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Abstract
Mobile malware poses significant security and privacy risks, hence effective detection methods are crucial. Graph-

based representations of mobile applications have been shown to be well-suited for this task. However, traditional

graph-based machine learning techniques are computationally expensive and unsuitable for on-device analysis.

Nevertheless, off-device analysis raises privacy concerns, making on-device analysis combined with decentralized

learning approaches like Federated Learning (FL) an attractive alternative. Hyperdimensional Computing (HDC)

offers efficient graph classification on resource-constrained mobile devices. This work introduces HDDroid, an

FL framework leveraging HDC to detect malicious software via function call graph analysis. HDDroid’s novel

online encoding strategy reduces memory usage, enabling large graph analysis on mobile devices. Additionally,

HDDroid’s improved model aggregation strategy enhances model robustness and classification accuracy, achieving

state-of-the-art performance in distributed learning scenarios.
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1. Introduction

The widespread diffusion of mobile devices, and the consequent increase in the number of applications

available on those devices, has led mobile malware to become a significant threat to the security and

privacy of users [1], thus making effective detection methods crucial to limit these risks. Raw features

like bytecodes, opcodes, strings, permissions, and APIs are easy to extract and can be used to identify

malware [2]. However, these low-level features are vulnerable to code obfuscation, considered that

malware developers alter code features while maintaining functionality [3]. Higher-level structured

features, such as multimodal features, API call reachability analysis, and function call graphs, are

preferred as they are harder to modify while preserving the program’s semantics [4]. Graph-based

representations in particular effectively capture the semantics of the code and can be extracted by

lightweight static analysis [4].

An additional challenge in mobile malware detection is the privacy of the users: a simple snapshot of

the installed applications on a device is sufficient to infer sensitive information such as the users’ location,

interests, religious beliefs, marital status, medical conditions, and habits [5]. Hence, to preserve the

privacy of the users, data should never leave their devices. Although graph-based representations can be

obtained easily without requiring off-device dynamic analysis, traditional machine learning techniques

for graph classification are computationally expensive and require multiple passes through the data.

Thus, mobile devices might struggle to perform the necessary computations for on-device analysis, and

real-time detection would not be feasible [6]. Hyperdimensional Computing (HDC) is a brain-inspired

computing paradigm that is recently gaining popularity in the machine learning community [7]. This

paradigm is well suited for devices with limited energy and computational resources such as mobile

phones and represents a promising alternative for on-device training and inference [7].

This work introduces HDDroid, a federated learning framework for mobile malware detection to
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efficiently and effectively detect malicious applications through the analysis of function call graphs.

The main contributions of this work can be summarized as follows:

• HDDroid enables on-device training and analysis leveraging Hyperdimensional Computing;

• through online encoding, HDDroid reduces the memory requirements for function call graphs

encoding, enabling the analysis of large graphs on resource-constrained devices;

• to integrate the contributions of multiple users, HDDroid employs a novel aggregation strategy

for distributed learning that filters out irrelevant information and increases the classification

accuracy.

Experimental results on the comprehensive real-world publicly available MalNet [8] dataset show

that HDDroid achieves state-of-the-art performance in mobile malware detection, and maintains a

high accuracy in distributed learning scenarios. The remainder of this paper is organized as follows.

Section 2 reviews related works. Section 3 provides preliminary information on the adopted computing

paradigms. Section 4 details the HDDroid architecture. Section 5 presents the experimental evaluation.

Finally, Section 6 concludes the paper.

2. Related Works

The field of malware detection has been the subject of extensive research. The adoption of Machine

Learning methods promises to be the best approach to enable the design of solutions that can automati-

cally learn how to detect these types of threats [9]. Early automated malware detection systems detected

malware by computing a signature summarizing the characteristics of the software and comparing it

to known malware signatures. The signature of a software is constituted by a unique string of bytes

generated through an analysis of the code. Several approaches to generate effective software signatures

for malware detection have been proposed [10]. For instance, early approaches used a digest of the

file to check if an executable is a known malware. More fine-grained approaches statically analyze

the execution flow of the program trying to match sequences of operation in the code with known

malware patterns. Signature-based approaches are fast and effective in detecting known malware but

they are not reliable for detecting unknown malware types and can be eluded by polymorphic malware.

Additionally, signatures need to be crafted through careful feature engineering, limiting versatility. A

more flexible approach compared to signature-based detection is behavior-based classification. These

techniques analyze the behavior of the software during its execution by monitoring system calls, file

changes or network activity and build a feature vector that is then used to classify the software. This

approach requires sandbox execution, which is computationally expensive for on-device analysis [11].

Thus, static analysis is more suitable for on-device feature extraction.

However, detection through low-level static features such as APIs, strings, permissions, and opcodes

can be eluded through code obfuscation [4] since malware developers can alter the code to change its

features while maintaining its functionality. Therefore, higher-level structured features are preferred.

For instance, graph representations of software are robust to obfuscation [4] while being relatively easy

to acquire from the code with a static analysis without requiring computationally expensive dynamic

analysis [12]. Among the most used graph representations for malware analysis are: a) Control Flow

Graphs [13] that model paths between blocks of code during the program execution; b) Function call and

API dependencies graphs [14], which are Control Flow Graphs with the functions/API calls granularity;

c) System call graphs [15] that model interactions between the program and the underlying operating

system; d) System entity graphs [16] that model interactions between the program and the system

entities such as files, network connections, and processes. Function call graphs extracted through a

static analysis of the API calls are the most popular choice for Android malware detection [14].

Traditional approaches to represent graphs for learning tasks often rely on hand-crafted summary

statistics to encode the graph structure into feature vectors. For example, LDP [17] uses histograms of

node degrees and their 1-hop neighbors, while NoG [18] focuses on node and edge attributes, ignoring

topology. Other methods use random walks to describe node neighbors [19]. Graph kernels, such as

Slaq-LSD and Slaq-VNGE [20], measure approximate distances between spectral graph representations.



Recent works have focused on learning graph representations directly from raw graph data using

deep learning models. Graph Neural Networks (GNNs) propagate information between neighboring

nodes [21], learn the optimal aggregation function [22], and extending convolution operations to

graph data [23]. While effective, these methods are computationally expensive and unsuitable for

on-device analysis in constrained devices like mobile phones. A recent alternative for graph embedding

is Hyperdimensional Computing, specifically the GraphHD algorithm [24]. Rather than learning a

representation of the nodes, GraphHD assigns random high-dimensional vectors to nodes and combines

them to represent edges and the entire graph. This approach is suitable for on-device analysis, as it is

more computationally efficient with shorter training times compared to traditional GNNs.

3. Preliminaries

3.1. Federated Learning

Federated Learning (FL) is a decentralized machine learning approach that lets multiple independent

data owners to contribute to a shared model without disclosing their data [25]. In FL, each participating

client (data owner) has a local, private, dataset. A central server distributes a copy of a classification

model to all clients. Each client trains the model on its local data for a set number of iterations. The

clients then send the updated models to the server, which aggregates them into a global model through

a weighted average. The new model is then redistributed to the clients for further refining, repeating

this process for multiple rounds until model convergence. FL preserves the privacy of the clients’ data,

sharing only model parameters and keeping the data private, making it an attractive alternative to

centralized learning for malware detection tasks [26].

3.2. Hyperdimensional Computing

Hyperdimensional computing (HDC), described in-depth in [27], is a brain-inspired computing paradigm

that leverages high-dimensional vectors to perform computations. HDC performs classification tasks

by representing data as hypervectors (HVs), whose dimensionality is typically in the order of tens of

thousands, and associating these with class labels. An hypervector ℋ is defined as ⟨ℎ1, ℎ2, . . . , ℎ𝐷⟩
where ℎ𝑖 is the value of the 𝑖-th dimension of the vector. The size of the vectors 𝐷 is consistent

throughout a HDC system: operations act on HVs of homogeneous length and do not modify their

dimension. HDC is scalable, parallelizable, energy-efficient, and well-suited for few-shot learning tasks,

requiring less training and inference time than neural networks of comparable accuracy [7].

Operations A useful property of random vectors in high-dimensional spaces is their quasi-

orthogonality [27] (their cosine similarity is close to 0), which allows multiple HVs to be combined

through simple mathematical operations while maintaining the information encoded in each HV. Three

major operations are supported by HVs and used in HDC:

• Permutation (Π) is an unary operation which rearranges the elements of the vector into a HV quasi-

orthogonal to the original one. This operation is often used together with the binding operations to

assign an order between HVs, and it typically implemented through a circular shift, moving all the

coordinates of the HV clockwise:

Π(ℋ) = ⟨ℎ𝐷, ℎ1, . . . , ℎ𝐷−1⟩.
• Binding (⊛) two HVs yields an HV dissimilar to both. Binding associates information from two

different HVs (e.g., assigning values to variables) through element-wise multiplication:

ℋ1 ⊛ℋ2 = ⟨ℎ1,1 × ℎ2,1, . . . , ℎ1,𝐷 × ℎ2,𝐷⟩.
• Bundling (⊕) combines two HVs into a new hypervector through element-wise addition, obtaining

a HV similar to both the input HVs:

ℋ1 ⊕ℋ2 = ⟨ℎ1,1 + ℎ2,1, . . . , ℎ1,𝐷 + ℎ2,𝐷⟩.
The high dimensionality allows these operations produce distinct and non-conflicting HVs. The

operators act on HV elements independently and do not require loading the entire HV into memory,



making them highly parallelizable and suitable for analysis on both resource-constrained devices such

as low-end mobile phones and devices capable of parallel processing.

Training and classification In HDC, a classification task with 𝑘 classes is performed by computing a

class prototype HV for each class 𝒞1, . . . , 𝒞𝑘, storing them into an associative memoryℳ, and then

comparing query HVs with the class prototypes to determine the predicted class.

Class HVs can be computed by bundling the HVs in the training set belonging to the corresponding

class. Single-pass training is simple and efficient, but often leads to low accuracy, thus iterative training

algorithms such as RefineHD [28] and OnlineHD [29] have been proposed to improve the classification

performance. These algorithms bundle incorrectly classified query HVs to the correct class HV and

subtract them from the wrongly predicted class HV.

At inference time, the similarities of a query hypervectorℋ𝑄𝑢𝑒𝑟𝑦 and the class hypervectors in the

associative memoryℳ are computed. The class whose HV has the highest cosine similarity with the

query is considered to be the predicted label:

𝑝𝑟𝑒𝑑(ℳ,ℋ𝑄𝑢𝑒𝑟𝑦) = argmax
𝑖

𝛿(𝒞𝑖,ℋ𝑄𝑢𝑒𝑟𝑦) = argmax
𝑖

𝒞𝑖·ℋ𝑄𝑢𝑒𝑟𝑦

||𝒞𝑖||×||ℋ𝑄𝑢𝑒𝑟𝑦 || .

4. HDDroid architecture

HDDroid leverages a collaborative learning framework to allow multiple independent data owners

to contribute to a shared mobile malware detection model without disclosing their data. The system

includes 𝑛 clients, each with its own private dataset, and a central server that coordinates training.

Each client uses its local data to train a hyperdimensional associative memoryℳ(𝑖)
for classification

and sends it to the central server. The server aggregates the classifiers into a global classifierℳ(𝐺)
and

sends it back to the clients for further refinement over several iterations. A schematic representation of

the HDDroid architecture is shown in Figure 1.
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Figure 1: HDDroid architecture. Each client has a private dataset containing multiple mobile applications. Static
analysis extracts function call graphs, which are then encoded as hypervectors. The HVs are used to train a local
associative memory for classification which is sent to the central server for aggregation into a global classifier to
be distributed back to the clients.

4.1. Mobile application encoding

HDDroid analyzes mobile applications using function call graphs obtained through static code analysis.

Each function is a graph node with a unique identifier, and directed edges represent function calls,

indicating possible execution paths. Hyperdimensional Computing directly encodes function call

graphs of mobile applications into HVs for classification, without the need for feature engineering. The

encoding process is hierarchical: vertices are encoded first, then they are combined into edges HVs, and

edges are bundled to encode the entire graph.
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Figure 2: Graph embedding into a hypervector: nodes are numbered (a) and assigned unique pseudo-random
HVs (b), edges are encoded by binding node hypervectors with a permutation on the destination node (c), and
all edges are bundled to form the final graph hypervector (d).

Node encoding The first step in the encoding process is to assign a unique hypervector to each

graph node. Since the function identifiers in an application are arbitrary, they cannot be encoded

directly into HVs. To ensure consistent encoding across graphs, each node is labeled with its PageRank

centrality [30], as proposed in [24]. PageRank measures a node’s importance based on the stationary

distribution of a random walk on the graph. Once the nodes receive a meaningful identifier consistent

across different graphs, each identifier is mapped to an HV.

A common approach to encode discrete values into HVs is to precompute a set of random HVs, one

for each possible value. However, this requires an HV for each value, causing the random basis size to

grow linearly with the number of values, which can be impractical. For application call graphs, the

number of possible function calls is unbounded, with some graphs containing almost 600 thousand

nodes [8]. Encoding all nodes in HVs with dimensionality 10000 would require over 40 GB of memory,

making it infeasible for resource-constrained mobile devices. Additionally, a fixed random base requires

knowing the range of values to be encoded, which is impractical for function call graphs due to the

arbitrary number of function calls in mobile applications. Thus, using a random basis is not viable in

this target scenario.

Other approaches, such as Flocet encoding [28] and random projections [31], embed discrete values

into HVs without precomputing a random basis. However, these methods preserve similarity between

original values, which is undesirable here as consecutively ranked nodes correspond to different

functions. To address these issues, HDDroid uses an online encoding strategy based on the Philox

algorithm [32], a counter-based pseudo-random number generator. A digest is computed from the node

label to seed the key and counter for Philox, which generates an arbitrary-length sequence of pseudo-

random values as the HV encoding. This deterministic procedure ensures the same label is always

encoded as the same hypervector, without storing a lookup table, and guarantees quasi-orthogonal HVs.

Additionally, Philox can generate the values in parallel, making it suitable for encoding large graphs on

multi-core devices.

Hypervector-based graph representation Given the HVs for all the nodes, they can be combined

to compute the HV for the whole graph [24] as illustrated in Figure 2. Each edge (𝑎, 𝑏) in the graph

is encoded by binding (element-wise multiplication) the hypervectorsℋ𝑎 andℋ𝑏 of the two nodes 𝑎
and 𝑏, with the destination node HV permuted to indicate the direction of the edge. All the edges are

then bundled (element-wise addition) into the graph hypervector ℋ
graph

as per Eq. 1. Each element

in the graph HV is thus given by the sum, for each pair of connected nodes, of the products of the

corresponding elements in the node HVs, with the elements in the arrival node HV rotated by one

position:

ℋ
graph

=
⨁︁

(𝑎,𝑏)∈edges

ℋ𝑎 ⊛Π(ℋ𝑏) = ⟨
∑︁

(𝑎,𝑏)∈edges

ℎ𝑎,1×ℎ𝑏,𝐷,
∑︁

(𝑎,𝑏)∈edges

ℎ𝑎,2×ℎ𝑏,1, . . . ,
∑︁

(𝑎,𝑏)∈edges

ℎ𝑎,𝐷×ℎ𝑏,𝐷−1⟩. (1)

Since all node HVs have the same dimensionality, the graph HV will have a fixed size regardless of

the number of function calls. However, graphs with more edges will sum more quasi-orthogonal



edge HVs, potentially increasing the vector magnitude. To ensure fair influence on the final classifier,

graph hypervectors are normalized to have the same magnitude, regardless of the application size. The

complete encoding algorithm is reported in Algorithm 1. At any given step of the algorithm, the server

only needs to record at most three hypervectors: ℋ𝑔𝑟𝑎𝑝ℎ, ℋ𝑎 and either ℋ𝑏 or ℋ𝑎,𝑏. Excluding the

PageRank computation, the memory requirement of the graph encoding algorithm is𝑂(𝐷), independent

of the graph size, while the time complexity is 𝑂(|𝑉 | ·𝐷). The graph information is spread across the

HV, no HV element stores specific information about a node or an edge, granting robustness to noise

and errors.

Algorithm 1 Application Function Call Graph Encoding Algorithm

Require: Application, Hypervector size 𝐷
Ensure: Graph hypervectorℋgraph

1: Graph 𝐺 = (𝑉,𝐸) = call_graph(Application)

2: Initializeℋgraph as an empty hypervector

3: r← {pagerank(𝐺, 𝑎) | 𝑎 ∈ 𝑉 } {Compute unique ID for each node}
4: for 𝑎 ∈ 𝑉 do
5: 𝑑𝑖𝑔𝑒𝑠𝑡𝑎 ← hash(r𝑎)
6: 𝐾𝑒𝑦𝑎, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑎 ← lower_bits(𝑑𝑖𝑔𝑒𝑠𝑡𝑎),upper_bits(𝑑𝑖𝑔𝑒𝑠𝑡𝑎)
7: ℋ𝑎 ← Philox(𝐾𝑒𝑦𝑎, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑎, 𝐷) {Generate start node HV }

8: for 𝑏 ∈ 𝑉 | (𝑎, 𝑏) ∈ 𝐸 do
9: 𝑑𝑖𝑔𝑒𝑠𝑡𝑏 ← hash(r𝑏)

10: 𝐾𝑒𝑦𝑏, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑏 ← lower_bits(𝑑𝑖𝑔𝑒𝑠𝑡𝑏),upper_bits(𝑑𝑖𝑔𝑒𝑠𝑡𝑏)
11: ℋ𝑏 ← Philox(𝐾𝑒𝑦𝑏, 𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑏, 𝐷) {Generate destination node HV }

12: ℋ𝑎,𝑏 ← ℋ𝑎 ⊛Π(ℋ𝑏)
13: ℋgraph ← ℋgraph ⊕ℋ𝑎,𝑏 {Update graph HV with new edge}
14: return ℋgraph

|ℋgraph|

4.2. Few-shot collaborative learning

After encoding the function call graphs into HVs, each client computes a local associative memory

ℳ(𝑖)
for classification. Through federated learning, clients share their local classifiers with the central

server, which aggregates them into a global classifierℳ(𝐺)
. This process is repeated for several rounds,

refining the global classifier. The HDC paradigm enables efficient distributed learning with minimal

training iterations and communication cycles.

Local training As discussed in Section 3, the local training of the classifier is often performed by

computing the class hypervectors through one-pass training. However, bundling all HVs of the same

class can lead to model saturation, as common patterns overshadow specific characteristics crucial for

classification. This is particularly problematic in mobile application classification, where many apps

share functionalities, and malware can mimic benign apps to elude detection. Instead of bundling all

HVs of the same class, HDDroid adopts the weighted aggregation strategy in [28]. Each sampleℋ is

compared to the local associative memory. If the class hypervector most similar toℋ is not the one for

its class 𝒞𝑙𝑎𝑏𝑒𝑙, a weighted portion of ℋ is added to 𝒞𝑙𝑎𝑏𝑒𝑙 and subtracted from the most similar class

hypervector 𝒞𝑝𝑟𝑒𝑑 to increase and decrease their similarity toℋ, respectively. The weights depend on

the similarity of the HV with the predicted and true label classes, 𝛿𝑝𝑟𝑒𝑑 and 𝛿𝑙𝑎𝑏𝑒𝑙, as per Eq. (2):

𝒞𝑙𝑎𝑏𝑒𝑙 = 𝒞𝑙𝑎𝑏𝑒𝑙 + (1− 𝛿𝑙𝑎𝑏𝑒𝑙)(1− 𝛿𝑙𝑎𝑏𝑒𝑙 − 𝛿𝑝𝑟𝑒𝑑)ℋ
𝒞𝑝𝑟𝑒𝑑 = 𝒞𝑝𝑟𝑒𝑑 − (1− 𝛿𝑝𝑟𝑒𝑑)(1− 𝛿𝑙𝑎𝑏𝑒𝑙 − 𝛿𝑝𝑟𝑒𝑑)ℋ.

(2)

When the sample has a high similarity with the correct class, only a small portion of the hypervector

is added to the class hypervector. When the difference is significant, a larger portion of the sample

hypervector is added to the correct class hypervector and subtracted from the incorrect one to better

incorporate the sample’s information. HVs with correct, but low confidence, predictions are still



added to the correct class hypervector. In this case, the weight of the hypervector is computed as

𝒞𝑙𝑎𝑏𝑒𝑙 = 𝒞𝑙𝑎𝑏𝑒𝑙+(1−𝛿𝑙𝑎𝑏𝑒𝑙−𝛿𝑝𝑟𝑒𝑑)ℋ. A prediction is considered to have low confidence if the similarity

with the correct class hypervector is below the average similarity of the wrongly classified samples

with the correct class hypervector.

Model aggregation Once clients update their associative memories, they send the class HVs to the

central server for aggregation into a global classifier [25]. This process leverages information from

all clients, creating a more accurate model while reducing communication overhead and preserving

client privacy compared to transmitting the raw HVs. Typically, HDC aggregates local classifiers by

averaging class HVs from each client, similar to traditional federated learning. A representative example

is Fed-HD [33], which computes the global classifier asℳ(𝐺) =
ℳ(𝐺)+

∑︀𝑛
𝑖=1 ℳ(𝑖)

𝑛+1 .
However, this aggregation process can lead to model saturation by repeatedly adding similar infor-

mation from all clients. HDDroid weights class HVs from each client by the distinctiveness of their

information, avoiding redundancy and improving learning outcomes. Given the class 𝑐 hypervector

from client 𝑖, 𝒞(𝑖)𝑐 , the server evaluates the intra-class redundancy 𝐼(𝑐, 𝑖), which measures the average

similarity of 𝒞(𝑖)𝑐 with the hypervectors of other clients for the same class:

𝐼(𝑐, 𝑖) = 1
𝑛

∑︀𝑛
𝑗=1 𝛿(𝒞

(𝑖)
𝑐 , 𝒞(𝑗)𝑐 ).

High intra-class redundancy means 𝒞(𝑖)𝑐 is similar to other clients’ hypervectors for the same class,

adding little new information. The server also evaluates the inter-class confusion 𝑈(𝑐, 𝑖) of client 𝑖 for

class 𝑐 by comparing 𝒞(𝑖)𝑐 to hypervectors from other classes:

𝑈(𝑐, 𝑖) = 1
𝑛

∑︀𝑛
𝑗=1max 𝛿(𝒞(𝑖)𝑐 ,ℳ(𝑗) ∖ 𝒞(𝑗)𝑐 ),

whereℳ(𝑗) ∖ 𝒞(𝑗)𝑐 is the set of class HVs in the associative memory of client 𝑗 excluding 𝒞(𝑗)𝑐 . High

inter-class confusion indicates that 𝒞(𝑖)𝑐 contains information not specific to class 𝑐.
The computation of 𝑈 and 𝐼 for all class hypervectors has a complexity of 𝑂(𝑛2 · 𝑘2 ·𝐷), where 𝑛 is

the number of clients, 𝑘 is the number of classes, and 𝐷 is the hypervector dimensionality. Since 𝑘 and

𝐷 are hyperparameters, the aggregation process scales quadratically with the number of clients. These

computations are independent and can be parallelized for efficiency.

The normalized aggregation weight 𝜔
(𝑖)
𝑐 for the hypervector 𝒞(𝑖)𝑐 is computed using the intra-class

redundancy 𝐼 and inter-class confusion 𝑈 as per Eq. (3):

𝜔
(𝑖)
𝑐 = (1−𝐼(𝑐,𝑖))(1−𝐼(𝑐,𝑖)−𝑈(𝑐,𝑖))∑︀𝑛

𝑗=1

∑︀𝑘
𝑙=1(1−𝐼(𝑙,𝑗))(1−𝐼(𝑙,𝑗)−𝑈(𝑙,𝑗))

. (3)

A hypervector similar to others in the same class or to those of other classes is considered redundant or

uninformative, respectively, and its weight is decreased. The class HVs’ weights are used by the server

to compute the updated global memory as:

ℳ(𝐺) =
(︁∑︀𝑛

𝑖=1 𝜔
(𝑖)
1 𝒞

(𝑖)
1 , . . . ,

∑︀𝑛
𝑖=1 𝜔

(𝑖)
𝑘 𝒞

(𝑖)
𝑘

)︁
.

Unlike traditional FL on neural networks, which requires many communication rounds to achieve good

performance [34], HDDroid is experimentally shown to converge in few rounds.

5. Experimental evaluation

To evaluate HDDroid, experiments were conducted on the MalNet tiny 5K [8] and MalNet 61K [35]

datasets, containing function call graphs of Android applications labeled as benign or malware. The

MalNet tiny 5K dataset contains 5000 applications, each with up to 5000 nodes per graph. The larger 61K

dataset includes 87430 applications, with graphs containing up to 599234 nodes. The 61K dataset’s size



and complexity make it a better testbed for evaluating HDDroid’s scalability and encoding effectiveness.

Most experiments were conducted on the 61K dataset, with the 5K dataset used for comparison with

existing methods. In order to simulate a large number of devices, the experiments were conducted on a

server with 32 Intel(R) Xeon(R) Gold 6242 CPU cores, 32 GB of RAM, and an NVIDIA A100 GPU. The

HDDroid model was implemented using the TorchHD library [36].

Comparison with state-of-the-art approaches: First HDDroid is compared with other non-HDC

existing approaches for graph classification in a centralized setting. Table 1 and Table 2 show the

performance of HDDroid alongside state-of-the-art methods reported in the literature on the MalNet

tiny 5K and MalNet 61K datasets, respectively.

Method SIR-GN [35] Feather [19] LDP [17] GIN [22] GCN [23] Slaq-LSD [20] NoG [18] Slaq-VNGE [20] HDDroid

Accuracy 0.92 0.86 0.86 0.90 0.81 0.76 0.77 0.53 0.90

Table 1
Comparison of HDDroid on the MalNet tiny 5K dataset against several other graph-based methods
reported in [8] and [35].

F1 Precision Recall
Method SIR-GN ResNet18 HDDroid SIR-GN ResNet18 HDDroid SIR-GN ResNet18 HDDroid

0.718 0.651 0.936 0.729 0.672 0.969 0.646 0.646 0.904

Table 2
Comparison of HDDroid on the MalNet 61K dataset against the ResNet18 model and the SIR-GN
algorithm as reported in [35].

On the MalNet tiny 5K dataset, HDDroid achieves an accuracy of 0.90, closely matching the best

method, SIR-GN, which has an accuracy of 0.92, demonstrating the viability of the HDC paradigm for

malware detection. On the larger 61K dataset, HDDroid outperforms the SIR-GN algorithm, demon-

strating its scalability and the effectiveness of the HDC paradigm in capturing relevant information in

large function call graphs.
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Figure 3: Accuracy achieved by HDDroid on the MalNet 61K dataset across training rounds compared with
OnlineHD and Fed-HD.

Other HDC methods: HDDroid’s training and aggregation strategies are assessed through a com-

parison with traditional HDC methods. The first compared approach utilizes OnlineHD [28] for local

training, maintaining HDDroid’s aggregation strategy. For the second, Fed-HD [33] is used for ag-

gregation, keeping HDDroid’s local training strategy. Figure 3 shows the accuracy of HDDroid on
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Figure 4: Receiver Operating Characteristic (ROC) curve for HDDroid, compared to Fed-HD, OnlineHD, and
not ordering nodes before encoding.
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Figure 5: Model performance varying the number of clients, non-IID level, and hypervector size.

the MalNet 61K dataset across training rounds compared with OnlineHD and Fed-HD. OnlineHD

starts with high initial accuracy but drops over time, likely due to local training saturation. Fed-HD

shows initial improvement but quickly plateaus, possibly due to redundant information in the global

classifier. HDDroid, on the other hand, starts with a lower initial accuracy, as the inclusion of new HVs

is conservative, but quickly surpasses the other methods, capturing more of the relevant information in

the HVs.

To better assess how well the obtained class hypervectors capture the information relative to their

classes, the Receiver Operating Characteristic (ROC) curve for HDDroid, OnlineHD, and Fed-HD

are compared, plotting the true positive rate against the false positive rate varying the classification

threshold. In this analysis, a model that does not rely on the PageRank node ordering is also considered to

gauge the impact of this procedure on the quality of the encoding. Figure 4 shows the ROC curve for the

tested methods. Removing PageRank ordering significantly reduces model performance, highlighting

its importance in encoding. As in the previous analysis, HDDroid outperforms the other approaches,

confirming the effectiveness of the training and aggregation strategies.

Robustness to non-IID data distributions: In federated learning settings, clients often have het-

erogeneous data distributions, which can lead to a decrease in model performance [37]. To evaluate

HDDroid’s robustness to non-IID data distributions, the dataset labels are distributed among clients

using a Dirichlet distribution. An IID setting and two non-IID settings are tested: a moderate non-IID



setting (𝛼 = 1), and a highly non-IID setting (𝛼 = 0.1), where malware classes are almost partitioned

between clients. As shown in Figure 5, larger hypervector sizes generally improve performance, with

diminishing returns at higher sizes. With at least 50 clients, non-IID data distribution does not signifi-

cantly impact performance. Reducing the number of clients negatively affects the F1-Score, especially

with smaller hypervectors. Larger hypervectors (e.g., 50000 dimensions) are more robust, maintaining

accuracy above 96% across all settings.

6. Conclusions

Malware detection is a critical task to ensure the security of mobile devices, however collecting and

sharing data for training models can raise privacy concerns, thus decentralized on-device analysis and

training are desirable. This work presents HDDroid, a novel approach to mobile malware detection

that leverages the Hyperdimensional Computing paradigm to allow lightweight and efficient federated

training and local classification of mobile applications on resource-constrained mobile devices. The

on-device analysis preserves the privacy of the participating users and allows for efficient and robust

malware detection. The experimental evaluation shows that HDDroid achieves state-of-the-art graph-

based performance for malware detection, remaining effective in non-IID scenarios, making it suitable

for real-world applications where data distributions among devices can be highly heterogeneous. Future

works will focus on improving the flexibility and adaptability of the model in handling variations

over time in the data distribution of the clients and on enabling collaboration between devices with

heterogeneous hardware capabilities.
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