CEUR-WS.org/Vol-3962/paper2.pdf

C

CEUR

Workshop
Proceedings

Adversarial Training to Improve Accuracy and Robustness
of a Windows PE Malware Detection Model

Luca Lobascio®?, Giuseppina Andresini®?, Annalisa Appice’** and Donato Malerba'?

"University of Studies of Bari "Aldo Moro", Bari, Italy
?Consorzio Interuniversitario Nazionale per I'Informatica - CINI, Bari, Italy
SIMT School for Advanced Studies Lucca, Lucca, Italy

Abstract

Windows PE malware is still considered a major threat in the cybersecurity landscape despite the amazing
accuracy recently achieved in malware detection thanks to the use of Artificial Intelligence (Al). In fact, recent
advances in Adversarial Learning have definitely shown that adversarial attacks can evade Al-powered decision
models trained for Windows PE malware detection. These are malware created by leveraging Al vulnerabilities to
fool Al-based malware detection systems. Adversarial Training is one of the fundamental strategies for defending
an Al-based decision model against adversarial attacks. So, in this paper, we focus particularly on Adversarial
Training as a method for both gaining accuracy and improving the robustness of a deep neural model trained for
Windows PE malware detection. To this aim, we analyse the accuracy performance of a deep neural model trained
with adversarial samples generated with Fast Gradient Sign Method (FGSM) against real Windows Portable
Executable (PE) goodware and malware, as well as realistic Windows PE adversarial malware produced with
state-of-the-art techniques.

Keywords

Windows PE Malware Detection, Deep Learning, Adversarial Learning, Adversarial Training

1. Introduction

Artificial Intelligence (Al) is transforming cybersecurity practices thanks to the amazing accuracy
performance recently achieved with several Al-based malware detection systems. However, several
recent studies have shown that Al-based decision models can be vulnerable to adversarial attacks. In
malware detection scenarios, adversarial attacks are realistic manipulations of existing malware, which
preserve the executable and malicious behaviour of the original malware but deceive the malware
detection measures. In this study, we consider literature methods defined to generate ethical adversarial
malware to help identify vulnerabilities of Al-based anti-malware systems and develop defensive
strategies. Specifically, we focus on Windows PE malware since, still in 2023, Microsoft Windows
remained the primary target for cyber-attacks, accounting for 88% of all malware-filled data detected
daily.

Some studies [1, 2, 3, 4] show that Windows Portable Executable (PE) adversarial malware may
be produced with catastrophic consequences for security systems of Al-powered malware detection
models. In particular, the authors of [2] have recently performed a large-scale study of the evasion
performance of five literature attack methods formulated to produce realistic adversarial Windows
PE malware in both a white-box (i.e., FGSM padding+slack, Full DOS, Extend, Shift) and a black-box
attack scenario (i.e., GAMMA). For each attack method, their study has produced a collection of realistic
adversarial Windows PE malware that Al developers may use to test the robustness of Al models
and commercial anti-malware. However, the research to identify the best practices to mitigate the
adversarial vulnerabilities of Al systems for Windows PE malware detection is still under-explored.

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
***Corresponding author.

& luca.lobascio@imtlucca.it (L. Lobascio); giuseppina.andresini@uniba.it (G. Andresini); annalisa.appice@uniba.it
(A. Appice); donato.malerba@uniba.it (D. Malerba)

@ 0009-0000-3011-906X (L. Lobascio); 0000-0002-5272-644X (G. Andresini); 0000-0001-9840-844X (A. Appice);
0000-0001-8432-4608 (D. Malerba)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

mailto:luca.lobascio@imtlucca.it
mailto:giuseppina.andresini@uniba.it
mailto:annalisa.appice@uniba.it
mailto:donato.malerba@uniba.it
https://orcid.org/0009-0000-3011-906X
https://orcid.org/0000-0002-5272-644X
https://orcid.org/0000-0001-9840-844X
https://orcid.org/0000-0001-8432-4608
https://creativecommons.org/licenses/by/4.0/deed.en

Adversarial Training [5] is one of the most promising defensive methods to improve the robustness
of a decision model by mitigating the malicious effect caused by adversarial attacks. The Adversarial
Training strategy has recently been used to mitigate overfitting and gain accuracy in cybersecurity
problems. For example, the authors of [6] use samples generated with Fast Gradient Sign Method (FGSM)
[7] [8] to mitigate overfitting problems and improve the generalization and diversity of ensemble models
trained in problems of Android malware detection and network traffic intrusion detection. FGSM is
a white-box, gradient-based, evasion method defined to generate adversarial samples of imagery and
tabular data. In [6], FGSM and other general-purpose attack methods have been used on the feature-
vector representation of the cyber objects, which was obtained by applying a static analyser of the
files or a dynamic analyser of the software behaviour, or a network traffic analyser of the packet flows.
However, the adversarial samples generated in this way cannot be mapped into realistic adversarial
malware to be used to represent realistic vulnerabilities of Al-based decision models and evaluate
models’ robustness. Differently, in this study, we explore how an Al-based decision model that is able
to generalize on adversarial samples generated with FGSM can improve the robustness against realistic
adversarial attacks, gaining accuracy in correctly disentangling goodware from both real Windows PE
malware and realistic adversarial Windows PE malware.

The paper is organized as follows. Section 2 describes the background of this work. Section 3
illustrates the Adversarial Training method deployed in this study. Section 4 illustrates the results of
the evaluation study. Finally, Section 5 draws conclusions and sketches future research directions.

2. Background

Since its conception adversarial learning has widely investigated the “offensive" scope of Al by defining
several evasion methods to identify vulnerabilities in Al-based decision models [9]. Recent studies have
also started to devote attention to poisoning methods [10] to attack the learning stage of an Al system.
The majority of the state-of-the-art evasion methods are formulated for imagery data and operate in a
white-box setting, where the attacker has a complete knowledge of the decision model architecture
and its parameters’ values. FGSM [7] is one of the most popular white-box, gradient-based, evasion
methods. It finds the loss (e.g., the cross-entropy) to apply to an input sample, to make decisions of
a neural model less robust for a specific class. Projected Gradient Descent (PGD) [11] is the iterative
variant of FGSM. LowProFool [8] uses the gradient data to guide the perturbation towards a target
class in an iterative manner by penalizing the perturbation proportionally to the feature importance
associated with the features. Deepfool [12] performs an iterative procedure to find the minimum
adversarial perturbations on both an affine binary classifier and a general binary differentiable classifier.
It integrates the one-versus-all strategy to be applied to multi-class problems. Notably, FGSM, as well
PGD and DeepFool methods, are gradient-based methods formulated for the image domains. However,
they are also used for tabular data. Although less numerous, a few evasion methods, such as Zeroth
Order Optimization (ZOO) [13], are also formulated to operate in a black-box mode, where attackers
have no access to information on the target model except for the final decisions.

These general-purpose evasion methods are commonly used in cybersecurity problems, although
they can be applied to a feature vector representation of cyber objects. Both [14] and [15] have recently
published an extensive survey to describe how general-purpose attack methods have been used in
cybersecurity. This survey highlights that the majority of cybersecurity studies still use general-purpose
attack methods applied to a tabular representation of cyber objects obtained after a feature engineering
step (e.g., static analysis of codes, dynamic analysis of behaviours). In particular, several studies use
the Adversarial Training strategy as a means of gaining generality in the decision model development,
achieving higher accuracy on real malicious behaviours in the evaluation phase. However, these studies
often leave aside the problem of producing realistic evasive objects in cybersecurity domains where,
unlike images, there is no clear inverse mapping to the feature space [16]. For example, the authors of
[17] use adversarial samples generated with FGSM to mitigate the overfitting phenomenon in a deep
neural model trained with Adversarial Training using the guidance of eXplainable Al-based knowledge.

Similarly, the authors of [6] use adversarial samples generated with either FGSM, PGD, DeepFool
and LowProFool to mitigate overfitting problems in deep neural model development and improve the
generalization and diversity of ensemble systems. In both studies, the adversarial samples are generated
in the feature space of malicious objects (i.e., Android malware or network traffic intrusions) and used
only in the decision model development stage. As no inverse transform is formulated to transform
a perturbed feature vector into a realistic cyber object, these adversarial samples are ignored for the
evaluation of the decision model robustness.

On the other hand, the generation of realistic adversarial cyber objects in the problem space has
recently attracted significant attention in the cybersecurity literature [1]. Focusing on Windows PE
malware, the authors of [18] describe FGSM (padding + slack) that is the seminal white-box evasion
method to generate realistic Windows PE adversarial malware to fool MalConv decisions [19]. MalConv
is a literature Convolutional Neural Network learned from raw bytes of Windows PE files. As the
MalConv model is trained without resorting to a surrogate feature vector representation of Windows
PE files, it provides the ideal scenario for white-box attacking models developed in the problem space.
Accordingly, the authors of [1] describe three further white-box evasion methods, named Full DOS,
Extend and Shift, to evade MalConv. Extend injects noise bytes in the DOS header. Full DOS perturbs
the bytes that are placed in the DOS header in the areas before the magic number and after the pointer to
the PE header. Both Extend and Full DOS base on the fact that the DOS header is still kept in Windows
PE files to make these files still compatible with the older operating systems. So, they change the DOS
header, except for the magic number MZ and the four-byte-long integer at offset 0x3c, by keeping the
functionality of the executable file Shift applies the shift operation to the first section to recover room
to inject an adversarial byte payload. On the other hand, the authors of [20] describe the Adversarial
Malware Generator (AMG) that is a black-box evasion method that uses a reinforcement learning
agent to combine a set of functionality-preserving binary file manipulations and perturb Windows
PE malware. Finally, the authors of [21] describe the Genetic Adversarial Machine learning Malware
Attack (GAMMA), that is one of the most effective black-box evasion methods for Windows PE malware
detection. It uses an evolutionary algorithm to inject an adversarial payload into a Windows PE malware.
It solves an optimization problem that minimizes both the probability of evasion and the size of the
benign injected content via a specific penalty term. The injected payload is extracted from goodware
binary files, optimizing the selection and the size of benign content using selection, crossover, and
mutation functions. The injection is performed with either “padding” or “section injection", which are
two manipulations to preserve the maliciousness and executability of PE files, although the higher
evasion ability is achieved with the section injection manipulations. Notably, in [1, 2], the authors
show the higher evasion ability of GAMMA compared to the competitor white-box evasion methods
FGSM (padding + slack), Full DOS, Extend, Shift. This is an intriguing achievement, considering that
the black-box scenario is a more practical assumption for attacking a general anti-malware system.

Finally, the authors of [2] have recently explored the performance of a decision model trained through
Adversarial Training with the realistic adversarial Windows PE malware produced with either FGSM
(padding + slack), Full DOS, Extend, Shift and GAMMA. However, this evaluation study has shown that
the decision model obtained with Adversarial Training loses accuracy in disentangling real Windows PE
goodware from real Windows PE malware. At the same time, it slightly gains accuracy in recognizing
realistic adversarial Windows PE malware when the adversarial objects are generated with either
Extend or GAMMA only. Notably, the study of [2] uses the same category of adversarial objects in
both the training and evaluation stages of each experiment. Differently, in this study, we use training
samples generated with a general-purpose evasion method working in the feature space representation
of Windows PE files while we test the robustness of the developed models on realistic adversarial
Windows PE malware.

3. Adversarial Training method

In this Section, we describe the Adversarial Training method considered in this study to train a Windows
PE malware detection model. This decision model is trained in the feature space extracted using the
Library to Instrument Executable Formats (LIEF) [22] This is done according to a few recent studies
[23, 2] showing that a decision model trained from LIEF features commonly achieves higher detection
rate than a decision model trained (even with complex deep neural networks) from raw binary data.
LIEF is used to parse the binary code a Windows PE file and extract 2381 raw static features grouped as
follows:

1. Byte histogram: 256 features to measure, for each distinct byte value, the ratio of the counts of
each byte value within the file to the total number of bytes recorded in the file;

2. Byte entropy histogram: 256 features to measure the scalar entropy on a sliding window paired
with each byte occurrence within the windows;

3. Strings: 104 features to describe simple statistics information about printable strings;

4. General file: 10 features to describe the file size and basic information extracted from the PE
header;

5. Header: 62 features to represent data extracted from both the COFF and the optional header;

6. Section: 255 features to describe data recorded in the section header;

7. Import: 1280 features to provide information on imported functions and associated libraries
extracted from the import address table;

8. Export: 128 features to list information on exported functions;

9. Data directory: 30 features to describe the size and virtual size of the data directory entries
recorded in the Windows PE file.

As a decision model, we consider a Deep Neural Network DNN model trained with LIEF features for
Windows PE malware detection according to the description reported by [24]. The choice of this DNN
model as the target model of the evaluation work is based on the evaluation results illustrated by [24].
In fact, their study shows that such DNN model allows us to achieve higher detection accuracy than
several Al-based malware detection methods analysed. In our study, the DNN model is trained with
the Adversarial Training strategy using a general-purpose evasion method to generate the adversarial
samples for the model development.

As a general-purpose evasion method, we use the FGSM [7] method on the tabular data originating
from the LIEF-extracted feature vector representation of Windows PE files. This uses the gradient
information data to guide the perturbation towards the opposite class. The decision to use FGSM in
this stage is based on the recent study of [6] that has compared the accuracy performance of FGSM,
PGD, LowProFool and DeepFool by using them to train a deep neural ensemble model with Adversarial
Training. Notably, the evaluation that has been done in several Android malware detection and network
traffic intrusion detection problems has shown that the decision model trained with FGSM achieves, in
general, higher accuracy. So, based on these results, we also evaluated the performance of FGSM in this
study.

In short, the proposed method takes as input a training set D = {(x;,y;)};_; of n Windows PE
files, where each x; € {0,1,...,255}* is the binary code of a windows PE file and y; is the real
class (goodware or malware) associated with x;. The method, as schematized in Figure 1, learns the
DNN-based Windows PE malware detection model in four steps:

1. The LIEF-extracted representation Dlief of D is obtained. To this aim, LIEF is used to generate
a tabular example X%iEf € R?38! for each Windows PE file x; with (xi,yi) € D. Formally,
Dliel = {(x}ef y;) € R?3! x {goodware, malware}|V(xi,y;) € D}.

2. The initial DNN model DN Ny: R?8! s {goodware, malware} is trained with parameter 0
estimated on D"/,

3. The adversarial set .A"*f is produced by using FGSM with the data perturbation threshold e.
Specifically, the adversarial samples of A"/ are produced from the malicious samples of D'/
that are originally labelled as malware to evade DN Nj.

plief

D
Y=malware

A J

. o)

Auef

DNN

Figure 1: Schema of the Adversarial Training method

4. The final DNN model DN Ngd” : R®8L s {goodware, malware} is trained with parameter 0
estimated on DS | J AleS,

In the experimentation of this study, we evaluate the accuracy performance of both DN Ny and
DN Ngd” on the collection of real Windows PE files collected in [2], as well as the robustness of both
deep neural models against the repository of realistic Windows PE adversarial malware created in [2].

4. Evaluation study and discussion

The performance of the Adversarial Training method was evaluated on a repository that collects both
Windows PE files and adversarial Windows PE files. These experiments mainly aimed to explore
the ability of Adversarial Training performed with FGSM of gaining accuracy in disentangling real
Windows PE goodware from real Windows PE malware, as well as robustness in the presence of
realistic adversarial Windows PE malware that were produced with state-of-the-art Windows PE attack
methods such as FGSM (padding + slack), Full DOS, Extend, Shift and GAMMA. The Windows PE file
repository and the adopted experimental set-up are presented in Sections 4.1 and 4.2, respectively. The
implementation details of the proposed Adversarial Training method are reported in Section 4.3. The
results are illustrated in Section 4.4.

4.1. Windows PE file repository

We considered two distinct Windows PE file repositories for the training and evaluation stages. In
particular, the training stage was performed with the BODMAS repository [25]. This is a publicly
available repository of Windows PE files with around one hundred and thirty-four thousand samples
collected between 2019 and 2020 from a security company’s internal database. Specifically, the BODMAS
repository contains 57,293 Windows PE malware and 77,142 Windows PE goodware. The binary files
are available in the repository for malware only. However, the pre-extracted features obtained through
the static analyser LIEF are publicly available for all the collected samples recorded in the BODMAS
repository.

The evaluation stage was performed with the Windows PE repository that has been recently created
in [2]. This repository contains 27,035 real Windows PE files: 13,494 goodware and 13,541 malware.
Goodware were selected from the public PE Malware Machine Learning (PEEML) repository, so that 980
goodware files were recorded in 2017, and 12514 goodware files were recorded in 2018. Notably, there is
no overlap with Windows PE files recorded in the BODMAS repository. Malware files were selected from
VirusShare so that 6459 malware were recorded in 2021, 83 in 2022 and 6999 in 2023. Selected malware
were distributed as follows: Trojan (55%), Virus (15%), General (26%), Worms (0.9%) Ransomware

(0.7%), Adware (2.1%), Backdoor (0.3%). In addition, the repository contains: 4384 adversarial malware
created using FGSM(padding+slach), 6115 adversarial malware created using Full DOS, 7951 adversarial
malware created using Extend, 3423 adversarial malware created using Shift, and 6857 adversarial
malware created using GAMMA. All the adversarial malware recorded in the repository are realistic,
i.e,, they preserve their malicious behaviours. In addition, they were produced by the authors of [2]
manipulating each counterpart malware recorded in the same repository to evade the MalConv model.

4.2. Experimental set-up

For the experimentation, we used all Windows PE files recorded in the BODMAS repository (along
their LIEF-extracted features) to train the initial DNN, create the adversarial set, and train the DNN
with Adversarial Training. In the following, we denote the DNN trained with the sample created for
the real Windows PE files only as DNN, while the DNN trained with the Adversarial Training method
by accounting for the adversarial samples produced with FGSM as DNN™_ According to [26], the
FGSM method should be used with the perturbation value set as a small value (tentatively between 0
and 1). In this study, we set the perturbation threshold equal to 0.025, in order to scale the noise and
ensure that perturbations are small enough to remain undetected to the human eye, but large enough
to fool the attacked neural model.

For evaluating the accuracy and robustnesses of both DNN and DNN
Accuracy (OA), Precision (P), Recall (R) and F1 score (F1) of both models on the version of the evaluation
repository populated with the real Windows PE goodware and malware, as well as the version of the
same evaluation repository augmented with the realistic adversarial Windows PE malware as described
in [2]. In the following, we denote the original repository of real Windows PE files as REAL and the
repositories augmented with the realistic adversarial Windows PE malware produced with FGSM
(padding + slack) as REAL + FGSM (padding + slack), Full DOS as REAL + Full DOS, Extend as REAL +
Extend, Shift as REAL + Shift and GAMMA as REAL + GAMMA, respectively.

fgsm e measured the Overall

4.3. Implementation details

The code' used to perform the experimental study was implemented in Python 3 using the high-level
neural network APl PyTorch. LIEF (version 0.9)> was used to extract the feature input space of the deep
neural architecture. This architecture was implemented with three Fully Connected (FC) layers with
512, 128 and 8 neurons and one output layer with 2 neurons, respectively. The output probabilities
were obtained using the softmax activation function in the last layer. The Tanh activation function
was used in all the other layers. Two Batch Normalization layers were placed before the 1st FC layer
and between the 2nd and 3rd FC layers. The DNN was trained with a batch size equal to 1024 and a
maximum number of epochs equal to 150. An early-stopping approach was used to stop the model
earlier than the maximum number of epochs allowed if it did not improve the validation loss. All
the architecture parameters described above were set as described by [24], who showed that this
architecture outperforms several Al-based decision models in Windows PE malware detection problems.
The input space was transformed with Quantile Transformer as implemented in Scikit-learn library
3 to obtain features that follow a normal distribution and reduce the impact of outliers. Finally, the
FGSM algorithm was used as implemented in the Adversarial Robustness Toolbox library®.

4.4. Results

Table 1 reports the accuracy performance of both DNN and DNN™ models as they were measured in
the evaluation settings: REAL, REAL + FGSM (padding + slack), REAL + Full DOS, REAL + Extend, REAL
+ Shift and REAL + GAMMA, respectively. These results support the conclusions already reported in

'The code is available at https://github.com/112909/lobasciol TASEC25

*https://lief.re/
*https://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.QuantileTransformer.html
*https://adversarial-robustness-toolbox.readthedocs.io/

https://github.com/ll2909/lobascioITASEC25
https://lief.re/
https://scikit-learn.org/dev/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://adversarial-robustness-toolbox.readthedocs.io/

Table 1

Accuracy performance (Overall Accuracy — OA, Precision — P, Recall - R and F1 score — F1 of of both DNN and
DNN™ measured on REAL, REAL + FGSM (padding + slack), REAL + Full DOS, REAL + Extend, REAL + Shift
and REAL + GAMMA. The best results are in bold

test set DNN DNNfe™
OA P R F1 OA P R F1

REAL 9190 99.60 84.17 91.23 | 93.77 9898 88.49 93.44
REAL + FGSM (padding + slack) | 91.59 96.85 87.73 92.06 | 93.76 97.56 91.17 94.26
REAL + Full DOS 91.07 9536 88.65 91.88 | 93.68 97.06 91.90 94.41
REAL + Extend 91.73 96.14 89.69 9280 | 93.70 96.79 92.57 94.63
REAL + Shift 91.68 97.38 87.10 9195 | 93.66 97.60 90.67 94.01
REAL + GAMMA 88.22 89.91 88.47 89.18 | 89.64 89.71 91.60 90.65

[1, 2] that the black-box evasion method GAMMA is more effective than the white-box evasion methods
FGSM (padding + slack), Full DOS, Extend and Shift. In fact, both DNN and DN Nf&M achieve the lowest
OA and F1 in REAL + GAMMA. On the other hand, these results show that the Adversarial Training
strategy completed with the tabular samples generated with FGSM improves the accuracy performance
of the DNN model trained for Windows PE malware detection. In particular, the overall improvement
is achieved with the Adversarial Training method in all testing scenarios, i.e. REAL that includes real
Windows PE files only, as well as REAL + FGSM (padding + slack), REAL + Full DOS, REAL + Extend,
REAL + Shift and REAL + GAMMA, which include real Windows PE files and realistic adversarial
Windows PE malware generated with literature evasion methods. Notably, the performances achieved
in the REAL setting provide an assessment of the gain in model accuracy, while the performances
achieved in the REAL + FGSM (padding + slack), REAL + Full DOS, REAL + Extend, REAL + Shift and
REAL + GAMMA settings provide an assessment of the gain achieved in model robustness. Finally, a
few exceptions are observed with respect to the evaluation of Precision — P. In particular, values of
P measured for DNN are higher than values of P measured for DNN™ in both REAL and REAL +
GAMMA settings. This means that training the deep neural model by accounting for samples produced
with FGSM in the LIEF-representation of Windows PE malware can sometimes lead the decision model
to see a higher number of malicious behaviours in the evaluation stage. Hence, the decision model
evaluated in this setting detects a higher number of True Malicious Behaviours, but this is coupled with
a higher number of False Malicious Behaviours. In any case, the overall performance measured with OA
and F1 shows that the trade-off between increasing the number of True Malicious Behaviours at the cost
of increasing the number of False Malicious Behaviours is still in favour of the use of the Adversarial
Training method also based on the performances observed in the REAL and REAL + GAMMA settings.

To complete this evaluation study, we used SHAP [27] to explain how the Adversarial Training
method changed the effect of LIEF-extracted input features on decisions produced with both DNN and
DNN'&™ respectively. SHAP is a well-known, post-hoc, XAI technique that has been recently used in
several cybersecurity domains to gain accuracy [17] or explain decision model behaviours [6, 17]. It is
based on a theoretic game that measures the effect of each input feature on the decision produced from
the model to predict the class of a sample. This effect is measured as the average marginal contribution
of the feature value for all alternative decisions. Specifically, we used SHAP® to explain decisions
produced on malicious Windows PE files. Figures 2 and 3 show the Shapley values measured for the
decisions produced from both DNN and DNN'™ respectively, for the batch of real Windows PE
malware of the considered testing set, and the batches of realistic windows PE malware produced with
FGSM (padding + slack), Full DOS, Extend, Shift and GAMMA, respectively. Both Figures show the
top-10 features, ranked according to the average Shapley value, of both models in each malicious batch.

In particular, Figure 2 shows that the DNN model is mainly driven by the LIEF-extracted features
Data Directory 9 and Imports 103. Both are the top-two features seen to recognize real Windows PE

3Shapley values were obtained with shap.DeepExplainer https://shap.readthedocs.io/en/latest/generated/shap.DeepExplainer.
html

https://shap.readthedocs.io/en/latest/generated/shap.DeepExplainer.html
https://shap.readthedocs.io/en/latest/generated/shap.DeepExplainer.html

malware, as well as adversarial Windows PE malware produced with FGSM (padding + slack), Full
DOS and GAMMA. On the other hand, Data Directory 9 falls to fourth, while Header info 41 and Header
info 1rise to first and second place, respectively, in the SHAP ranking of the adversarial Windows PE
malware produced with both Extend and Shift. Instead, neither Header info 41 nor Header info 1 appear
in the top-ten features seen to recognize real Windows PE malware and realistic adversarial Windows
PE malware produced by FGSM (padding + slack), Full DOS and GAMMA. Focusing the attention on
Extend and Shift, we note that there is a high intersection in the top-ten features seen by the DNN
model for both categories of adversarial malware except for the LIEF-extracted feature Headers info 9
that appears in the top-ten ranking of Extend and the LIEF-extracted feature General File Info 7 that
appears in the top-ten ranking of Shift. This suggests that the DNN was trained seeing high similarity
between adversarial Windows PE malware generated by both these two evasion methods.

On the other hand, Figure 3 shows that the Adversarial Training methods actually changed the
decision model by allowing the LIEF-extracted feature Header Info 11 to gain importance in all decisions
regarding both real Windows PE malware and all categories of adversarial Windows PE malware
considered in this study. The only exception is observed with FGSM (padding + slack), where the
top-ranked LIEF-extracted feature is Imports 103, but the LIEF-extracted feature Header Info 11 is still the
runner-up. On the other hand, the LIEF-extracted feature Data Directory 9 is still important, but it falls
to the second on third position. Another interesting consideration regards the SHAP feature rankings
of DNN&™ for Extend and Shift. These two rankings have more differences between them than their
counterparts shown in Figure 2 for DNN. This suggests that the Adversarial Training method allows
DNNf&™ to see better the differences between the adversarial Windows PE malware produced with
these two evasion methods. Finally, we note that the Shapley values computed for decisions produced
with DNN&™ range in smaller intervals with a lower number of Shapley value outliers than the Shapley
values computed for the counterpart decisions produced with DNN. The relationship between this
behaviour and a possible higher robustness of explanations produced for deep neural models trained
with the Adversarial Training method deserve further investigation in future works.

5. Conclusion

Over the past decade, recent achievements in adversarial learning have shown that adversarial malware
create an additional attack vector to the robustness of Al methods developed for anti-malware systems.
In this paper, we illustrate the results of an evaluation study of the performance of a deep neural model
trained with an Adversarial Training method against five state-of-the-art attack methods defined in
literature to produce realistic adversarial Windows PE malware.

The study shows that the Adversarial Training method can take advantage of a general-purpose
evasion method — FGSM - that is commonly used with imagery and tabular data to generate adversarial
samples in a powerful feature-vector representation of Windows PE files. It uses these samples to
train a deep neural model that gains accuracy and robustness in the Windows PE malware detection
task. In particular, we show that the deep neural model trained with the Adversarial Training method
outperforms the counterpart model trained without Adversarial Training, gaining accuracy on real
Windows PE malware and robustness against realistic Windows PE adversarial malware. In addition,
we use a post-hoc XAI technique — SHAP - to explain how Adversarial Training changed the ability of
the deep neural models to recognize malicious behaviours.

As reported [28], the effectiveness of adversarial training is affected by multiple variables (e.g.,
classifiers, feature representations). For this reason, we plan to extend this study to explore the
performance of further general-purpose evasion methods in the training stage, as well as to additional
Windows PE adversarial evasion methods in the evaluation stage. Also, we plan to start the investigation
of offensive and defensive strategies for poisoning in Windows PE malware detection, as well as the
robustness of explanations produced with defensive strategies. Finally, considering the large number
of active Android devices worldwide, which has led to a growing interest in developing solutions to
identify malicious applications [29, 30, 31], we plan to extend our work in order to investigate the

impact of adversarial training in Android malware detection models.

Acknowledgments

Luca Lobascio and Giuseppina Andresini are supported by the project FAIR - Future Al Research
(PE00000013), Spoke 6 - Symbiotic AT (CUP H97G22000210007), under the NRRP MUR program funded
by the NextGenerationEU. Annalisa Appice and Donato Malerba are partially supported by project
SERICS (PE00000014) under the NRRP MUR National Recovery and Resilience Plan funded by the
European Union - NextGenerationEU. The research objectives of this paper are in partial fulfilment of
the project AI-CREED (CUP H93C23000880005).

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

(1]

(2]

L. Demetrio, S. E. Coull, B. Biggio, G. Lagorio, A. Armando, F. Roli, Adversarial EXEmples: A
survey and experimental evaluation of practical attacks on machine learning for Windows malware
detection, ACM Trans. Privacy Secur. 24 (2021) 27:1-27:31. doi:10.1145/3473039.

M. Imran, A. Appice, D. Malerba, Evaluating realistic adversarial attacks against machine learn-
ing models for Windows PE malware detection, Future Internet 16 (2024) 1-30. doi:10.3390/
FI16050168.

X. Ling, L. Wu, J. Zhang, et al., Adversarial attacks against Windows PE malware detection:
A survey of the state-of-the-art, Comput. Secur 128 (2023) 1-24. do0i:10.1016/j.cose.2023.
103134.

A. Ponte, D. Trizna, L. Demetrio, B. Biggio, I. T. Ogbu, F. Roli, Slifer: Investigating performance and
robustness of malware detection pipelines, Computers & Security 150 (2025) 104264. doi:https:
//doi.org/10.1016/j.cose.2024.104264.

C. Szegedy, W. Zaremba, L. Sutskever, J. Bruna, D. Erhan, I. J. Goodfellow, R. Fergus, Intriguing
properties of neural networks, in: ICLR 2014, 2014, pp. 1-10. doi:https://doi.org/10.48550/
arxXiv.1312.6199.

M. Al-Essa, G. Andresini, A. Appice, D. Malerba, PANACEA: a neural model ensemble for cyber-
threat detection, Mach. Learn. 113 (2024) 5379-5422. doi:10.1007/S10994-023-06470-2.

L. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adversarial examples, in: ICLR
2015, 2015, pp. 1-11. doichttps://doi.org/10.48550/arXiv.1412.6572.

V. Ballet, X. Renard, J. Aigrain, T. Laugel, P. Frossard, M. Detyniecki, Imperceptible adversarial
attacks on tabular data, 2019. doi:https://doi.org/10.48550/arXiv.1911.03274.

S.Y. Khamaiseh, D. Bagagem, A. Al-Alaj, M. Mancino, H. W. Alomari, Adversarial deep learning:
A survey on adversarial attacks and defense mechanisms on image classification, IEEE Access 10
(2022) 102266-102291. doi:10.1109/ACCESS.2022.3208131.

T. Zhiyi, C. Lei, L. Jie, Y. Shui, A comprehensive survey on poisoning attacks and countermeasures
in machine learning, ACM Computing Surveys 55 (2022) 1-35. d0i:10.1145/3551636.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards deep learning models resistant
to adversarial attacks, in: ICLR 2018, 2018, pp. 1-10. doi:https://doi.org/10.48550/arXiv.
1706.06083.

S.-M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, DeepFool: A simple and accurate method to fool
deep neural networks, in: CVPR 2016, IEEE, 2016, pp. 2574-2582. d0i:10.1109/CVPR.2016. 282.
P. Chen, H. Zhang, Y. Sharma, J. Yi, C. Hsieh, Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute models, in: AISec 2017, 2017, p. 15-26.
doi:10.1145/3128572.31404438.

http://dx.doi.org/10.1145/3473039
http://dx.doi.org/10.3390/FI16050168
http://dx.doi.org/10.3390/FI16050168
http://dx.doi.org/10.1016/j.cose.2023.103134
http://dx.doi.org/10.1016/j.cose.2023.103134
http://dx.doi.org/https://doi.org/10.1016/j.cose.2024.104264
http://dx.doi.org/https://doi.org/10.1016/j.cose.2024.104264
http://dx.doi.org/https://doi.org/10.48550/arXiv.1312.6199
http://dx.doi.org/https://doi.org/10.48550/arXiv.1312.6199
http://dx.doi.org/10.1007/S10994-023-06470-2
http://dx.doi.org/https://doi.org/10.48550/arXiv.1412.6572
http://dx.doi.org/https://doi.org/10.48550/arXiv.1911.03274
http://dx.doi.org/10.1109/ACCESS.2022.3208131
http://dx.doi.org/10.1145/3551636
http://dx.doi.org/https://doi.org/10.48550/arXiv.1706.06083
http://dx.doi.org/https://doi.org/10.48550/arXiv.1706.06083
http://dx.doi.org/10.1109/CVPR.2016.282
http://dx.doi.org/10.1145/3128572.3140448

[14]

[15]

[24]

[25]

[26]

(28]

[29]

[30]

N. Martins, J. M. Cruz, T. Cruz, P. Henriques Abreu, Adversarial machine learning applied
to intrusion and malware scenarios: A systematic review, IEEE Access 8 (2020) 35403-35419.
do0i:10.1109/ACCESS.2020.2974752.

M. Macas, C. Wu, W. Fuertes, Adversarial examples: A survey of attacks and defenses in deep
learning-enabled cybersecurity systems, Expert Syst. Appl. 238 (2024) 1-33. doi:10.1016/j .
eswa.2023.122223.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, L. Cavallaro, Intriguing properties of adversarial ML
attacks in the problem space, in: SP 2020, IEEE, 2020, pp. 1332-1349. doi:10.1109/SP40000.
2020.00073.

M. Al-Essa, G. Andresini, A. Appice, D. Malerba, An XAl-based adversarial training approach for
cyber-threat detection, in: CyberSciTech 2023, IEEE, 2022, pp. 1-8. doi:10.1109/DASC/PiCom/
CBDCom/Cy55231.2022.9927842.

F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, J. Keshet, Adversarial examples
on discrete sequences for beating whole-binary malware detection, CoRR (2018). doi:https:
//doi.org/10.48550/arXiv.1802.04528.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, C. K. Nicholas, Malware detection by
eating a whole EXE, in: AAAI 2018 Workshops, 2018, pp. 1-8. URL: https://cdn.aaai.org/ocs/ws/
ws0432/16422-75958-1-PB.pdf.

M. Kozék, M. Jurecek, M. Stamp, F. D. Troia, Creating valid adversarial examples of malware, J
Comput Virol Hack Tech (2024) 1-15. doi:10.1007/s11416-024-00516- 2.

L. Demetrio, B. Biggio, G. Lagorio, F. Roli, A. Armando, Functionality-preserving black-box
optimization of adversarial Windows malware, IEEE Trans. Inf. Forensics Secur. 16 (2021) 3469-
3478.d0i:10.1109/TIFS.2021.3082330.

M. Sandor, R. M. Portase, A. Colesa, Ember feature dataset analysis for malware detection, in:
ICCP 2023, 2023, pp- 203-210. d0i:10.1109/ICCP60212.2023.10398693.

O.Barut, T. Zhang, Y. Luo, P. Li, A comprehensive study on efficient and accurate machine learning-
based malicious PE detection, in: CCNC 2023, 2023, pp. 632-635.d0i:10.1109/CCNC51644 .2023.
10060214.

C. Connors, D. Sarkar, Machine learning for detecting malware in pe files, 2022. doi:10. 48550/
arXiv.2212.13988.

L. Yang, A. Ciptadi, I. Laziuk, A. Ahmadzadeh, G. Wang, Bodmas: An open dataset for learning
based temporal analysis of pe malware, in: 2021 IEEE Security and Privacy Workshops (SPW),
IEEE, 2021, pp. 78-84. d0i:10.1109/SPW53761.2021.00020.

T. Bai, J. Luo, J. Zhao, B. Wen, Q. Wang, Recent advances in adversarial training for adversarial
robustness, in: 30th International Joint Conference on Artificial Intelligence, [JCAI 2021, [JCAI.ORG,
2021, pp. 4312-4321. doi:10.24963/ijcai.2021/591.

S. M. Lundberg, S.-1. Lee, A unified approach to interpreting model predictions, in: 31st Interna-
tional Conference on Neural Information Processing Systems, NIPS 2017, NIPS, Curran Associates
Inc., 2017, pp. 4768-4777. d0i:10.5555/3295222.3295230.

H. Bostani,]J. Cortellazzi, D. Arp, F. Pierazzi, V. Moonsamy, L. Cavallaro, On the effectiveness
of adversarial training on malware classifiers, 2024. doi:https://doi.org/10.48550/arXiv.
2412.18218.arXiv:2412.18218.

A. Guerra-Manzanares, Machine learning for android malware detection: Mission accomplished?
a comprehensive review of open challenges and future perspectives, Computers & Security 138
(2024) 103654. doi:https://doi.org/10.1016/j.cose.2023.103654.

S. McFadden, Z. Kan, L. Cavallaro, F. Pierazzi, The impact of active learning on availability data
poisoning for android malware classifiers, in: Proc. of the 2nd Workshop on Recent Advances in
Resilient and Trustworthy MAchine learning-driveN systems (ARTMAN), 2024.

G. Andresini, A. Appice, D. Malerba, Dealing with Class Imbalance in Android Malware Detection
by Cascading Clustering and Classification, Springer International Publishing, Cham, 2020, pp.
173-187. doi:10.1007/978-3-030-36617-9 11.

http://dx.doi.org/10.1109/ACCESS.2020.2974752
http://dx.doi.org/10.1016/j.eswa.2023.122223
http://dx.doi.org/10.1016/j.eswa.2023.122223
http://dx.doi.org/10.1109/SP40000.2020.00073
http://dx.doi.org/10.1109/SP40000.2020.00073
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842
http://dx.doi.org/10.1109/DASC/PiCom/CBDCom/Cy55231.2022.9927842
http://dx.doi.org/https://doi.org/10.48550/arXiv.1802.04528
http://dx.doi.org/https://doi.org/10.48550/arXiv.1802.04528
https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
https://cdn.aaai.org/ocs/ws/ws0432/16422-75958-1-PB.pdf
http://dx.doi.org/10.1007/s11416-024-00516-2
http://dx.doi.org/10.1109/TIFS.2021.3082330
http://dx.doi.org/10.1109/ICCP60212.2023.10398693
http://dx.doi.org/10.1109/CCNC51644.2023.10060214
http://dx.doi.org/10.1109/CCNC51644.2023.10060214
http://dx.doi.org/10.48550/arXiv.2212.13988
http://dx.doi.org/10.48550/arXiv.2212.13988
http://dx.doi.org/10.1109/SPW53761.2021.00020
http://dx.doi.org/10.24963/ijcai.2021/591
http://dx.doi.org/10.5555/3295222.3295230
http://dx.doi.org/https://doi.org/10.48550/arXiv.2412.18218
http://dx.doi.org/https://doi.org/10.48550/arXiv.2412.18218
http://arxiv.org/abs/2412.18218
http://dx.doi.org/https://doi.org/10.1016/j.cose.2023.103654
http://dx.doi.org/10.1007/978-3-030-36617-9_11

Data Directory [9]

Imports [103]
Data Directory [8]
Headers info [11]
Strings info [101]

General File Info [7]

Imports [103]
Data Directory [9]

. — e
Data Directory [8] o ——
* Headers info [11]
Imports [56]

Strings info [101]

R S

Headers info [29] ae General File Info [7] s
Sections info [3] Headers info [29] . LR
Sections info [48] Sections info [48]
Headers info [28] . Headers info [28] cem——— p— o e
~0.8 0.6 0.4 02 04 0.4 -0.2 00 02
SHAP value SHAP value
(a) DNN - malware (b) DNN - FGSM (padding + slack)
Imports [103] * .
Data Directory [9]
Data Directory [8]
Headers info [11] .
Strings info [101] .
General File Info [7]
Headers info [29] .
Imports [56] . —— .
Sections info [3] — e
Sections info [48] s
-1.00 -0.75 -0.50 -0.25 0. 0.25 0.50
SHAP value
(c) DNN - Full DOS
Headers info [41] oo cam— oo
Headers info [1] e s mee «
Imports [103]
Data Directory [9]
Data Directory [8]
Headers info [11]
Strings info [101]
Headers info [9] -
General File Info [7]
Headers info [29]
4 -2 0 2 4
SHAP value
(d) DNN - Extend
Headers info [41] * —— s s e
Headers info [1] ¢+ ¢ ¢ ssmmmmmmmes o
Imports [103]
Data Directory [9]
Data Directory [8]
Headers info [11]
Strings info [101]
General File Info [7]
Headers info [29]
Sections info [3]
4 2 0 2 4
SHAP value
(e) DNN - Shift
Imports [103]
Data Directory [9]
Strings info [101]
Data Directory [8]
Headers info [11]
Sections info [87]
Headers info [9] oe— e
Sections info [3]
Sections info [48]
Sections info [101] M
—0.4 0.2 0.0 02 04 056
SHAP value

Figure 2: Top-10 LIEF-extracted features of DNN according to Shapley values measured for real and adversarial

Windows PE malware

(f) DNN - GAMMA

Headers info [11]
Data Directory [9]
Data Directory [8]
Sections info [3]
General File Info [7]
Strings info [101]
Headers info [29]

Imports [103]
Headers info [11]
Data Directory [9]

Data Directory [8]
Sections info [3]
General File Info [7]
Headers info [0]
Headers info [29]
Strings info [101]
Imports [314]

Imports [103]
Headers info [0]
Imports [752]
0.2 0.0
SHAP value

(a) DNN ™ - malware

Headers info [11]
Data Directory [9]
Data Directory [8]
Sections info [3]
Imports [103] ——
General File Info [7]

Headers info [29]

|
Fod f##;

—

Data Directory [1] o

Strings info [101]

Headers info [0]

-0.2 0.0
SHAP value

(d) DNN™™ - Extend

Figure 3: Top-10 LIEF-extracted features of DNN™ according to Shapley values measured for real and

adversarial Windows PE malware

0.2

Thsaagey

Headers info [11]
Data Directory [9]
Imports [103]

Data Directory [8]
Sections info [3]
General File Info [7]
Strings info [101]
Headers info [29]
Headers info [0]
General File Info [2]

0.2 -0.2

SHA:‘SaIue
(b) DNNfes™
slack)

Headers info [11]
Data Directory [9]
Data Directory [8]
Sections info [3]
Headers info [1]
Imports [103]
Headers info [41] ¢ ¢ @swm= oro cmmmmenm cnmam oo e o
General File Info [7]
Headers info [29]

Headers info [0]

FGSM (padding +

0.2

TH

$5+

PR

4
4

-0.2

0.0
SHAP value

(c) DNN&™ - Full DOS

0.0
SHAP value

(e) DNNf&™ _ Shift

Headers info [11]
Data Directory [9]
Imports [103]
Sections info [3]
Data Directory [8]
Strings info [101]
Headers info [0]
Byte Frequency [32]
Headers info [29]

General File Info [7]

-0.2 0.0
SHAP value

(f) DNN®™ - GAMMA

0.2

	1 Introduction
	2 Background
	3 Adversarial Training method
	4 Evaluation study and discussion
	4.1 Windows PE file repository
	4.2 Experimental set-up
	4.3 Implementation details
	4.4 Results

	5 Conclusion

