
On the Usage of ChatGPT for Integrating CAPEC Attacks
into ADVISE Meta Ontology⋆

Marzieh Kordi1,2,*,†, Francesco Mariotti2,†, Roberto Magrini2,†, Paolo Lollini2,† and
Andrea Bondavalli2,†

1IMT School for Advanced Studies Lucca, Piazza S. Ponziano 6, Lucca, Italy
2University of Florence, Dipartimento di Matematica e Informatica ‘U. Dini’, Viale Morgagni 65, Firenze, Italy

Abstract
In today’s cybersecurity landscape, robust security assessment methodologies are essential for evaluating and
improving systems, networks, applications, and data security. Modeling and simulation play an important role in
this process by providing meaningful representations and analyses of attacks and defense strategies, particularly in
systems where security breaches could have devastating consequences. The ADversary VIew Security Evaluation
(ADVISE) Meta framework offers an ontology-based approach that, starting from a system’s architectural model,
automatically generates detailed security models representing the attack steps that adversaries might take to
achieve their goals.

Manually extending the ADVISE Meta ontology with specific attack patterns is a challenging task that involves
a deep understanding of the ontology, and its semantics. It also requires analyzing the attack paths to identify the
necessary information in the ontology.

To address this challenge we propose a methodology to facilitate the integration of attack patterns into
the ADVISE Meta framework using ChatGPT. We focus on the Common Attack Pattern Enumeration and
Classification (CAPEC) catalog by MITRE, a popular catalog with more than 500 attack patterns describing the
common attributes and approaches used by adversaries to exploit known weaknesses in IT systems. ChatGPT
is used as a support tool to interpret the descriptions of the attacks in the CAPEC catalog and systematically
integrate the interpreted data into the ADVISE Meta ontology to generate the attack steps.

Keywords
LLMs, ChatGPT, Cybersecurity, Security Modeling, CAPEC,

1. Introduction

Cybersecurity evaluation is the process of assessing the current security posture of an information
system by identifying vulnerabilities, potential adversaries, threats, and attacks, along with the conse-
quences and applicable countermeasures [1].

Model-based evaluation relies on a model to derive predicted metrics through calculations or sim-
ulations [2]. These models were primarily used to assess dependability properties such as security,
availability, and reliability [3]. However, in recent years, model-based evaluation has also been applied
to analyze security issues [4]. Graph-based models are commonly employed for modeling attacks and
defenses [5].

Security design and evaluation are particularly challenging during the early stages of system devel-
opment, when only the system’s architecture is known and specific vulnerabilities or threats remain
unclear. Experts often rely on methodologies and tools to help them in this difficult task.

In this paper, we focus on the usage of a model-based security evaluation framework called AD-
VISE Meta[6], which is an ontology framework that automatically generates detailed, discrete-event,
stochastic models from high-level system design primitives. The approach adopted by ADVISE Meta
describes the system using generic build-in blocks and relationships (defined by the ontology), which
bring information on possible attacks in their definition.

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
*Corresponding author.
†
These authors contributed equally.
$ marzieh.kordi@imtlucca.it,marzieh.kordi@unifi.it (M. Kordi); francesco.mariotti@unifi.it (F. Mariotti);
roberto.magrini@edu.unifi.it (R. Magrini); paolo.lollini@unifi.it (P. Lollini); andrea.bondavalli@unifi.it (A. Bondavalli)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:marzieh.kordi@imtlucca.it, marzieh.kordi@unifi.it
mailto:francesco.mariotti@unifi.it
mailto:roberto.magrini@edu.unifi.it
mailto:paolo.lollini@unifi.it
mailto:andrea.bondavalli@unifi.it
https://creativecommons.org/licenses/by/4.0/deed.en

For extending the ontology with a CAPEC attack, the modeler should carefully read the descriptive
sections of the CAPEC entries to retrieve the meaningful information to be inserted into the ontology
manually, and this operation should be repeated for all the required attacks. To address this issue,
we propose a methodology that relies on artificial intelligence (AI) as a means of supporting the
semi-automated integration of CAPEC attacks into the ADVISE Meta ontology.

The paper highlights the versatility of ChatGPT [7], a large language model (LLM), recognized for
its scalability, adaptability, and efficiency [8]. One of the practical applications of ChatGPT includes
identifying security vulnerabilities and generating proof-of-concept demonstrations [9]. It can analyze
code for security weaknesses and provide detailed explanations, helping users understand the issues
and implement exploits that exploit identified vulnerabilities.

The idea of employing ChatGPT to semi-automate the integration of CAPEC attack patterns into
the ADVISE Meta ontology stemmed from an investigation of other AI chat systems like Microsoft
Copilot [10] and Google Gemini [11]. These alternatives were found to be less effective in terms of
answer formatting and accuracy, as well as no advantage in handling longer input lengths compared to
ChatGPT.

In this study, GPT-3.5 was chosen for its free availability and ease of access, making it a practical
option for most users. Another option, GPT-2 [12], was open-source and free but required manual setup
and lacks the power of GPT-3.5. Although GPT-4 is currently the latest and most powerful version, it
was not freely available at the time we worked on this methodology, which limited its accessibility.

The idea is to ask ChatGPT to interpret the CAPEC attack patterns according to some information
that is provided as input [13], which includes the XML file representation of the CAPEC attacks [14], of
the ADVISE Meta ontology, and of their mapping rules as defined in [15].

In our approach, we leverage AI as a supporting tool to interpret the textual descriptions found
in CAPEC sections and systematically insert the interpreted data into the ADVISE Meta ontology to
generate attack steps. This is achieved by providing the AI with predefined rules, and guiding it through
the process, rather than training the AI model directly.

With this extension, the ADVISE Meta becomes enriched with a wide range of attack patterns that
can be selected by the analyst considering the specific application domain. This flexibility allows the
evaluation of targeted security aspects to be more effective.

The rest of the chapter is organized as follows. In section 2 we briefly overview works that use LLMs
for interpreting cybersecurity catalogs. In section 3 we present the details of the methodology for the
semi-automated integration of CAPEC attacks into the ADVISE Meta ontology, using ChatGPT. In
section 4 we show how the ontology can be modified in case of updates of the CAPEC database entries.
Lastly in section 5 we provide an additional discussion on some specific aspects of the methodology.

2. Related work

In [16] the authors proposed a LLM framework for mapping CVE vulnerabilities [17] to ATT&CK
techniques. During the process, the models also identify possible related CWEs and CAPEC attack
patterns.

The work in [18] evaluated two different usages of ChatGPT: map CVE to CWE and map CVE to
ATT&CK techniques. In the tests performed, ChatGPT accomplished better results in the first activity,
rather than the second.

The authors of [19] considered the problem of classifying a textual description of a tactic according to
the ATT&CK techniques and CAPEC descriptions. They compare the usage of LLMs (like GPT) against
fine-tuned small-scale LLMs. The second group seems to obtain better results.

The work in [20] is a survey that provides an overview of the use of LLMs in cybersecurity. It includes
a section encompassing vulnerabilities and cybersecurity threats, including text-to-text problems, like
mapping CWEs to CAPEC.

In [21] different algorithms are used, such as term frequency-inverse document frequency (TF-IDF),
Universal Sentence Encoder (USE), and Sentence-BERT (SBERT), to identify common links between

CAPEC-ID and CVE-ID. The quality and completeness of the CVE and CAPEC datasets depend on the
provided algorithms.

The authors of [22] provided a proposal to solve Capture The Flag (CTF) challenges that are security-
related puzzles testing participants’ problem-solving skills in cybersecurity scenarios. This study offered
an in-depth assessment of LLMs’ ability to solve real-world CTF challenges, bridging the gap between
human-assisted and fully automated workflows.

The work presented in [23] explored the feasibility of using LLMs like ChatGPT to create attack trees
for specific scenarios. In this study, ChatGPT is asked to generate an attack tree based on a provided
scenario. The process involves presenting the scenarios first, followed by the prompts used to guide
ChatGPT in creating the trees.

In general, these works are focused on specific domains, which makes them difficult to be applied to
different contexts. They mostly depend on their case studies and provided domains, while our proposed
approach can be extended and applied to various domains, and no external tools or coding are required.

3. Methodology for the integration of CAPEC attacks

Figure 1 in Appendix A shows the methodological steps to integrate the CAPEC attack patterns into
the ADVISE Meta ontology grouped in the following macro-steps:

1. Preliminary operations: preparatory operations are performed to filter the relevant data from the
CAPEC attack patterns that will be used in the subsequent steps.

2. Data extraction: the required data are extracted from the CAPEC attack patterns; the values
are assigned according to the mapping between CAPEC, TAL1, and ADVISE Meta elements as
defined in[15]. These data are then provided to ChatGPT as data extraction and interpretation
rules.

3. Creation of the attack steps: the template of attack steps in XML format is created using an attack
step template and the values are extrapolated from the previous macro-step.

4. Assignment of the attack steps to the components of the ontology: the attacks are assigned to the
architectural components available in the ontology.

5. Final insertion: the attack steps are finally added to the XML file of the ADVISE Meta ontology.

The CAPEC attack patterns that were integrated into the ontology all belong to the "Meta" abstraction
level because the ADVISE Meta ontology is characterized by a rather high level of abstraction. Therefore,
the integration of "Standard" attack patterns would limit their use to specific types of attack scenarios
and increase the number of duplicates within the ontology. Attacks with "Meta" abstraction, instead,
are reusable in multiple scenarios and can be employed abstracting from the application domain.

3.1. Step 1: Preliminary Operations

In this section, we will outline the steps required to prepare the data and chats so that they can be used
effectively in the process.

3.1.1. Download of CAPEC Database in XML Format

The CAPEC attack patterns sample is extrapolated from the XML file containing all the attack patterns
present in the CAPEC database [14]. We used the XML file because ADVISE Meta ontology is also
available in XML files, and due to the inability of ChatGPT to directly access the pages of the attacks
(this limitation was also observed for the other tested AIs).

1Threat Agent Library (TAL) [24], developed by Intel, which offers a description of the human agents capable of posing threats
to IT systems.

3.1.2. Filtering of the Attack Patterns

A few filtering operations are performed on the XML file to create a file containing only the CAPEC
attack patterns with "Meta" abstraction and containing only the fields useful for the analysis.

Note that these filtering operations must be carried out manually, due to the size of the file that
currently prevents the use of ChatGPT (at least the free version). In the first step, all the attack patterns
that do not have "Meta" abstraction are removed. Afterward, CAPEC attack patterns that do not contain
enough information to allow the correct construction of the attack steps are eliminated. These attacks
are in "Draft" status, i.e., incomplete and subject to future changes, containing an insufficient amount
of fields for the correct extrapolation of the data (for example, they contain only the Description
section with a very abstract description of the attack). The next step is to eliminate sections of the
CAPEC attack patterns that are not used in the analysis, such as Content_History, Taxonomy_Mappings,
Related_Weaknesses, Related_Attack_Patterns, and Mitigation.

3.2. Step 2: Data Extraction

In this section, we explain how to map and assign values to the fields of the attack steps, as well as
how to extract these values from the resulting XML file after applying the filtering process described in
subsubsection 3.1.2.

From the tests conducted on data extraction and constructing attack steps, we realized that it is
necessary to use separate chats for the different steps in the methodology. This is because the AI’s
accuracy in understanding and following instructions tends to decrease as the chat gets longer. This
issue is especially evident during the data extraction phase. Since the filtered file is too large to be
processed in a single chat, it must be divided into smaller parts and processed sequentially by the AI.
For instance, when the first ten attack patterns are passed, the data is extracted correctly, and the result
is returned in the correct format— a list containing the fields of the attack steps and their corresponding
values. However, if the extraction continues within the same chat after passing new attack patterns, the
result becomes inaccurate, often returning a lengthy description of the attacks instead of the properly
formatted list of fields and values. The only reliable solution we found is to use a new chat for each
group of attack patterns to ensure the accuracy of data extraction.

3.2.1. Mapping of CAPEC, TAL, and ADVISE Meta Elements

To ensure that the attack steps are properly constructed for being used in the ADVISE Meta framework,
we need to identify which CAPEC sections provide the relevant fields for the attack steps. In this
context, the fields for the ADVISE Meta attack steps are defined as follows:

• ID: The identifier for the attack step is taken from the "ID" attribute of the CAPEC attack pattern.
For instance, the attack step corresponding to the Flooding attack pattern will have an ID of 125.

• Name: The name of the attack step is taken from the "Name" attribute of the CAPEC attack
pattern.

• Precondition Expression: This defines the requirements that an adversary must meet to carry
out the attack. In our context, these requirements are expressed in terms of TAL (Threat Agent
Library) attributes.

• Attack Cost: This represents the cost that the adversary will have to pay to execute the attack
step. We use the same value as the TAL Resources attribute.

• Outcome Probability (Success or Failure): The probability that the adversary will successfully (or
not) complete the attack step. The "Likelihood of Attack" section of the CAPEC attack pattern is
used.

• Effect: This represents the outcome, in terms of ADVISE elements (e.g., Access), that the adversary
will achieve after attempting an attack step, whether successful or not. We use the "ID" attribute
of the CAPEC attack pattern to create the name of the affected element by appending it to the
string "ACCESS_". For instance, the outcome of the Flooding attack will be labeled "ACCESS_125".

3.2.2. Data Extraction Process

The first step is to guide ChatGPT to understand the information from the various sections of CAPEC.
This involves instructing ChatGPT to extract relevant data from the attack patterns and correctly
assign it to specific fields related to an attack step. The main goal of the initial prompt is to define
and explain these fields, as well as the values that the ChatGPT will assign, based on the extracted
text. The definitions of TAL attributes and their descriptions are come from the official documentation
of TAL [24]. Meanwhile, the fields for the attack steps are described and structured as explained in
subsubsection 3.2.1.

In the case in which the format of ChatGPT response is correct, the next step is to provide the AI
with a group of attack patterns from which it can extract the relevant data. The attack patterns are
passed to ChatGPT in the filtered XML format described in subsubsection 3.1.2.

The number of attack patterns that can be passed to ChatGPT depends on its length and complexity,
but a general rule, empirically derived from the tests carried out, is to pass a maximum of ten attack
patterns per chat. It is possible to check that the input length is manageable using ChatGPT, using
a tokenizer made available by OpenAI [25]. The site calculates the number of tokens that a text will
request, so it will be possible to check that this text is manageable by the AI without running the risk of
compromising the results of the chat.

Once the AI has returned a result, we have to check that this is correct and well-formatted. The
result shall be returned in the shape of a list where the fields of the various attacks and their values
are enumerated. If this does not happen, we will have to instruct the AI with the correct formatting
without the need to reprocess the data in a new chat.

In the tests carried out, it was observed that the chat might assign the same values to the fields of
consecutive different attacks. When this happens, it can be assumed that the data extraction is incorrect
and therefore a new chat will have to be used and the extraction will have to be executed again. The
correct format of the answers, as mentioned above, is a list. The formatting details may vary slightly
between different chats, but this does not affect the accuracy of the data assignment in the next step.
Table 1 in Appendix A shows the data extraction steps taken from our experiment considering Flooding
attack.

3.3. Step 3: Creation of Attack Steps

In this section, we explain how to create an attack step template in XML format and how to use it to
generate the attack steps that will be incorporated into the ontology.

3.3.1. Attack step template

As a first step, we create an attack step template so that, using placeholders, ChatGPT can populate it
with the data obtained from the data extraction chat.

The XML skeleton of the attack step template can be obtained by creating an empty attack step using
the ADVISE Meta framework and then retrieving it from the ontology’s XML file.

Concerning the fields that constitute the attack step template in XML format, we use the following
placeholders:

• [name] for the name field.
• [id] for the id field.
• return ([preconditions]); for the preconditionExpression field.
• return [cost]; for the costExpression.
• the value 0 is used for the timingDistribution. This is because it is not possible to extract the

actual duration of an attack from the descriptive fields of an attack pattern. As a result, a default
value has been assigned, serving as a placeholder that the user will need to modify.

• [successChance] for the probabilityExpression of the "Success" Outcome.
• [effect] for the effectsExpression of the "Success" Outcome.
• [failureChance] for the probabilityExpression of the "Failure" Outcome.

3.3.2. Attack Steps’ Construction

The next step is to instruct ChatGPT how to properly replace the placeholders in the attack step
template.

Regarding the expression of preconditions, we noticed that it is challenging to accurately define
preconditions using ChatGPT, especially those that do not rely on TAL attributes, such as preconditions
related to architectural components. Consequently, only prerequisites that utilize TAL attributes will
be included, specifically the attribute levels that an adversary must satisfy to execute the attack. The
definition of any additional preconditions will be left to the end users, who can create them using the
ADVISE Meta framework.

Similarly, to define the effects of an attack in the event of success, an element named "ACCESS_[CAPEC
attack id]" is created, but remains empty, as information available on CAPEC is insufficient to determine
the actual effect of the attack. The end user can then specify the effect that best fits the targeted scenario.
Once the AI response has been obtained, the construction of the attack steps can begin.

Table 2 in Appendix A shows the creation of Flooding attack step taken from our experiment.

3.4. Step 4: Assigning the Attack Steps to the Architectural Components

In this section, we demonstrate how to assign the generated CAPEC attack steps to the architectural
system components available in the base ontology of the ADVISE Meta framework. This process is
essential for enabling the framework to generate the attack steps in the Attack Execution Graph (AEG).
Once the System Instance Diagram (SID) has been established, the transformation engine refers to
the attack steps listed in the Dependants field of the component to incorporate them into the Attack
Execution Graph (AEG).

The architectural components used for this purpose are those available in the base ontology of
ADVISE Meta, including Component, Relationship, Attribute, Access, Skill, Knowledge, System State
Variable, Attack Step, and Adversary.

Note that this operation is intended to provide an initial assignment proposal. End users have the
flexibility to reassign the attack steps to different components according to their specific needs.

3.4.1. Representation Inside the XML Ontology File

First, we need to understand how the Dependants field is represented in the XML file of the ADVISE
Meta ontology. Analyzing the exported ontology file reveals that the Dependants attribute is represented
by a field in the component tag called dependentElements. This field will contain labels that represent
the elements (e.g., attack steps) associated with the component, as specified in the Dependants field.
These labels follow the format "//@classes.[Appearance No.]", where "//@" serves as the label prefix,
"classes" indicates the type of tag involved, and "[Appearance No.]" denotes the occurrence of the tag.
For example, "//@classes.150" refers to the 151st "classes" tag in the ontology, since tag occurrences are
counted starting from 0."

Therefore, to assign attack steps to components, we assign a label to each attack step, which will
then be inserted into the dependentElements attribute of the corresponding component. During the
final insertion of the attack steps into the base ontology, it is crucial to pay special attention to the
order in which the attack steps are inserted into the base ontology, as established by the creation of
these labels. If this order is not followed, it may lead to assignment errors or issues during the ontology
import process.

3.4.2. Mapping Between Attack Steps and Components

We use ChatGPT to assign a component and a label to each created attack step. So, we use two separate
prompts: in the first prompt, the various architectural components and their definitions are provided to
ChatGPT; in the second prompt, ChatGPT is instructed on how to create the labels and will perform

the assignment using the attack steps passed. Like in previous steps, we need to use multiple chats, as
the results may lose their clarity and meaning after several assignments.

The AI’s response should be formatted as a list, where the components and their descriptions are
present. After this, we assign the attacks to the architectural components and create the labels, as can
be seen in Table 3 in Appendix A.

In the ontology used, 173 classes are already present, including components, access, relationships,
and attack steps. To ensure that the ontology works correctly, we need to add each new element to the
ontology in sequence. Therefore, the counter will start from the 172nd instance (since the count starts
from 0), and it is necessary that, for each subsequent chat, the start of the counter is changed to the
position after the last one assigned in the previous chat.

The ideal response from ChatGPT includes a list consisting of the attack name, the name of the
assigned component, and the assigned label. This format simplifies the aggregation of assignments for
easy transfer to the assignment chat.

Once the assignments are obtained, they can be manually inserted into the ontology XML file, e.g.,
by adding the labels to the dependentElements attribute of the relevant components.

3.5. Step 5: Final Insertion

In summary, integrating the attack steps into the ontology involves manually inserting (copying and
pasting) the attack steps derived from the ChatGPT discussions (subsubsection 3.3.2) into the ontology’s
XML file. Once the attack steps are added, the XML file is opened within the ADVISE Meta framework for
further processing. This approach is performed manually because the AI currently lacks the capability
to directly read or write to the XML file in the required format.

Particular attention must be paid to the position in which the attacks are inserted inside the XML file
of the ontology. Each insertion must respect the position criterion used in the part of the assignment
of attack steps to the components (subsubsection 3.4.2). If the order is not respected, there will be
assignment errors, i.e., attacks linked to the wrong components, or errors during the import of the
ontology, i.e., the ontology will not be imported). Additional insertions must always be made at the end
of the file.

4. Updating the Ontology

Many attack patterns in the CAPEC database are not yet fully studied or implemented, making them
subject to future changes. To distinguish between completed and updatable attack patterns, CAPEC
employs an attribute called "Status". If an attack has been thoroughly studied, it is assigned the status
"Stable"; if not, it is labeled as "Draft". For instance, attacks that are removed during filtering due to
insufficient information are classified as "Draft" and, therefore, may undergo future revisions. This
indicates that the created ontology could become outdated, highlighting the need for a systematic
approach to keep it up-to-date.

4.1. Check for updates

First of all, it is necessary to understand whether there has been any update to the list of CAPEC attacks.
To do this, check the "News & Events" page of the CAPEC website, where it is possible to find the news
of possible updates. Otherwise, it is possible to check the current version of the list by accessing the
"Latest Version" page and checking that the version shown on the top left is different from the used one.

Once we have understood that there has been an update of the list, to identify which attacks have
been updated, or added, we have to access the "Report" section, which is located on the "CAPEC List"
page, and select the "Content Difference Report" option. Using the summary, we can easily see if there
are any new attack patterns and which attacks have been updated.

4.2. Perform the update

Once the attacks that need to be updated have been identified, we can proceed with the actual update
phase.

To perform the update or integrate additional attacks, the operations described in section 3 will be
followed. However, unlike previous steps, we can use a single chat for both data extraction (subsec-
tion 3.2) and the creation of attack steps (subsection 3.3), since the number of added or modified attack
patterns will not be large.

If the updates concern those attacks that are already present in the ontology, then it will be enough
to replace the attack step with its updated version without any further operations. On the other hand,
if the attack step is a new attack to be added, the assignment of the attack step to the architectural
components (subsection 3.4) must also be carried out. Once the label has been obtained, we just have to
add the attacks at the end of the ontology and insert the label into the assigned component.

5. Discussion

In this section, we discuss some aspects of the methodology that require further clarification.

5.1. Usage of AI

In the proposed approach we use ChatGPT AI as a support tool for the interpretation of the textual
sections of the CAPEC attack patterns and, afterward, to insert the attack steps into the ADVISE Meta
ontology, properly filling the XML file with the interpreted information. Hence, we directly provide
ChatGPT with the rules for the interpretation of the CAPEC sections, which are based on the mapping
in subsubsection 3.2.1.

An alternative approach can be to let the LLM learn the rules for interpreting the CAPEC attacks and
for insertion of the attacks in the ontology. In this case, we would need a sufficiently large amount of
attack pattern samples to train the AI. Moreover, GPT-3.5 (and GPT-4) is not open source, so we would
need to use GPT-2 which is less powerful.

However, this approach still relies on some manual effort to manage the inputs/outputs of the various
chats, but one can instead rely on scripts (e.g., Python) to interact with the AI.

5.2. Validation of the results

One critical and significant aspect is the validation of the results provided by AI. We mainly use
ChatGPT to interpret the content of CAPEC sections and TAL attributes. Performing this activity by
humans would be very subjective, possibly resulting in different interpretations. Hence, to validate
the results, we can evaluate if the given interpretation by the AI is equal to the interpretation that an
expert reasonably performs. For example, suppose that the AI reports a prerequisite for the attack as an
"Internal" InsiderAccess but the CAPEC attack pattern clearly states that the attack can be started from
the outside. In this case, the AI has wrongly interpreted the attack pattern.

Moreover, during the description of the methodology, we have already discussed other cases where it
is more easily noticeable that the AI incorrectly interprets the CAPEC sections, e.g., when ChatGPT
returns the same interpretation to a set of attack patterns. This is the reason why we use separate chats
as explained in subsection 3.2.

Automatic validation of this approach is not feasible, as it remains inherently subjective and depending
on the individual conducting the validation. The results can vary significantly depending on the
experience and judgment of the person performing the task, making it difficult to ensure consistent and
objective outcomes. To assess the effectiveness of this approach, we are planning to define and execute
an experimental campaign aimed at evaluating the effort required to manually integrate a new attack
into the ontology compared to using ChatGPT for estimating the accuracy of the provided results.

In this experiment, we will first manually integrate a new attack, documenting the time and effort
involved. Then, we will use ChatGPT to generate the integration and assess the quality of the output. The
generated ontology will be reviewed, and any necessary adjustments will be made. This comparison will
help quantify the time savings, accuracy, and any additional manual effort required to refine the ChatGPT-
generated output, providing insight into the real-world applicability and potential improvements of
this approach.

5.3. Using other attack databases

Following the approach presented in this article, the ontology of ADVISE Meta was extended by
integrating the attacks contained in the CAPEC database. However, one might want to use a different
database to obtain descriptions of various attacks, e.g., the MITRE ATT&CK [26]. In this case, it would
be necessary to make a few changes in some steps of methodology.

The first step is to understand how attacks are represented in the database. Next, the filtering process
must be adapted to align with the attack data format. Following this, the prompt should be adjusted to
specify the relevant fields from which the attack information will be extracted. Once these adjustments
are made, the remaining steps can proceed according to the procedures described in the methodology.

6. Conclusions

The use of large language models (LLMs), such as ChatGPT, presents significant opportunities to
improve cybersecurity assessment methodologies. LLMs can efficiently generate diverse attack patterns,
which helps identify potential threats and vulnerabilities. This capability can complement traditional
security analysis techniques to provide broader coverage and reduce the time required to develop
comprehensive attack scenarios. In this paper, we demonstrate how our approach can extend to more
complex models, larger attack scenarios, and broader cybersecurity assessments without requiring
excessive manual intervention.

While the application of ChatGPT significantly accelerates the process of creating and integrating
attack patterns, further enhancement and evaluation are necessary to fully automate these methods and
ensure their reliability in practice. Continued research and development in this area will be crucial in
refining the integration of AI-driven methodologies into cybersecurity frameworks, ultimately leading
to more robust and adaptive security assessments.

Acknowledgments

This work was partially supported by the project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union—NextGenerationEU, and by the European
Union under NextGenerationEU PRIN 2022 (Prot. n. 202297YF75).

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] R. Leszczyna, Review of cybersecurity assessment methods: Applicability perspective, Com-
puters & Security 108 (2021) 102376. URL: https://www.sciencedirect.com/science/article/pii/
S0167404821002005. doi:https://doi.org/10.1016/j.cose.2021.102376.

[2] D. Kieras, Model-Based Evaluation, CRC Press, Taylor & Francis, 2012, p. 1299.

https://www.sciencedirect.com/science/article/pii/S0167404821002005
https://www.sciencedirect.com/science/article/pii/S0167404821002005
http://dx.doi.org/https://doi.org/10.1016/j.cose.2021.102376

[3] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and taxonomy of dependable
and secure computing, IEEE Transactions on Dependable and Secure Computing 1 (2004) 11–33.
doi:10.1109/TDSC.2004.2.

[4] D. Nicol, W. Sanders, K. Trivedi, Model-based evaluation: from dependability to security, IEEE
Transactions on Dependable and Secure Computing 1 (2004) 48–65. doi:10.1109/TDSC.2004.11.

[5] B. Kordy, L. Piètre-Cambacédès, P. Schweitzer, Dag-based attack and defense modeling: Don’t
miss the forest for the attack trees, Computer Science Review 13-14 (2014) 1–38. doi:https:
//doi.org/10.1016/j.cosrev.2014.07.001.

[6] K. Keefe, B. Feddersen, M. Rausch, R. Wright, W. Sanders, An ontology framework for gen-
erating discrete-event stochastic models, in: A. Remke, P. Ballarini, B. Barbot, R. Bakhshi,
H. Castel-Taleb (Eds.), Computer Performance Engineering - 15th European Workshop, EPEW
2018, Proceedings, Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), Springer, Germany, 2018, pp. 173–189.
doi:10.1007/978-3-030-02227-3_12.

[7] OpenAI, ChatGPT, https://chat.openai.com, 2024.
[8] D. Kalla, N. Smith, Study and analysis of chat gpt and its impact on different fields of study,

International Journal of Innovative Science and Research Technology 8 (2023) 827–833.
[9] S. G. Prasad, V. C. Sharmila, M. Badrinarayanan, Role of artificial intelligence based chat generative

pre-trained transformer (chatgpt) in cyber security, in: 2023 2nd International Conference on
Applied Artificial Intelligence and Computing (ICAAIC), IEEE, 2023, pp. 107–114.

[10] Microsoft, Copilot, https://copilot.microsoft.com, 2024.
[11] Google, Gemini, https://gemini.google.com, 2024.
[12] OpenAI, GPT-2, https://github.com/openai/gpt-2, 2024.
[13] M. Kordi, F. Mariotti, P. Lollini, A. Bondavalli, Security Modeling Challenges and Research

Directions Around the ADVISE Meta Framework, in: A. Ceccarelli, M. Trapp, A. Bondavalli,
E. Schoitsch, B. Gallina, F. Bitsch (Eds.), Computer Safety, Reliability, and Security. SAFECOMP
2024 Workshops, Springer Nature Switzerland, Cham, 2024, pp. 275–283.

[14] MITRE, Common Attack Pattern Enumeration and Classification Downloads, https://capec.mitre.
org/data/downloads.html, 2024.

[15] F. Mariotti, L. Manetti, P. Lollini, Modeling Moving Target Defense strategies and attacks with SAN
and ADVISE, in: Proceedings - 2023 IEEE 34th International Symposium on Software Reliability
Engineering Workshop, ISSREW 2023, 2023, pp. 160–161. doi:10.1109/ISSREW60843.2023.
00066.

[16] C. Zhang, L. Wang, D. Fan, J. Zhu, T. Zhou, L. Zeng, Z. Li, Vtt-llm: Advancing vulnerability-
to-tactic-and-technique mapping through fine-tuning of large language model, Mathematics 12
(2024). doi:10.3390/math12091286.

[17] MITRE, Common Vulnerabilities and Exposures, https://www.cve.org/, 2024.
[18] X. Liu, Y. Tan, Z. Xiao, J. Zhuge, R. Zhou, Not the end of story: An evaluation of ChatGPT-driven

vulnerability description mappings, in: A. Rogers, J. Boyd-Graber, N. Okazaki (Eds.), Findings of the
Association for Computational Linguistics: ACL 2023, Association for Computational Linguistics,
Toronto, Canada, 2023, pp. 3724–3731. doi:10.18653/v1/2023.findings-acl.229.

[19] R. Fayyazi, S. J. Yang, On the uses of large language models to interpret ambiguous cyberattack
descriptions, 2023. URL: https://arxiv.org/abs/2306.14062. arXiv:2306.14062.

[20] S. M. Taghavi, F. Feyzi, Using large language models to better detect and handle software vulnera-
bilities and cyber security threats, 2024. URL: https://doi.org/10.21203/rs.3.rs-4387414/v1.

[21] K. Kanakogi, H. Washizaki, Y. Fukazawa, S. Ogata, T. Okubo, T. Kato, H. Kanuka, A. Hazeyama,
N. Yoshioka, Comparative evaluation of nlp-based approaches for linking capec attack patterns
from cve vulnerability information, Applied Sciences 12 (2022) 3400.

[22] M. Shao, B. Chen, S. Jancheska, B. Dolan-Gavitt, S. Garg, R. Karri, M. Shafique, An empirical
evaluation of llms for solving offensive security challenges, arXiv preprint arXiv:2402.11814 (2024).

[23] O. Gadyatskaya, D. Papuc, Chatgpt knows your attacks: Synthesizing attack trees using llms, in:
International Conference on Data Science and Artificial Intelligence, Springer, 2023, pp. 245–260.

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.11
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2014.07.001
http://dx.doi.org/https://doi.org/10.1016/j.cosrev.2014.07.001
http://dx.doi.org/10.1007/978-3-030-02227-3_12
https://chat.openai.com
https://copilot.microsoft.com
https://gemini.google.com
https://github.com/openai/gpt-2
https://capec.mitre.org/data/downloads.html
https://capec.mitre.org/data/downloads.html
http://dx.doi.org/10.1109/ISSREW60843.2023.00066
http://dx.doi.org/10.1109/ISSREW60843.2023.00066
http://dx.doi.org/10.3390/math12091286
https://www.cve.org/
http://dx.doi.org/10.18653/v1/2023.findings-acl.229
https://arxiv.org/abs/2306.14062
http://arxiv.org/abs/2306.14062
https://doi.org/10.21203/rs.3.rs-4387414/v1

[24] T. Casey, Threat Agent Library helps identify information security risks, Intel White Paper (2007).
doi:10.13140/RG.2.2.30094.46406.

[25] OpenAI, GPT Tokenizer, https://platform.openai.com/tokenizer, 2024.
[26] MITRE, MITRE ATT&CK, https://attack.mitre.org/, 2024.

A. Appendix

Data Extraction

Data Extraction Chat #1

Data Extraction Chat #2

Data Extraction Chat #3

Data Extraction Chat #4

...

Non-filtered
CAPEC Attacks

CAPEC Attacks
filtering

Creation of
Attack Step
Template

Download
CAPEC Attacks
in XML format

Filtered
CAPEC Attacks

Creation of Attack Steps

Chat for Creation of
Attack Steps #1

Chat for Creation of
Attack Steps #2

...

XML Attack Step
Template

Step 1: Preliminary Operations

Aggregation of
Extracted Data

Step 2: Data Extraction

List of Attack
Steps fields
assignment

TAL attributes
definition

ADVISE Meta
Attack Steps

fields definition

TAL attributes
values definition

Extraction Rules:
Mapping of CAPEC,

TAL and ADVISE Meta
elements

Step 3: Creation of the Attack Steps

XML file containing
the created Attack

Steps

Aggregation
of created

Attack Steps

Step 5: Final Insertion

Insertion in
the Ontology

XML file

Extended
Ontology

Initial Ontology
XML file

Legend

Manually-performed
operation

Input or
intermediate results

AI-performed
operation

Final result

Step 4: Assigning the Attack Steps to
the Architectural Components

Description of
the architectural

components

Assigning the Attack Steps to the
Architectural Components and

Creation of the Labels

Assignment Chat #1

Assignment Chat #2

Assignment Chat #3

Assignment Chat #4

...

Aggregation of
the assignments

List of
assignments

Grouping Chat

Grouped labels

Figure 1: Methodological Steps for the Semi-automated Integration of CAPEC Attacks into ADVISE Meta
Ontology.

http://dx.doi.org/10.13140/RG.2.2.30094.46406
https://platform.openai.com/tokenizer
https://attack.mitre.org/

Input data to ChatGPT Response from ChatGPT

Learn TAL attributes, and their descriptions by ChatGPT

Learn these attributes definitions:

Intent:

This defines whether the agent intends to cause harm. Agents fall into

two categories depending on their intent:

Hostile: The agent starts with the intent to harm or inappropriately

use Intel assets [….]

Non-Hostile: The agent is friendly and intends to protect Intel

assets,[….]

 […..]

Then assign the following values to the attributes of the definitions:,

For Intent, if "Hostile" then 1 else if "Non-Hostile" then 0. The value

of this attribute is deduced using the Description and Extended

Description fields' text.

[…..]

Here is the assignment of values to the attributes of the definitions

according to the rules you provided:

1. Intent

Hostile: 1

Non-Hostile: 0

Source fields: Description, Extended Description

[……]

Ask ChatGPT to interpret the XML file of CAPEC attack

Now, using the attributes and the values that we defined, describe

the following attack patterns:,

<Attack_Pattern xmlns:capec="http://capec.mitre.org/capec-3"

ID="125" Name="Flooding" Abstraction="Meta" Status="Stable">

 <Description>An adversary consumes the resources of a target

by rapidly engaging in a large number of interactions with the target

[…..]. The greater this number, the more likely an attack is to

succeed against a given target.</Description>

 <.….>

Here is the detailed assignment of values to the attributes for the attack

pattern "Flooding" with ID "125":

Intent

Value: 1 (Hostile)

Source: Description indicates malicious intent to exhaust resources and

prevent legitimate access.

[……]

Table 1: Step-by-step process for data extraction

Input data to ChatGPT Response from ChatGPT

Sample of attack steps template with Placeholders

<classes xsi:type="advisem:OAttackStepClass" id="[id]" name="[name]"

preconditionExpression=" return([preconditions]);" costExpression="return

[cost];">

<preconditionElement label="theLimits">

<pathRoot xsi:type="ontology:PCGlobal" elementClass="//@classes.125"/>

<.….>

Got it! Let me replace the placeholders based on the instructions you've

given. Here's how the template will look with the provided data:

<name>Flooding</name> <preconditions>

(${theResources}>=600)&&${theLimits}>=750)

&&(${theSkills}>=250)&&

(${Intent}>=1)&&(${theVisibility}>=1000)

&&(${theAccess}>=0) </preconditions>

 [……]

Replacement of placeholders with attack steps data by ChatGPT

Now, when I'll pass you the extracted data, I want you to replace the placeholders in

the template with the data passed using the following instructions:,

[name] with Name.

[preconditions] with the string

"(${theResources}>=Resource)&&${theLimits}>=Limits)

&&(${theSkills}>=Skill Required)&&

(${Intent}>=theIntent)&&(${theVisibility}>=Visibility)

&&(${theAccess}>=Access)",

[…]

Here is the data:,

-Flooding

Name: “Flooding”

Intent: 1

Access: 0

Limits: 750

Resource: 600

Skill Level: 250

Visibility: 1000

[…]

Table 2: Creation of attack Steps

Input data to ChatGPT Response from ChatGPT

Learn the following definitions of the component classes for an ADVISE

Meta ontology:

-Application: software designed for the end user that performs a function in

the system.

-Data: information in digital format that is created, stored or pro-cessed by

the system. Examples are substation equipment settings, patient records, and

bank account information.

[Continue for the rest of the architectural components….]

Here's the list of attack patterns along with the components which they are

assigned in the format you requested:

1. Interface Manipulation

 Assigned to: 'Software'

 String format: '//@classes.172'

2. Authentication Abuse

 Assigned to: 'Software'

 String format: '//@classes.173'

3. Authentication Bypass

 Assigned to: 'Software'

 String format: '//@classes.174'

[….]

Now assign the following attack patterns to the components. Please return a

list with the name of the attack pattern, the component to which it is

assigned and a string formatted like "//@classes.[i]", where [i] is a counter

that starts at 172 and increments by 1 for every attack pattern:

[attack patterns in XML format]

Table 3: Assigning the Attack Steps to the Architectural Components

	1 Introduction
	2 Related work
	3 Methodology for the integration of CAPEC attacks
	3.1 Step 1: Preliminary Operations
	3.1.1 Download of CAPEC Database in XML Format
	3.1.2 Filtering of the Attack Patterns

	3.2 Step 2: Data Extraction
	3.2.1 Mapping of CAPEC, TAL, and ADVISE Meta Elements
	3.2.2 Data Extraction Process

	3.3 Step 3: Creation of Attack Steps
	3.3.1 Attack step template
	3.3.2 Attack Steps' Construction

	3.4 Step 4: Assigning the Attack Steps to the Architectural Components
	3.4.1 Representation Inside the XML Ontology File
	3.4.2 Mapping Between Attack Steps and Components

	3.5 Step 5: Final Insertion

	4 Updating the Ontology
	4.1 Check for updates
	4.2 Perform the update

	5 Discussion
	5.1 Usage of AI
	5.2 Validation of the results
	5.3 Using other attack databases

	6 Conclusions
	A Appendix

