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Abstract
The rapid spread of fake news through dense clusters in networks jeopardizes trust and stability. Traditional
approaches targeting harmful content often overlook the structural network dynamics that drive disinformation.
The Cluster Deletion Problem addresses this by removing edges that bridge communities, disrupting disinfor-
mation flow while preserving intra-group communication. Indeed, given a graph representing the considered
network, the Cluster Deletion Problem aims to transform it into a cluster graph via minimal edge deletions.
In this paper, we address this problem with a tailored Lagrangian heuristic based on a dual descent algorithm,
incorporating both a subgradient method and an ad-hoc polynomial-time repair heuristic. The proposed approach
is tested on existing instances, in most cases providing better lower bounds with respect to the ones existing in
the literature.
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1. Introduction

The rapid dissemination of fake news and disinformation has emerged as a critical challenge for online
platforms, with significant consequences for public trust, political stability, cyber security, and social
well-being. Disinformation often spreads through dense clusters of interconnected users in social
networks, amplifying its reach across large populations. While traditional techniques focus on detecting
and removing harmful content, these approaches often fail to address the underlying network structures
that enable the viral spread of false information. The Cluster Deletion Problem (CDP) provides an
innovative solution to this issue. In the context of social networks, the CDP involves identifying
and strategically removing edges – the connections between users – that link communities where
disinformation is likely to spread. By focusing on these “boundary” users and their bridging connections,
the CDP can disrupt the flow of fake news between disparate groups, containing its impact. This strategy
limits the cross-community propagation of fake news, a key vector for disinformation. In this paper,
we propose a novel solution approach to the CDP, which can be formally defined as follows: given a
graph 𝒢 = (𝑉,𝐸), find the minimum number of edge deletions required to transform 𝒢 into a cluster
graph, that is, a disjoint union of complete subgraphs, or equivalently, a graph where each connected
component is a clique. In the decision version of the problem, an integer 𝑘 is also considered, and the
aim is to decide whether at most 𝑘 edge deletions are enough to produce a cluster graph.

As already said, the CDP is frequently used in social networks to identify communities by clustering
highly interconnected groups, which may represent social circles or influential subgroups. Shamir et al.
(2004) applied the CDP to biological networks, particularly in protein-protein interaction networks,
where clusters often correspond to protein complexes or functional modules in cellular processes.
Sharan and Shamir (2000) leveraged similar clustering techniques in gene expression analysis, where
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clusters indicate genes with correlated expression patterns. Furthermore, Charikar et al. (2005) explored
the use of edge deletion for clustering with qualitative constraints, showing its relevance to both social
and biological networks where groupings based on connectivity patterns are of interest. Natanzon (1999)
showed that the CDP is NP-complete and Shamir et al. (2004) that there exists some constant 𝜖 > 0
such that it is also NP-hard to approximate the CDP within a factor of 1 + 𝜖. The NP-completeness of
the CDP, however, can already be extracted from the work of (Yannakakis, 1981) on hereditary graph
properties. This problem has been proven to be NP-hard even when restricted to graphs with maximum
degree 4 (Komusiewicz and Uhlmann, 2012). Due to its intractability, research has largely focused on
developing approximation algorithms, and fixed-parameter tractable approaches (Crespelle et al., 2023).
Gramm et al. (2005) addressed the decision version of the CDP, restricting the problem to allow at
most 𝑘 edge deletions, and provided a fixed-parameter algorithm with a runtime of 𝑂(1.77𝑘 + |𝑉 |3).
Subsequent improvements reduced this to 𝑂(1.53𝑘 + |𝑉 |3) (Gramm et al., 2004), 𝑂(1.47𝑘 + |𝑉 |3)
(Damaschke, 2009), and finally 𝑂(1.415𝑘 + |𝑉 |3) (Böcker and Damaschke, 2011). This advancement
leverages the fact that an optimal cluster deletion set of 𝑘 edges can be computed in polynomial time on
graphs structured as a clique plus a constant number of additional nodes attached to it. As with many
NP-complete problems, the CDP has also been studied on specific graph classes to identify instances
where efficient solutions are achievable. For example, Gao et al. (2013) proposed a polynomial-time
algorithm for solving the CDP on cographs. Regarding approximation algorithms, the first approach
was introduced by Charikar et al. (2005) for complete graphs, using a linear programming relaxation to
achieve a factor-4 approximation guarantee. More recently, Ailon et al. (2008) developed a randomized
algorithm with an expected 3-approximation guarantee. Deterministic algorithms have also been
proposed (van Zuylen and Williamson, 2009), culminating in a 2-factor approximation algorithm by
Veldt et al. (2018). A problem with strong connections to the CDP is the Strong Triadic Closure.
Grüttemeier and Komusiewicz (2020) showed that both problems are fixed-parameter tractable w.r.t.
|𝐸| − 𝑘, but do not admit a polynomial kernel parametrized by |𝐸| − 𝑘. As regards exact approaches,
Grötschel and Wakabayashi (1989) proposed the first integer linear formulation for the CDP, which
was then made more compact by Martins (2016) exploiting the sparsity of the graph. To the best of our
knowledge, the only heuristic procedure to address the CDP has been proposed in (Ambrosio et al.,
2025), based on iterative edge contraction operations.

In this paper, we tackle the CDP through a Lagrangian relaxation approach, a powerful mathematical
optimization technique, based on the machinery of the nondifferentiable optimization (Gaudioso and
Monaco, 1992, Gaudioso et al., 2020), used to address hard combinatorial problems. We solve it through
a Dual Descent (DD) Algorithm, which explores the solution space, finding valid lower bounds on the
CDP optimal value. Within this algorithm, we incorporate both a subgradient method and an ad-hoc
polynomial-time repair heuristic which, given an infeasible CDP solution, repairs it into a feasible one.
We test our approach on existing instances, showing its effectiveness. The rest of the paper is organized
as follows. In Section 2, we present the CDP edge-formulation, which is relaxed through a Lagrangian
approach in Section 3. The DD Algorithm which is used to solve this relaxation is described in Section 4.
Finally, computational results are discussed in Section 5, and Section 6 concludes the paper.

2. The CDP edge-formulation

To model the CDP, we consider the edge-formulation introduced in (Martins, 2016) in the binary
variables 𝑥𝑖𝑗 , which, for each edge {𝑖, 𝑗} ∈ 𝐸, is 1 if 𝑖 and 𝑗 belong to the same clique. Since minimizing
the number of edges between clusters is equivalent to maximizing the number of edges inside the
clusters (Dessmark et al., 2007), the CDP is formulated as:

max
𝑥∈{0,1}|𝐸|

∑︁
{𝑖,𝑗}∈𝐸

𝑥𝑖𝑗 (1a)

s.t. 𝑥𝑖𝑗 + 𝑥𝑖𝑘 ≤ 𝑥𝑗𝑘 + 1 ∀ 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} ∈ 𝐸 (1b)

𝑥𝑖𝑗 + 𝑥𝑖𝑘 ≤ 1 ∀ 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} /∈ 𝐸 (1c)



with 𝛿𝑖 defined as the set of neighbors of node 𝑖 ∈ 𝑉 . The objective function (1a) aims at maximizing
the number of edges remaining in the graph. Given a triplet of nodes (𝑖, 𝑗, 𝑘) such that both 𝑗 and 𝑘
belong to the neighborhood of 𝑖, constraints (1b) and (1c) impose that at most one between edges {𝑖, 𝑗}
and {𝑖, 𝑘} stays in the graph, if either edge {𝑗, 𝑘} is removed from the graph (𝑥𝑗𝑘 = 0) or does not
exist, respectively.

3. The Lagrangian relaxation

Many optimization problems include constraints that make finding an exact solution computationally
challenging. Lagrangian relaxation addresses this by relaxing some of these constraints and adding
them to the objective as penalties. This simplifies the problem, which can be solved more efficiently
while providing insights into the structure of the solution space. Specifically, in Lagrangian relaxation,
each relaxed constraint is multiplied by a non-negative parameter, known as Lagrange multiplier, which
can be tuned to iteratively approach feasible solutions. We construct the Lagrangian relaxation of the
CDP formulation (1) by introducing multipliers

𝜆𝑖𝑗𝑘, ∀ 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} ∈ 𝐸, and 𝜇𝑖𝑗𝑘, ∀ 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} /∈ 𝐸

associated to constraints (1b) and (1c), respectively. We come out with the following problem:

𝑧𝐿𝑅(𝜆, 𝜇) = max
𝑥∈{0,1}|𝐸

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∑︁

{𝑖,𝑗}∈𝐸

𝑥𝑖𝑗 +
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝛿𝑖:
𝑗<𝑘,

{𝑗,𝑘}∈𝐸

𝜆𝑖𝑗𝑘(1 + 𝑥𝑗𝑘 − 𝑥𝑖𝑗 − 𝑥𝑖𝑘) +
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝛿𝑖:
𝑗<𝑘,

{𝑗,𝑘}/∈𝐸

𝜇𝑖𝑗𝑘(1− 𝑥𝑖𝑗 − 𝑥𝑖𝑘)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Let us define, for each edge {𝑖, 𝑗} ∈ 𝐸, the sets

𝐴𝑖𝑗 = 𝛿𝑖 ∩ 𝛿𝑗 , 𝐶𝑖𝑗 = 𝛿𝑖 ∖ {{𝑗} ∪𝐴𝑖𝑗}, 𝐶𝑗𝑖 = 𝛿𝑗 ∖ {{𝑖} ∪𝐴𝑖𝑗}, (2)

which allow us to write the cost coefficient 𝑐𝑖𝑗 associated to each variable 𝑥𝑖𝑗 in the objective function
of 𝐿𝑅(𝜆, 𝜇) (see Appendix A) as:

𝑐𝑖𝑗 = 𝑐𝑖𝑗(𝜆, 𝜇) = 1 +
∑︁
𝑘∈𝐴𝑖𝑗

(𝜆𝑘𝑖𝑗 − 𝜆𝑖𝑗𝑘 − 𝜆𝑗𝑖𝑘)−
∑︁
𝑘∈𝐶𝑖𝑗

𝜇𝑖𝑗𝑘 −
∑︁
𝑘∈𝐶𝑗𝑖

𝜇𝑗𝑖𝑘. (3)

Finally, isolating the constant term independent on 𝑥𝑖𝑗 , problem 𝐿𝑅(𝜆, 𝜇) is rewritten as:

𝑧𝐿𝑅(𝜆, 𝜇) =

⎛⎜⎜⎝∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝛿𝑖:

𝑗<𝑘 {𝑗,𝑘}∈𝐸

𝜆𝑖𝑗𝑘 +
∑︁
𝑖∈𝑉

∑︁
𝑗,𝑘∈𝛿𝑖:

𝑗<𝑘 {𝑗,𝑘}/∈𝐸

𝜇𝑖𝑗𝑘

⎞⎟⎟⎠+ max
𝑥∈{0,1}|𝐸|

⎧⎨⎩ ∑︁
{𝑖,𝑗}∈𝐸

𝑐𝑖𝑗𝑥𝑖𝑗

⎫⎬⎭ . (4)

Notice that an optimal solution 𝑥(𝜆, 𝜇) of 𝐿𝑅(𝜆, 𝜇) is obtained by simple inspection of the sign of the
coefficients 𝑐𝑖𝑗 as

𝑥𝑖𝑗 =

{︂
1 if 𝑐𝑖𝑗 ≥ 0,
0 otherwise.

(5)

It is clear that, even relaxing the integrality constraint on 𝑥 (i.e., replacing 𝑥 ∈ {0, 1}|𝐸| with 𝑥 ∈
[0, 1]|𝐸|), the solution of the LR problem obtained as in Eq. (5) is still integer. Hence, the Lagrangian
relaxation 𝐿𝑅(𝜆, 𝜇) of problem (1) has the integrality property, which means that the Lagrangian
relaxation cannot provide a better bound on the original problem than the one given by the Linear
Programming (LP) relaxation of the problem (Geoffrion, 1974).

Furthermore, observe that, once such a solution 𝑥(𝜆, 𝜇) of 𝐿𝑅(𝜆, 𝜇) has been found, a subgradient



𝑔(𝜆, 𝜇) of 𝑧𝐿𝑅(𝜆, 𝜇) is immediately available. For any triplet (𝑖, 𝑗, 𝑘), it is given by

𝑔𝑖𝑗𝑘(𝜆, 𝜇) =

{︂
1 + 𝑥𝑗𝑘 − 𝑥𝑖𝑗 − 𝑥𝑖𝑘, 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} ∈ 𝐸
1− 𝑥𝑖𝑗 − 𝑥𝑖𝑘, 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} /∈ 𝐸.

(6)

Minimizing the Lagrangian function 𝑧𝐿𝑅(𝜆, 𝜇) with respect to the Lagrangian multipliers yields the
Lagrangian dual problem. This dual problem provides an upper bound to the original (primal) CDP.
The Lagrangian dual 𝐿𝐷 associated to our Lagrangian relaxation 𝐿𝑅 is

𝑧𝐿𝐷 = min
𝜆,𝜇≥0

𝑧𝐿𝑅(𝜆, 𝜇). (7)

4. The Dual Descent method

This section describes a dual descent procedure to tackle the LD Problem (7). The DD method is an
iterative approach to solving the Lagrangian dual problem while achieving the best possible bound on
the original problem. As already noticed in Section 3, this bound cannot improve the LP one. However,
the DD method can still be useful in exploring the solution space and giving insights into the structure
of the problem.

All parameter values at iteration ℎ are associated with the superscript ℎ. In particular, 𝑥ℎ = 𝑥(𝜆ℎ, 𝜇ℎ)
and 𝑧ℎ𝐿𝑅 = 𝑧𝐿𝑅(𝜆

ℎ, 𝜇ℎ). The aim of the method, whose pseudo-code is reported in Algorithm 1, is
creating a sequence of multipliers (𝜆ℎ, 𝜇ℎ) such that 𝑧𝐿𝑅(𝜆ℎ+1, 𝜇ℎ+1) ≤ 𝑧𝐿𝑅(𝜆

ℎ, 𝜇ℎ). This is pursued
by acting on one multiplier at a time. We introduce some possible multiplier updating rules, based on
selecting one multiplier and considering the value of the associate constraint in correspondence with
the current solution of the relaxation 𝑥ℎ.

The effect of the increase/decrease of any multiplier 𝜆𝑖𝑗𝑘 or 𝜇𝑖𝑗𝑘 onto the cost coefficients of the
variables 𝑥 in problem 𝐿𝑅(𝜆, 𝜇) is highlighted by recalling that the dualization of the constraints (1b)
and (1c) gives rise, respectively, to the terms

𝜆𝑖𝑗𝑘(1 + 𝑥𝑗𝑘 − 𝑥𝑖𝑗 − 𝑥𝑖𝑘) and 𝜇𝑖𝑗𝑘(1− 𝑥𝑖𝑗 − 𝑥𝑖𝑘). (8)

Given the starting 𝜆0, 𝜇0 (line 1), the cost coefficients 𝑐0 can be immediately found by Eq. (3) (line 2),
and consequently an optimal solution of 𝐿𝑅(𝜆ℎ, 𝜇ℎ) can be obtained by (5), together with its value 𝑧0𝐿𝑅
(line 3). This solution is used as a starting point 𝑥ℎ within the while loop in lines 5–24 of the algorithm.
It may be feasible in problem (1) (lines 11–13), or not (lines 6–10). If it is infeasible, at least one of
the constraints of type (1b) or (1c) is violated. In line 7, for each triple (𝑖, 𝑗, 𝑘) the different options
are considered by calling Algorithm 3 described in Appendix B. It returns the updated multipliers
together with the corresponding decrease in the cost coefficients Δ. After this multipliers update
through Algorithm 3, given the induced graph corresponding to the infeasible solution 𝑥ℎ, in line 9,
we apply a repair heuristic procedure presented in Section 4.1, to reconstruct the feasibility, obtaining
solution �̃�ℎ. This lets us determine, at each iteration, not only an upper bound 𝑧ℎ𝐿𝑅, but also a lower
bound to the optimal value of the CDP (line 10).

Stopping upon finding a feasible solution is often sufficient, however, one can decide to continue
with the descent. In order to proceed, the Lagrangian multipliers must be updated. This is what is done
in line 13, where the algorithm calls multiple iterations of a tailored Subgradient Method (Algorithm 4)
described in Appendix C. It requires two multiplier pairs and a maximum number of iterations 𝑝𝑚𝑎𝑥 in
input. We consider as multiplier pairs: the current pair (𝜆ℎ, 𝜇ℎ) and the first of the previously generated
pairs (𝜆ℎ, 𝜇ℎ) s.t. its distance (in terms of Euclidean norm) is greater than a given threshold 𝜌.

Clearly, if, at a given iteration ℎ, the Δ returned by Algorithm 3 is too small (smaller than a threshold
𝜖 > 0), the algorithm cannot generate a different solution in the following iterations, remaining blocked
at the solution 𝑥ℎ. For this reason, only if Δ is greater than 𝜖, we set the new objective function value
to 𝑧ℎ𝐿𝑅 −Δ in line 15. Otherwise, we perform some iterations of the Subgradient Algorithm 4 (line 21)
in order to generate different multipliers and a corresponding different 𝑧𝐿𝑅 value. We remark that,



Algorithm 1: Dual Descent algorithm for the Lagrangian Relaxation of the CDP
Input: Maximum number of DD iterations ℎ𝑚𝑎𝑥, maximum number of subgradient iterations

𝑝𝑚𝑎𝑥, tolerance parameters 𝜖, 𝜌 > 0, heuristic parameter 0 < 𝜏 ≤ 1.
Output: Lower bound on the CDP optimal solution.

1 𝐿𝐵 ← 0 and (𝜆0, 𝜇0)← (0, 0);
2 Compute cost coefficients 𝑐0𝑖𝑗 for each edge {𝑖, 𝑗} ∈ 𝐸 according to Eq. (3);
3 Compute 𝑥0𝑖𝑗 for each edge {𝑖, 𝑗} ∈ 𝐸 according to Eq. (5), and 𝑧0𝐿𝑅 to Eq. (4);
4 ℎ← 0;
5 while ℎ < ℎ𝑚𝑎𝑥 do
6 if 𝑥ℎ is infeasible then
7 {(𝜆ℎ+1, 𝜇ℎ+1),Δ} ← Algorithm 3 (ℎ, 𝜆ℎ, 𝜇ℎ, 𝑐ℎ);
8 Let �̃� be a graph with node set 𝑉 and edge set �̃� = {{𝑖, 𝑗} ∈ 𝐸 : 𝑥ℎ𝑖𝑗 = 1};
9 �̃�ℎ ← Algorithm 2 (�̃�, ℎ, 𝜏);

10 if
∑︀

{𝑖,𝑗}∈𝐸
�̃�ℎ𝑖𝑗 > 𝐿𝐵 then 𝐿𝐵 ←

∑︀
{𝑖,𝑗}∈𝐸

�̃�ℎ𝑖𝑗 ;

11 else
12 if

∑︀
{𝑖,𝑗}∈𝐸

𝑥ℎ𝑖𝑗 > 𝐿𝐵 then 𝐿𝐵 ←
∑︀

{𝑖,𝑗}∈𝐸
𝑥ℎ𝑖𝑗 ;

13 {(𝜆ℎ+1, 𝜇ℎ+1), 𝑧ℎ+1
𝐿𝑅 } ← Algorithm 4 (𝜆ℎ, 𝜇ℎ, 𝑝𝑚𝑎𝑥);

14 if Δ > 𝜖 then
15 Update 𝑧ℎ+1

𝐿𝑅 ← 𝑧ℎ𝐿𝑅 −Δ
16 else
17 𝑘 ← ℎ and 𝛿 ← 0;
18 while 𝑘 > 0 and 𝛿 < 𝜌 do
19 𝑘 ← 𝑘 − 1;

20 𝛿 ←
⃦⃦⃦⃦(︂

𝜆ℎ

𝜇ℎ

)︂
−
(︂
𝜆𝑘

𝜇𝑘

)︂⃦⃦⃦⃦
;

21 {(𝜆ℎ+1, 𝜇ℎ+1), 𝑧ℎ+1
𝐿𝑅 } ← Algorithm 4 (𝜆𝑘, 𝜇𝑘, 𝜆ℎ, 𝜇ℎ, 𝑝𝑚𝑎𝑥);

22 Compute cost coefficients 𝑐ℎ+1
𝑖𝑗 for each edge {𝑖, 𝑗} ∈ 𝐸 according to Eq. (3);

23 Compute 𝑥ℎ+1
𝑖𝑗 for each edge {𝑖, 𝑗} ∈ 𝐸 according to Eq. (5);

24 ℎ← ℎ+ 1;

25 return 𝐿𝐵

with this approach, no improvement of 𝑧𝐿𝑅 is guaranteed, but we can continue exploring the solution
space in this way. According to Eq. (3) and (5) we compute the new cost coefficients 𝑐ℎ+1 as well as the
new point 𝑥ℎ+1 in lines 22–23.

The algorithm continues until the maximum number of iterations ℎ𝑚𝑎𝑥 are performed, returning the
best lower bound 𝐿𝐵 found. 𝑧ℎ𝑚𝑎𝑥

𝐿𝑅 will be the best upper bound found, which cannot be smaller than
the LP relaxation value.

4.1 Repair heuristic

In this section, we describe a polynomial-time heuristic, which is called within the DD Algorithm
whenever an infeasible solution 𝑥ℎ is found and operates on a graph �̃� = (𝑉,𝐸) obtained by considering
only the edges associated with positive 𝑥ℎ𝑖𝑗 . The algorithm starts by receiving a graph, an iteration
counter ℎ and a threshold parameter 𝜏 between 0 and 1. Its goal is to transform the infeasible 𝑥ℎ into a
feasible solution �̃�ℎ by iteratively processing the connected components of the graph.

While the graph is not empty, in line 2, the algorithm computes the connected components of graph
�̃�. For each connected component 𝑆, the nodes are ordered in descending order of their degree, i.e.,
by the number of neighbors within 𝑆 (line 4). In the case of multiple nodes with the same number of



Algorithm 2: Repair heuristic algorithm.

Input: Graph �̃� = (𝑉,𝐸), iteration counter ℎ, parameter 0 < 𝜏 < 1.
Output: Feasible CDP solution �̃�ℎ.

1 while Graph �̃� is not empty do
2 Compute the connected components of �̃�;
3 foreach connected component 𝑆 do
4 Order the nodes 𝑣 in 𝑆 by (descending) value of 𝛿𝑖;
5 𝑘𝑆 ← ⌈𝜏 |𝑆|⌉;
6 𝐾𝑆 ← ∅;
7 for 𝑘 ∈ 1 . . . 𝑘𝑆 do
8 𝑖← 𝑆[𝑘];
9 𝐾 ← {𝑖};

10 if |𝛿𝑖| > 0 then
11 foreach 𝑗 ∈ 𝛿𝑖 do Compute sets 𝐴𝑖𝑗 = 𝛿𝑖 ∩ 𝛿𝑗 and 𝐶𝑗𝑖 = 𝛿𝑗 ∖ {𝛿𝑖 ∪ {𝑖}};
12 Order the set 𝛿𝑖 in a non-increasing order of 𝐴𝑖𝑗 ; in the case of ties, order in a

non-decreasing order of 𝐶𝑗𝑖;
13 while 𝛿𝑖 ̸= ∅ do
14 𝑢← 𝛿𝑖[0];
15 𝛿𝑖 ← 𝛿𝑖 ∖ {𝑢};
16 if 𝐾 ⊆ 𝛿𝑢 then𝐾 ← 𝐾 ∪ {𝑢} else continue;

17 if |𝐾| > |𝐾𝑆 | then𝐾𝑆 ← 𝐾 ;

18 foreach 𝑢, 𝑣 ∈ 𝑉 : 𝑢 ∈ 𝐾𝑆 and 𝑣 > 𝑢 do
19 if {𝑢, 𝑣} ∈ 𝐸 and 𝑣 ∈ 𝐾𝑆 then Set �̃�ℎ𝑢𝑣 ← 1 else Set �̃�ℎ𝑢𝑣 ← 0;

20 𝑉 ← 𝑉 ∖𝐾𝑆 ;

21 return �̃�ℎ

neighbors, they are ordered with respect to their index 𝑖. In lines 5-6, parameter 𝑘𝑆 and set 𝐾𝑆 are
initialized. They are needed because we consider one by one the first 𝑘𝑆 nodes in the ordered set 𝑆
and construct 𝑘𝑆 cliques starting from each of these nodes independently. 𝐾𝑆 is the largest among the
obtained cliques, initialized to the empty set, while 𝑘𝑆 is set to a predefined fraction 𝜏 of |𝑆| (rounded
up to the next integer).

After the initialization a for loop starts. At each iteration, the 𝑘-th node (with 𝑘 from 1 to 𝑘𝑆) is
selected in the ordered set of nodes in 𝑆 as the starting point (line 8), and a clique 𝐾 is initialized
with just this node 𝑖 = 𝑆[𝑘] (line 9). If the node 𝑖 is not a singleton (|𝛿𝑖| > 0), in lines 11–11, for each
neighbor 𝑗 of 𝑖, the sets 𝐴𝑖𝑗 and 𝐶𝑗𝑖 are computed as defined in (2). The set 𝛿𝑖 is then ordered in a
non-increasing order of |𝐴𝑖𝑗 |, breaking ties by |𝐶𝑗𝑖| in non-decreasing order (line 12). This order will
be used to determine how nodes from 𝛿𝑖 should be considered for insertion in the clique 𝐾 . First of all,
the more neighbors they have in common with 𝑖 (i.e., the greater |𝐴𝑖𝑗 |), the greater the potential final
dimension of the clique. In the case of ties, we will prefer the nodes that are more isolated (i.e., with
smaller |𝐶𝑗𝑖|) because it is less probable that they will be considered for other cliques in the future. The
algorithm then enters a while loop (lines 13–16): provided there are still nodes left in 𝛿𝑖, the algorithm
iteratively adds nodes 𝑢 from the ordered set 𝛿𝑖 to the clique 𝐾 , removing them from 𝛿𝑖. A node 𝑢 is
added to 𝐾 if all members of 𝐾 are also neighbors of 𝑢. If this condition is satisfied (𝑢 can belong to
the clique 𝐾), 𝐾 is updated. In line 17, if clique 𝐾 is larger than the best clique 𝐾𝑆 found for 𝑆 so far,
𝐾𝑆 is set to 𝐾 . As soon as all the 𝑘𝑆 first nodes are considered (the for loop in lines 7–17 ends) the
best clique 𝐾𝑆 found is considered and the solution �̃�ℎ is updated. For each pair of nodes 𝑢, 𝑣 ∈ 𝐾 , the
edge {𝑢, 𝑣} is marked as part of the solution if it exists in the graph. Specifically, if {𝑢, 𝑣} ∈ 𝐸 and
both 𝑢 and 𝑣 are in 𝐾𝑆 , set �̃�ℎ𝑢𝑣 = 1, otherwise set �̃�ℎ𝑢𝑣 = 0. After processing a component, the clique
𝐾𝑆 is removed from the graph. This process repeats until the graph becomes empty, and the algorithm



returns the feasible solution �̃�ℎ.

5. Numerical results

To assess the performance of our proposed approach for the CDP, we conducted experiments using
different datasets of instances: one derived from (Ambrosio et al., 2025), another from (Cerulli et al.,
2023), and a third from the DIMACS graph coloring challenge1. The first dataset, from (Ambrosio et al.,
2025), includes 120 networks generated according to the Barabási-Albert model, with varying sizes and
densities, making them well-suited for representing real-world network scenarios. The second dataset,
from (Cerulli et al., 2023), consists of 6 different networks selected from the social-networks literature
(out of the 14 considered in the paper), each with fewer than 1000 nodes. Finally, the third dataset
includes 40 instances, each containing fewer than 1000 nodes and 10000 edges. On these benchmark
sets, we compare our approach against the edge contraction heuristic (referred to as “ECH”) described
in (Ambrosio et al., 2025).

All the experiments were performed on a 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz CPU with
16.0 GB RAM. For each run, we set a time limit of one hour, with a maximum of 3000 iterations (ℎ𝑚𝑎𝑥)
for the Algorithm 1 and 50 iterations (𝑝𝑚𝑎𝑥) for the inner Subgradient Algorithm 4. Additionally, we
used 𝜖 = 10−4, 𝜌 = 0.5 and 𝜏 = 0.04.

In Table 1, we report the average results obtained on the first dataset (Ambrosio et al., 2025) by
grouping instances based on the number of nodes and edges, with each group representing the mean
performance over instances sharing the same structural characteristics. For each group, we report the
following information: number of nodes |𝑉 | and edges |𝐸| of all the instances of the group; average
value of the continuous relaxation (UB); average value of the solution identified by the ECH (LBECH);
average value of the solution identified by running Algorithm 1 (LBDD); average runtime of Algorithm 1
(timeDD) and number of explored solutions with different objective (#solDD). The left part of the table
refers to groups of instances with 𝑛 ∈ [100, 400], while the right part to groups of instances with
𝑛 ∈ [600, 1000]. In the last line of the table, we report the total averages of all columns, separately for
these two groups.

Table 1
Results on instances from (Ambrosio et al., 2025).

|𝑉 | |𝐸| UB LBECH LBDD TimeDD #solDD |𝑉 | |𝐸| UB LBECH LBDD TimeDD #solDD

100 99 49.5 34.2 34.2 30.4 34.0 600 7056 1782.0 378.0 377.4 3600.0 95.4
100 196 98.0 46.2 45.2 61.7 41.4 600 10476 3528.0 485.2 500.0 3600.0 47.0
100 291 145.5 58.0 57.8 87.2 52.8 600 13824 5238.0 586.8 606.6 3600.0 30.0
100 384 192.0 68.0 67.8 122.8 62.4 600 3564 6912.0 663.4 706.0 3600.0 30.4
200 396 198.0 89.6 87.8 125.0 75.4 800 12544 3168.0 533.8 540.4 3600.0 15.4
200 784 392.0 122.2 122.2 283.0 106.8 800 18624 6272.0 682.0 720.4 3600.0 20.6
200 1164 582.0 144.2 145.2 383.3 126.8 800 24576 9312.0 827.4 861.4 3600.0 16.8
200 1536 768.0 166.6 171.2 540.8 152.8 800 6336 12288.0 937.8 1006.2 3600.0 15.4
400 4656 792.0 229.6 224.0 981.1 176.0 1000 9900 4950.0 698.8 722.6 3600.0 10.8
400 6144 1568.0 297.8 298.4 1673.8 255.8 1000 19600 9800.0 907.6 955.0 3600.0 12.6
400 1584 2328.0 353.0 357.0 2371.0 205.0 1000 29100 14550.0 1072.6 1139.2 3600.0 8.0
400 3136 3072.0 397.0 420.8 3298.8 159.0 1000 38400 19200.0 1215.0 1323.6 3600.0 5.0

Average 848.75 167.2 169.3 829.9 120.7 Average 8083.3 788.2 770.1 3600.0 25.6

In Table 2, we present the results obtained for the second dataset (Cerulli et al., 2023). Since it contains
only six instances, the results are not averaged. Instead, each row reports the result of a specific instance,
whose name is shown in the first column. The remaining column headings are the same as in Table 1. In
Table 2, we present the results obtained for the second dataset (Cerulli et al., 2023). Since it contains only
six instances, the results are not averaged. Instead, each row reports the result of a specific instance,
whose name is shown in the first column. The remaining column headings are the same as in Table 1.

1https://mat.tepper.cmu.edu/COLOR/instances.html

https://mat.tepper.cmu.edu/COLOR/instances.html


Table 2
Average results on benchmark instances from (Cerulli et al., 2023).

instance |𝑉 | |𝐸| UB LBECH LBDD TimeDD #solDD

karate 34 78 39.0 24.0 24.0 101.4 21
dolphins 62 159 79.5 55.0 55.0 89.7 40
lesmis 77 254 150.0 136.0 127.0 240.7 66

polbooks 105 441 221.0 112.0 118.0 141.1 89
adjnoun 112 425 212.5 65.0 66.0 217.6 63
football 115 613 319.0 299.0 302.0 232.5 147

Average 170.2 115.2 115.3 170.5 71

In Table 3 we show the average results obtained for the third dataset coming from the DIMACS graph
coloring challenge. The instances are grouped based on the number of nodes (up to 50, up to 100, up
to 150, up to 300, over 300), with each group representing the mean performance over the considered
instances. The column headings are the same as in Table 1.

Table 3
Average results on benchmark instances from the DIMACS graph coloring challenge.

|𝑉 | |𝐸| UB LBECH LBDD TimeDD #solDD

28.0 179.7 89.8 35.1 35.9 91.9 33.1
84.3 792.3 405.9 235.6 234.5 435.9 134.6
128.9 1976.8 1058.6 815.1 782.7 671.9 211.1
216.6 4696.9 2374.1 1060.1 1062.2 819.1 232.5
450.0 7983.5 3991.8 1404.4 1455.6 2532.5 267.5

Average 1608.3 729.6 732.9 933.5 179.8

The results in the table emphasize the strong performance of the proposed algorithm in producing
high-quality lower bounds, which are, in most of the cases, superior to the existing heuristic solution
values. As the problem size increases with larger numbers of nodes, the computational time grows
significantly, with runtimes reaching the time limit for the instances with 𝑛 ≥ 600 (right part of Table 1).
Despite the increased computational effort, for those instances the bound found by the DD method is
consistently higher than the one found by the ECH. An important positive indicator of the DD algorithm
performance is the number of solutions explored. Higher values of #solDD suggest that the algorithm
is effectively exploring a broad solution space, which is beneficial for identifying strong lower bounds.
This is particularly notable for mid-sized instances, where the algorithm shows high exploration rates.
When considering larger instances, the number of explored solutions decreases as the algorithm does
not stop for having performed ℎ𝑚𝑎𝑥 iterations, but because the time limit of one hour is reached.

The comparison with the continuous relaxation, which provides the best possible benchmark in
terms of upper bounds, further demonstrates the quality of the lower bounds. Even if it does not reach
the upper bound found by the LP relaxation, the gap is in most of the cases reduced, underlining the
strength of the proposed method. The overall trends across the table indicate consistent and reliable
performance, with the algorithm adapting well to varying problem structures and scales. In total the
DD algorithm is at least as good as the ECH for 115 on 166 instances. Out of these 115 instances, it is
strictly better for 95 of them.

6. Conclusion

Links between dense clusters in networks are highly critical for disinformation spread. In this work, we
study a combinatorial optimization problem, named Cluster Deletion, aimed at partitioning a network
into clusters of fully connected nodes, by identifying the minimum number of bridge connections.
Monitoring these connections allows for disrupting the disinformation flow while preserving intra-
group communication. We introduce a Lagrangian heuristic to solve the problem, consisting of a dual
descent algorithm equipped with a subgradient method and an ad-hoc repair heuristic. Computational



experiments are conducted on benchmark networks from the literature, providing, in most cases, new
best-known solutions.
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A. Linking primal constraints with dual variables
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Figure 1: Example graph.

In Fig. 1, a graph with 5 nodes is shown, in order to better explain formula (3). Let 𝑖 be node 1,
𝑗 be node 2, and 𝑘 ∈ {3, 4, 5} (i.e., 𝑖 < 𝑗 < 𝑘). Observe that, in problem (1), variable 𝑥𝑖𝑗 appears
in all constraints associated to the nodes 𝑖, 𝑗 and 𝑘 ∈ 𝛿𝑖 ∪ 𝛿𝑗 . Consider first the case 𝑘 ∈ 𝐴𝑖𝑗 , that
is {𝑖, 𝑗}, {𝑖, 𝑘}, {𝑗, 𝑘} ∈ 𝐸 (node 3 in Fig. 1). We have the following three constraints of type (1b)
associated to the nodes (𝑖, 𝑗, 𝑘) and involving the variable 𝑥𝑖𝑗 :

𝑥𝑖𝑗 + 𝑥𝑖𝑘 − 𝑥𝑗𝑘 ≤ 1 N𝑜𝑑𝑒 𝑖, M𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝜆𝑖𝑗𝑘,

𝑥𝑖𝑗 + 𝑥𝑗𝑘 − 𝑥𝑖𝑘 ≤ 1 N𝑜𝑑𝑒 𝑗, M𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝜆𝑗𝑖𝑘,

𝑥𝑖𝑘 + 𝑥𝑗𝑘 − 𝑥𝑖𝑗 ≤ 1 N𝑜𝑑𝑒 𝑘, M𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝜆𝑘𝑖𝑗 .

Consequently, the contribution of the above constraints to the cost coefficient 𝑐𝑖𝑗(𝜆, 𝜇) is:
𝜆𝑘𝑖𝑗 − 𝜆𝑖𝑗𝑘 − 𝜆𝑗𝑖𝑘.
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We remark that the indices of the variables are always written in such a way that the first index is
smaller than the second one. Therefore, 𝑖 will always appear before 𝑗, which, in turn, will always appear
before 𝑘. This is why, for example, in the third constraint above, instead of having 𝑥𝑘𝑖 + 𝑥𝑘𝑗 − 𝑥𝑖𝑗 ≤ 1,
we have 𝑥𝑖𝑘 + 𝑥𝑗𝑘 − 𝑥𝑖𝑗 ≤ 1. As for the multipliers, the first index is fixed to the node on which the
corresponding constraint is defined, while the remaining two are ordered in such a way that the second
index is smaller than the third one.

Consider now the case 𝑘 ∈ 𝐶𝑖𝑗 (node 4 in Fig. 1). The constraint to consider is

𝑥𝑖𝑗 + 𝑥𝑖𝑘 ≤ 1 N𝑜𝑑𝑒 𝑖, M𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝜇𝑖𝑗𝑘.

Instead, for 𝑘 ∈ 𝐶𝑗𝑖 (node 5 in Fig. 1) the constraint to be taken into account is

𝑥𝑖𝑗 + 𝑥𝑗𝑘 ≤ 1 N𝑜𝑑𝑒 𝑗, M𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝜇𝑗𝑖𝑘.

The corresponding contributions to 𝑐𝑖𝑗(𝜆, 𝜇) are −𝜇𝑖𝑗𝑘 and −𝜇𝑗𝑖𝑘, respectively.

B. Multipliers update in case of infeasibility

The pseudo-code of the algorithm which is used to update the Lagrangian multipliers in case an
infeasible solution 𝑥ℎ is found is reported in Algorithm 3. It analyzes different constraint violations and
updates the multipliers accordingly.

Algorithm 3: Multipliers update when an infeasible solution is found.

Input: Iteration counter ℎ, multipliers 𝜆ℎ, 𝜇ℎ, and cost coefficients 𝑐ℎ.
Output: Updated multipliers (𝜆ℎ+1, 𝜇ℎ+1).

1 foreach triplet (𝑖, 𝑗, 𝑘) do
2 if constraint (1b) is violated by (𝑖, 𝑗, 𝑘) then
3 Δ𝑖𝑗𝑘 ← min{𝑐ℎ𝑖𝑗 ,−𝑐ℎ𝑗𝑘, 𝑐ℎ𝑖𝑘};
4 else if constraint (1c) is violated by (𝑖, 𝑗, 𝑘) then
5 Δ𝑖𝑗𝑘 ← min{𝑐ℎ𝑖𝑗 , 𝑐ℎ𝑖𝑘};

6 𝜆ℎ+1 ← 𝜆ℎ;
7 𝜇ℎ+1 ← 𝜇ℎ;
8 (�̄�, �̄�, 𝑘)← argmax

𝑖,𝑗,𝑘
Δ𝑖𝑗𝑘 ;

9 if (�̄�, �̄�, 𝑘) violates constraint (1b) then
10 𝜆ℎ+1

�̄��̄�𝑘
← 𝜆ℎ

�̄��̄�𝑘
+Δ�̄��̄�𝑘;

11 else if (�̄�, �̄�, 𝑘) violates constraint (1c) then
12 𝜇ℎ+1

�̄��̄�𝑘
← 𝜇ℎ

�̄��̄�𝑘
+Δ�̄��̄�𝑘;

13 Δ← Δ�̄��̄�𝑘;
14 return (𝜆ℎ+1, 𝜇ℎ+1) andΔ

If, for a certain triplet (�̂�, �̂�, 𝑘), constraint (1b) is violated, i.e., if 𝑥ℎ
�̂��̂�
+ 𝑥ℎ

�̂�𝑘
> 𝑥ℎ

�̂�𝑘
+ 1, it means that

𝑥ℎ
�̂��̂�

= 𝑥ℎ
�̂�𝑘

= 1 and 𝑥ℎ
�̂�𝑘

= 0. From (5), it holds that 𝑐ℎ
�̂�𝑘

< 0, 𝑐ℎ
�̂��̂�
≥ 0 and 𝑐ℎ

�̂�𝑘
≥ 0. We observe that,

taking into account Eq. (8) and the remark in Appendix A, any increase of 𝜆ℎ
�̂��̂�𝑘

results in an increase of

𝑐ℎ
�̂�𝑘

and a decrease of both 𝑐ℎ
�̂��̂�

and 𝑐ℎ
�̂�𝑘

.

If instead, for a certain triplet (�̂�, �̂�, 𝑘) constraint (1c) is violated, that is: 𝑥ℎ
�̂��̂�
+ 𝑥ℎ

�̂�𝑘
> 1, it means that

𝑥ℎ
�̂��̂�
= 𝑥ℎ

�̂�𝑘
= 1, which implies, from (5), that 𝑐ℎ

�̂��̂�
, 𝑐ℎ

�̂�𝑘
≥ 0. We observe that (8) indicates that any increase

of 𝜇ℎ
�̂��̂�𝑘

produces a decrease of both 𝑐ℎ
�̂��̂�

and 𝑐ℎ
�̂�𝑘

.



More specifically, in line 3, we define

Δ𝑖𝑗𝑘 = min
{︁
𝑐ℎ𝑖𝑗 , 𝑐

ℎ
𝑖𝑘,−𝑐ℎ𝑗𝑘

}︁
≥ 0,

for each triplet (𝑖, 𝑗, 𝑘) violating constraint (1b) and, in line 5, we define

Δ𝑖𝑗𝑘 = min
{︁
𝑐ℎ𝑖𝑗 , 𝑐

ℎ
𝑖𝑘

}︁
≥ 0,

for each triplet (𝑖, 𝑗, 𝑘) violating constraint (1c). Then, we look for the tiplet (�̄�, �̄�, 𝑘) corresponding
to the greatest Δ value in line 8. If it violates constraint (1b), in line 10, we update the corresponding
multiplier 𝜆�̄��̄�𝑘 as follows

𝜆ℎ+1
𝑖𝑗𝑘 = 𝜆ℎ

�̄��̄�𝑘 +Δ�̄��̄�𝑘, (9)

while the remaining multipliers 𝜆𝑖𝑗𝑘 for (𝑖, 𝑗, 𝑘) ̸= (�̄�, �̄�, 𝑘) as well as 𝜇𝑖𝑗𝑘 for all (𝑖, 𝑗, 𝑘) do not change
(lines 6–7). If, instead, (�̄�, �̄�, 𝑘) violates constraint (1c), we update the corresponding multiplier 𝜇�̄��̄�𝑘 in
line 12 as:

𝜇ℎ+1
𝑖,𝑗,𝑘 = 𝜇ℎ

�̄��̄�𝑘 +Δ�̄��̄�𝑘, (10)

while not changing the remaining multipliers (lines 6–7).

C. The subgradient algorithm

Within the DD algorithm, we call the subgradient method described in this section, which produces a
different multiplier pair which can be used to update the 𝑧𝐿𝑅 value. Actually, the subgradient methods
itself can be used as an alternative to the DD algorithm to solve the dual problem (7). Indeed, this method,
introduced by Shor (2012), is aimed at solving the unconstrained optimization problem min𝑦∈R𝑛 𝑓(𝑦),
with 𝑓 : R𝑛 → R convex and not necessarily smooth. The basic iteration scheme is

𝑦𝑝+1 = 𝑦𝑝 − 𝛼𝑝𝑔𝑝,

where the subgradient 𝑔𝑝 is an element of 𝜕𝑓(𝑦𝑝), the subdifferential of 𝑓 at point 𝑦𝑝.

The stepsize 𝛼𝑝 commonly used in the literature is in the form 𝛼𝑝 =
𝑡𝑝

‖𝑔𝑝‖
, where the stepsize 𝑡𝑝

ensuring the convergence of the sequence {𝑡𝑝} can be set in different ways.
Following Carrabs et al. (2024), we propose the following choice of the stepsize:

𝑡𝑝 =
‖𝛿𝑝‖2‖𝑔𝑝‖

2(𝑓(𝑦𝑝−1)− 𝑓(𝑦𝑝) + (𝑔𝑝)⊤𝛿𝑝)
, (11)

where 𝛿𝑝 = 𝑦𝑝 − 𝑦𝑝−1. Such a stepsize choice is an extension of the well-known Barzilai and Borwein
approach to convex nonsmooth optimization.

When applying the subgradient method to our problem (7), 𝑦 represents the pair of multipliers (𝜆, 𝜇)
and 𝑓(𝑦) is the function 𝑧𝐿𝑅(𝜆, 𝜇). The corresponding pseudocode is shown in the Algorithm 4. It
starts from two points (𝜆0, 𝜇0) and (𝜆1, 𝜇1), which are needed to determine at the first iteration 𝑝 = 1
the value of the stepsize 𝑡1. At the beginning, 𝑧𝑏𝑒𝑠𝑡 is assigned the tighter value between the upper
bounds associated with the two starting points (line 1). Then, new points (𝜆𝑝, 𝜇𝑝) are found at each
iteration 𝑝 > 1, by using the stepsize 𝑡𝑝 (lines 4–5) and the subgradient 𝑔𝑝 (line 9). The subgradient
method stops as soon as a point (𝜆𝑝, 𝜇𝑝) associated with a tighter upper bound 𝑧𝑝𝐿𝑅 than the starting
one is found (line 11). If no such a solution is produced during 𝑝𝑚𝑎𝑥 iterations, then the procedure
returns the last point, together with the associated upper bound (line 13). Thanks to this algorithm, we
can modify the Lagrangian multipliers properly within the DD algorithm, also when a feasible solution
is found.



Algorithm 4: Subgradient Algorithm for Lagrangian Relaxation of the CDP

Input: 𝜆0, 𝜇0, 𝜆1, 𝜇1 ≥ 0, maximum number of iterations 𝑝𝑚𝑎𝑥.
Output: Dual solution (𝜆𝑏𝑒𝑠𝑡, 𝜇𝑏𝑒𝑠𝑡) and corresponding value 𝑧𝑏𝑒𝑠𝑡.

1 𝑧𝑏𝑒𝑠𝑡 ← min{𝑧𝐿𝑅(𝜆0, 𝜇0), 𝑧𝐿𝑅(𝜆
1, 𝜇1)};

2 𝑝← 1;
3 while 𝑝 < 𝑝𝑚𝑎𝑥 do
4 𝑡𝑝 ← ‖𝛿𝑝‖2‖𝑔(𝜆𝑝,𝜇𝑝)‖

𝜖+2(𝑧𝐿𝑅(𝜆𝑝,𝜇𝑝)−𝑧𝐿𝑅(𝜆𝑝−1,𝜇𝑝−1)−𝑔(𝜆𝑝,𝜇𝑝)⊤(𝜆𝑝−𝜆𝑝−1,𝜇𝑝−𝜇𝑝−1))
;

5 𝑡𝑝 ← max
{︁
min

{︁
𝑡𝑝,

1
log10(1+𝑝)

}︁
, 0
}︁

;

6 𝜆𝑝+1
𝑖𝑗𝑘 ← max

{︁
0, 𝜆𝑝

𝑖𝑗𝑘 −
𝑡𝑝

‖𝑔(𝜆𝑝,𝜇𝑝)‖𝑔𝑖𝑗𝑘(𝜆
𝑝, 𝜇𝑝)

}︁
, 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} ∈ 𝐸;

7 𝜇𝑝+1
𝑖𝑗𝑘 ← max

{︁
0, 𝜇𝑝

𝑖𝑗𝑘 −
𝑡𝑝

‖𝑔(𝜆𝑝,𝜇𝑝)‖𝑔𝑖𝑗𝑘(𝜆
𝑝, 𝜇𝑝)

}︁
, 𝑖 ∈ 𝑉, 𝑗, 𝑘 ∈ 𝛿𝑖 : 𝑗 < 𝑘, {𝑗, 𝑘} /∈ 𝐸;

8 Compute 𝑧𝐿𝑅(𝜆
𝑝+1, 𝜇𝑝+1);

9 Compute 𝑔𝑝+1(𝜆𝑝+1, 𝜇𝑝+1) according to Eq. (6);
10 if 𝑧𝐿𝑅(𝜆𝑝+1, 𝜇𝑝+1) < 𝑧𝑏𝑒𝑠𝑡 then
11 return (𝜆𝑝+1, 𝜇𝑝+1), 𝑧𝐿𝑅(𝜆

𝑝+1, 𝜇𝑝+1)

12 𝑝← 𝑝+ 1.

13 return (𝜆𝑝, 𝜇𝑝), 𝑧
𝑝
𝐿𝑅
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