribute Based Encryption for Attribute Based Access Control, ETSI Tech-
nical Specification TS 103 532, European Telecommunications Standards Institute, Sophia
Antipolis, France, 2021.

[9] J. Lapon, M. Kohlweiss, B. De Decker, V. Naessens, Analysis of revocation strategies for
anonymous idemix credentials, in: B. De Decker, J. Lapon, V. Naessens, A. Uhl (Eds.),
Communications and Multimedia Security, Springer Berlin Heidelberg, Berlin, Heidelberg,
2011, pp. 3–17.

[10] D. Derler, C. Hanser, D. Slamanig, A new approach to efficient revocable attribute-based
anonymous credentials, in: J. Groth (Ed.), Cryptography and Coding, Springer International
Publishing, Cham, 2015, pp. 57–74.

[11] C. Hanser, D. Slamanig, Structure-preserving signatures on equivalence classes and their
application to anonymous credentials, in: P. Sarkar, T. Iwata (Eds.), Advances in Cryptology
– ASIACRYPT 2014, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 491–511.

https://eprint.iacr.org/2023/275
https://eprint.iacr.org/2023/275
http://dx.doi.org/10.1515/popets-2018-0013
http://dx.doi.org/10.1515/popets-2018-0013
https://eprint.iacr.org/2008/290
https://eprint.iacr.org/2008/290
https://eprint.iacr.org/2008/290
https://eprint.iacr.org/2008/539
https://eprint.iacr.org/2008/539
https://github.com/zeutro/openabe/blob/master/docs/libopenabe-v1.0.0-design-doc.pdf
https://github.com/zeutro/openabe/blob/master/docs/libopenabe-v1.0.0-design-doc.pdf
https://eprint.iacr.org/2005/015
https://eprint.iacr.org/2005/015
https://eprint.iacr.org/2005/015
https://arxiv.org/abs/2308.06797
http://arxiv.org/abs/2308.06797

A. Security

We prove the following:
Theorem. A polynomial time adversary, acting as a Verifier, cannot distinguish between any

two provers with different CP-WATERS-KEM (plus Accumulator) keys, if their (non revoked)
keys both satisfy (or not satisfy) the same access structure they are tested against.
Proof. We start considering the following security game (adapted from [2]):

1. The Setup(1𝜆) algorithm of CP-WATERS-KEM or the modified schema takes place. The
public key 𝑃𝐾 is given to the adversary.

2. Any Prover 𝑃𝑖 receives distinct secret keys 𝐾𝑖 embedding some attributes.
3. The adversary is allowed to submit queries in the form (𝑟𝑐||𝐾𝑐||𝐴𝑃) to an oracle O1

which produces a random output 𝑢 if this is the first time the input has been queried
on. Otherwise, it gives back the previous response. In addition, the oracle computes
the ciphertext 𝐶 using the CCA-secure encryption algorithm and records the couple
((𝑟𝑐||𝐾𝑐||𝐴𝑃), (𝐶, 𝑢)) in a table. This oracle operation runs throughout the whole game.

4. The adversary, acting as a Verifier 𝑉 , arbitrarily chooses an access structure 𝐴* and two
Provers 𝑃0 and 𝑃1, such that their corresponding keys either both satisfy, or both not
satisfy the chosen access structure.

5. Depending on an internal coin toss 𝑏, a second oracle O2 impersonates the prover 𝑃𝑏 in
the verification algorithm.

6. Verifier 𝑉 computes a CCA-secure ciphertext and sends it to O2.
7. O2 responds with the decrypted ciphertext 𝑚 or with ⊥.
8. The aforementioned steps (except the Setup) are repeated adaptively for any polynomial

number of times on arbitrarily chosen access structure and arbitrarily chosen pairs of
provers.

9. The adversary tries a guess 𝑏′ and wins the game if 𝑏 == 𝑏′ (i.e., she is able to guess
which Prover has responded).

Modify the game as follows: at step 7, when given a ciphertext 𝐶 , oracle O1 checks if 𝐶
appears in the random oracle table. If so, it outputs the corresponding 𝑚 = (𝐾𝑐||𝑟𝑐) value in
the table; otherwise, it outputs ⊥ and rejects.

The difference between the original game and the modified one is negligible, as in the
original game the oracle may decrypt even in case of a forged ciphertext (i.e., a ciphertext not
computed using the CCA-secure encryption algorithm). However, since O1 was not queries
on (𝑟𝑐||𝐾𝑐||𝐴𝑃), the probability that this event happens is bounded by the probability of
apriori guessing a ciphertext output by an encryption for a given message without knowing the
randomness used to encrypt.

Now, the following observations apply to this modified game:

• If the Verifier produces a genuine ciphertext C following the CCA-secure Encryption
algorithm, she gets a correct decryption 𝑚 if the attributes embedded in the secret key
𝐾𝑏 satisfy the chosen access structure 𝐴*, i.e. 𝐴*(𝐾𝑏) = 1. Thus, the presented schema
satisfies by definition the correctness property.

• Viceversa, if the attributes embedded in the secret key 𝐾𝑏 do not satisfy the chosen
access structure 𝐴*, i.e. 𝐴*(𝐾𝑏) = 0, the ciphertext wouldn’t decrypt at all except
for a negligible probability 𝜖. Thus, the presented schema satisfies by definition the
unforgeability property.

Furthermore, we observe that:

• The access structure 𝐴* associated to the ciphertext 𝐶 is always known to the challenger
(given as input after being chosen by the adversary)

• Because a pseudo random generator is used, the ciphertext𝐶 is deterministically computed
from the public key 𝑃𝐾 and the access structure 𝐴*

• The ciphertext 𝐶 is uniformly distributed on the ciphertext space, because computed
using the uniformly distributed randomness 𝑢 in step 3.

Under the conditions above, suppose to modify the previous game replacing prover 𝑃𝑏’s
behaviour as follows:

• if key 𝐾𝑏 embeds attributes satisfying the access structure 𝐴*, then message 𝑚 is returned;
• otherwise ⊥ is returned.

That is, 𝑃𝑏 no longer evaluates the decryption using the key 𝐾𝑏 rather it (deterministically)
returns 𝑚 or ⊥ depending on the internal bit 𝐴*(𝐾𝑏). Since 𝐴*(𝐾0) = 𝐴*(𝐾1) (both keys
satisfy or not satisfy the access structure), in the latter schema the random coin 𝑏 of the oracle
remains hidden in the information-theoretic sense. This implies that the advantage of any
adversary is 1/2 in distinguish between 𝑃0 and 𝑃1. As the introduced modifications do not
alter the advantage except for at most a negligible probability, the advantage of any adversary
in the original game is negligibly close to 1/2. □

	1 Introduction
	2 CP-WATERS-KEM and Accumulators
	2.1 Preliminaries
	2.2 Revocable Functional Credentials
	2.3 Construction
	2.4 Correctness and Security
	2.5 Verification Protocol

	3 Anonymity
	3.1 CCA-secure Encryption Algorithm
	3.2 CCA-secure Decryption Algorithm

	4 Related Works
	5 Conclusion
	A Security

