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Abstract
The increasing number of cybersecurity regulations highlights the growing importance of scrutinizing firmware
in smart devices to ensure compliance and security. However, such scrutiny often involves reverse engineer-
ing—a process that is time-consuming, costly, and reliant on highly specialized skills that are in short supply.
Consequently, there is a rising demand from the industrial sector for innovative tools and solutions to streamline
and accelerate firmware analysis, making it more efficient and accessible. In this paper, we introduce BinSAFE, an
integrated system for comparing binaries within a firmware against a knowledge base. BinSAFE supports adding
new firmware, extracting its binaries, and matching them against the knowledge base for comparison. The core
of BinSAFE is a graph-matching algorithm that leverages embedding-based solutions to identify similar functions
across binaries and compute binary-level similarity. This consists of a greedy strategy to match the call graphs of
two binaries, considering both library and user-defined functions. We evaluated BinSAFE on a multi-architecture
dataset comprising binaries compiled with different compilers and optimization levels. The results demonstrate
that BinSAFE outperforms a simple baseline, highlighting that combining intra-procedural information from
functions with inter-procedural one from call graphs enhances the understanding of binaries’ semantics.
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1. Introduction

Reverse engineering binaries is a critical activity essential for identifying vulnerable and malicious
functions when the source code is unavailable. However, this process demands a significant amount of
human effort.

Recent research has focused on aiding reverse engineers by developing tools based on Deep Neural
Networks (DNNs) designed to reduce the effort required to analyze unknown binaries. Many of these
works make extensive use of DNNs for various analysis tasks (e.g., [1, 2, 3, 4, 5, 6, 7]).

Function Similarity. Among the numerous challenges in binary analysis, Function Similarity (FS)
Detection [8, 9, 10, 11] is of particular importance to the security community. FS involves determining
whether two binary code functions originate from the same source code. This is crucial for security-
sensitive scenarios, such as identifying known malware functionalities, detecting vulnerabilities in
firmware, and uncovering cases of copyright infringement in compiled binaries [1, 5, 12]. However,
this task is non-trivial due to factors like the variety of compiler toolchains, the impact of different
optimization levels, and the obfuscation techniques that can drastically change a function’s appearance
while preserving its original semantics.
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Existing solutions for FS can be broadly divided into two categories: those that employ DNNs [1, 3, 4,
5, 6, 13, 14] and those that do not [10, 15, 16]. Traditional (non-DNN) approaches often rely on symbolic
execution or dynamic analysis to capture the semantics of the input. While these methods are generally
robust against code obfuscation and compiler optimization, they usually demand considerable analysis
effort and long execution times. In contrast, DNN-based solutions are typically more computationally
efficient and offer state-of-the-art performance. These approaches leverage embeddings, which are
vectors learned by the DNN through the input function’s semantics. The similarity between two
functions is then computed as the distance between their embeddings in the vector space. This method
offers two key advantages over traditional approaches: first, embeddings can be precomputed and
stored in a compact format within a knowledge base, enabling much faster similarity computations.
Second, unlike hash-based methods, embedding techniques can detect functions with similar semantics
even when their binary code differs.

Binary Code Similarity. Despite these advancements, almost all existing works focus on computing
similarity between individual functions. In practice, it is essential to develop solutions that operate
at the level of entire binaries (e.g. programs or libraries), thus enabling Binary Code Similarity (BCS)
Detection. A Binary Code Similarity Detection algorithm would take as input two entire binaries, e.g.
two ELF files, and give as output a similarity score between 0 and 1.

Such an algorithm would allow an analyst to build a knowledge base of interesting binaries (such as
common libraries or known malicious code) and, when presented with a new firmware image, quickly
identify matches of interest between the binaries it contains and those already known.

BinSAFE System. In this paper, we propose an integrated system named BinSAFE, which enables
the creation of a knowledge base of binaries. New firmware can then be fed into the system, which
automatically extracts the binaries within the firmware and matches them against the knowledge base
using the BCS algorithm.

The core of BinSAFE is a general methodology that extends embedding-based FS solutions to BCS. Our
BinSAFE BCS Algorithm approach achieves this by matching the call graphs of the target binaries using
a greedy strategy that operates in two main phases. First, the system identifies “hotspots” by selecting
pairs of similar functions across the two binaries based on a predetermined similarity threshold. Next,
it attempts to match the neighbors of these hotspots in the binaries’ call graphs, continuing this process
until no more viable pairs remain or all neighbors have been examined.

Throughout this process, special care is given to known library functions, incorporating their rarity
as a weighting factor. While the use of a common libc function (e.g., printf) provides limited insight,
the presence of an extremely uncommon function could strongly suggest a deeper similarity between
the binaries.

In this paper, we propose the following contributions:

• We introduce the architecture of BinSAFE, a system that adapts FS solutions for BCS. BinSAFE
provides all the functionalities required to build a knowledge base of binaries and test new binaries
against it.

• We present the BinSAFE BCS algorithm, a novel approach that calculates a similarity score
between 0 and 1 for two entire binaries, using any embedding-based technique as its building
block.

• We provide an experimental evaluation of BinSAFE on a dataset of 2118 amd64 binaries and 1568
aarch64 binaries, showing that in terms of nDCG it outperforms a naive baseline by 67.56% in
the case of amd64 and 66.03% in the case of aarch64. Our evaluation employs SAFE [5] as the
FS component.



2. The Architecture of BinSAFE

The architecture of BinSAFE is shown in Figure 1. The system consists of a web GUI that allows an
operator to interact with the system, communicating with the back-end via REST APIs. This setup
enables the operator to add new binaries to the knowledge base or submit firmware for analysis.
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Figure 1: The architecture of BinSAFE .

Figure 1 illustrates the execution flow when an analyst submits firmware for analysis. The firmware
is unpacked and analyzed to identify executables, which is performed using binwalk [17]. Once the
binaries are extracted, a binary selector determines which binaries need to be processed by the BinSAFE
BCS Algorithm. For example, some binaries may be immediately recognized using common hashing
techniques. To accommodate this, the system also stores traditional hashes in the knowledge base,
allowing BinSAFE to instantly recognize binaries previously analyzed.

The BinSAFE BCS algorithm processes the binaries to analyze through the following steps: each
binary is disassembled to extract the assembly code of its functions and its call graph. The assembly
functions are then transformed into embedding vectors using the FS system. While our architecture
employs SAFE [5] as the embedding system, alternative techniques can also be integrated.

The call graph and function embeddings together form a representation of the binary, referred to as
binary 𝑏, which is then used by the BinSAFE BCS algorithm. The algorithm retrieves relevant binaries
from the knowledge base for comparison with binary 𝑏. These binaries are stored in the knowledge
base in the same representation format. A detailed discussion of the inner workings of the BinSAFE
BCS Algorithm is provided in the next section.

Finally, the algorithm ranks the relevant binaries in the knowledge base based on their similarity to
binary 𝑏 and returns these results to the operator via the web GUI.

The process of adding a new binary to the knowledge base follows a similar flow up to the computation
of the binary’s representation. This representation is then directly stored in the knowledge base for
future use.

3. BinSAFE BCS Algorithm

This section describes the core component of BinSAFE, the graph-matching algorithm that extends
embedding-based FS solutions to compute similarity at the binary level.



We represent a binary through its call graph, a pair (𝐹 , 𝐸), where 𝐹 is the set of functions in the
binary, and 𝐸 is the set of edges denoting calls between them. The algorithm follows an iterative process
to match similar functions across call graphs of different binaries. Specifically, given two call graphs,
𝑏1 = (𝐹1, 𝐸1) and 𝑏2 = (𝐹2, 𝐸2), the procedure begins by identifying the pair of functions with the
highest similarity score, computed using the FS system. To identify this pair, we generate embeddings
for each 𝑓 ∈ 𝐹1 ∪ 𝐹2 using the FS system and then calculate the similarity between the embeddings of
𝐹1 and 𝐹2. In our case, this boils down to multiplying the vectors to compute the cosine similarity.

During each iteration, the algorithm examines the neighbors of the current hotspot in the corre-
sponding call graphs. Each pair of neighbors from 𝑏1 and 𝑏2 is matched, with the pair showing the
highest similarity becoming the hotspot for the next iteration. The algorithm then recursively examines
and matches the neighbors of the newly matched pairs, extending this process to subsequent neighbors
along the two call graphs. This continues until no more matchable pairs remain. At that point, the
process is repeated for the next iteration considering the new hotspot.

The procedure terminates when no more functions in 𝑏1 and 𝑏2 can be matched or there are no
more hotspot candidates. This process is controlled by a threshold 𝜏 . If the maximum similarity falls
below this threshold, the process stops, even if unmatched functions remain in the two binaries. The
rationale is to avoid matching functions with very low similarity scores. In Appendix B, we discuss the
experimental approach used to determine a viable value of 𝜏 . The similarity between the two binaries
is finally calculated as:

𝑠𝑖𝑚(𝑏1, 𝑏2) = 𝑎𝑣𝑔(𝑠𝑖𝑚𝑠) * 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑏1) + 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑏2)

2
(1)

where: 𝑎𝑣𝑔(𝑠𝑖𝑚𝑠) is the average similarity between the matched functions; 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑏) calculates
the percentage of matched functions across the binary 𝑏.

3.0.1. Incorporate Library Functions in Binary Matching.

The solution described in the previous section does not explicitly account for library functions, i.e.,
functions that are imported and linked at runtime. For dynamic linking to work correctly, the symbols
of such functions cannot be stripped from the binary. Practically speaking, if an ELF file imports libc
to use printf, the ELF file, even after stripping, retains a symbolic call to printf. This allows us to
retrieve the name of each imported function and use this information in our matching algorithm. In
this approach, imported functions are represented as nodes in the call graphs and are matched when
their symbols are identical.

It is widely recognized that common library functions provide limited semantic insight, as they
are generic and reused across many programs. In contrast, rare library functions can offer valu-
able clues about whether binaries implement similar functionalities. To address this, we introduce
a mechanism that prioritizes rare library functions over common ones during the initial phase of
the algorithm. This mechanism scales the similarity score of library functions using two approaches:
Additive Frequency (AF), where the similarity of two library functions with the same name is com-
puted as 𝑠𝑖𝑚 = 1 + (1− 𝛿)2 and Multiplicative Frequency (MF), where the similarity is computed as
𝑠𝑖𝑚 = 1 · (1− 𝛿)2. Here, 𝛿 is a weight assigned to each function based on its popularity. Additional
details on how the 𝛿 factor is determined can be found in Section 4.2.

A detailed description of the algorithm together with the pseudocode can be found in Appendix A.

4. Dataset and Implementation

In this section, we describe the evaluation dataset and explain the process for identifying library
functions of interest, as well as how to assign them weights based on their popularity.



4.1. Dataset

We evaluated our approaches on a dataset of roughly 2800 binaries generated from 16 open-source
C programs and libraries: busybox, coreutils, dnsmasq, dropbear, libboost, libcurl, libgcrypt, liblzma,
libpng, libtiff, libzip, lighttpd, nettle, readline, wolfssl, and zlib. These projects were compiled for amd64
and aarch64 architectures using four compilers (clang 11, clang 13, gcc 8.3, and gcc 10.2) and four
optimization levels (O0, O1, O2, O3).

We use ghidra [18] to disassemble binaries and extract their call graphs. After filtering duplicates
and handling disassembler errors, the dataset includes 2118 amd64 binaries and 1568 aarch64 binaries.
Each amd64 binary has an average of 12 similar binaries (ranging from 1 to 25), while aarch64 binaries
have an average of 12 similar binaries, ranging from 1 to 27.

4.2. Symbols and Frequency of Library Functions

The procedure described in Section 3 involves matching library functions based on their names and
requires a frequency measure for each name to adjust the similarity score. Therefore, it is necessary to
create a list of symbols extracted from libraries referenced by common binaries. To do so, we analyzed
70,961 amd64 POSIX-based binaries, focusing on their import tables. Libraries referenced by more than
3% of the analyzed binaries were considered relevant. Through this process, we identified 29 relevant
libraries and extracted their symbols. For each identified library, we extracted the function names,
resulting in a set of 25,713 functions of interest. We then measured the frequency of each function
considering an additional dataset of 4,168 amd64 POSIX-based binaries. Specifically, for each function
name, we counted whether it was called within an analyzed binary. If a function was called multiple
times within the same binary, its frequency was still counted as one.

5. Evaluation

In our evaluation, we answer the following research questions:

RQ1: What is the impact of including libraries on the overall performance of the matching algorithm?
RQ2: How does the neighbor-based matching strategy affect the overall performance?

In the following, we refer to the basic matching strategy described in Section 3.0.1 as BS-LF. The main
matching strategy based on library names is denoted as BS-LF-A when using the AF scaling strategy
and as BS-LF-M when using the MF scaling strategy. We test these algorithms against two baselines:
BS-UO, which runs the algorithm described in Section 3 exclusively on the user-defined functions
without considering imported libraries (so that we can measure the impact of considering libraries);
BS-AVG where the similarity between two binaries is simply computed as the average similarity of the
pairwise similarities between all functions in their respective call graphs (in this way we measure the
impact of considering topology information).

5.0.1. Setup and Evaluation Metrics.

We test our system in a retrieval scenario. We sample a query binary from the dataset described in
Section 4.1 and compute the similarity between the query and all binaries in the dataset. The results are
ordered by their similarity scores, and we compute the performance metrics on the top-𝐾 results. As
performance metrics, we use standard measures for information retrieval systems: nDCG [19], precision,
and recall.

In our experiments, for each architecture, we randomly sampled 160 binaries from the dataset
described in Section 4.1 to serve as queries (10 for each compiler-optimizer pair) and used the entire set
of binaries as the knowledge base.



5.1. RQ1: Impact of Libraries on Matching Algorithm Performance

Here, we evaluate the impact of library functions on the overall performance of our matching algorithm.
In particular, we compare BS-UO, where library functions are excluded from matching candidates, with
BS-LF, BS-LF-A, and BS-LF-M.

5.1.1. Results on amd64.

Looking at the results in Figure 2(a) and Table 1, including library functions in the matching strategy
produces a noticeable increase in algorithm performance. In particular, when considering the results
in average for the search depth value 𝐾 ∈ {1, 200}, BS-LF demonstrates a noticeable advantage over
BS-UO, as it shows a 1.90% higher nDCG, 2.53% higher precision, and a 2.43% higher recall. These
gaps slightly increase when considering frequency information of library functions, with BS-LF-A
outperforming BS-LF by 0.47% in nDCG, and 0.43% in recall, while achieving comparable precision.
Interestingly, the performance of the matching algorithm varies based on how the similarity of library
functions is scaled. Specifically, using frequency as an additive factor leads to better results than
applying it as a multiplicative factor, with BS-LF-A outperforming BS-LF-M by 0.63% in nDCG, 0.63%
in precision, and 0.57% in recall on average.

1 50 100 150 200
Top K

0.4

0.5

0.6

0.7

0.8

0.9

1.0 nDCG
BS-UO
BS-LF
BS-LF-A
BS-LF-M

1 50 100 150 200
Top K

0.0

0.2

0.4

0.6

0.8

1.0 Precision
BS-UO
BS-LF
BS-LF-A
BS-LF-M

1 50 100 150 200
Top K

0.2

0.4

0.6

0.8

Recall

BS-UO
BS-LF
BS-LF-A
BS-LF-M

1 50 100 150 200
Top K

0.4

0.5

0.6

0.7

0.8

0.9

1.0
BS-UO
BS-LF
BS-LF-A
BS-LF-M

1 50 100 150 200
Top K

0.0

0.2

0.4

0.6

0.8

1.0
BS-UO
BS-LF
BS-LF-A
BS-LF-M

1 50 100 150 200
Top K

0.2

0.4

0.6

0.8

BS-UO
BS-LF
BS-LF-A
BS-LF-M

(a)

(b)

Figure 2: Comparison for architectures amd64 (a) and aarch64 (b) between BS-UO, BS-LF, BS-LF-A, and
BS-LF-M according to the three considered metrics while varying the search depth𝐾 ∈ {1, 200}.

The results in Figure 2(a) and Table 1 reveal an interesting trend. For low search depth values, BS-UO
outperforms all other matching algorithms that include library functions across all evaluated metrics.
Specifically, when considering the @1 results for the three metrics, while BS-UO, BS-LF, and BS-LF-M
perform almost similarly (with BS-UO improving by 0.32% BS-LF-M nDCG), BS-UO demonstrates a
clear advantage over BS-LF-A, as it achieves a 2.67% higher nDCG, a 2.74% higher precision, and 2.78%
higher recall.

This indicates that for low search depth values, considering library functions introduces noise into
the matching process. The previous trend is subverted when increasing the search depth, with BS-LF-A
being the most effective technique, as confirmed by the @10 and @100 results reported in Table 1.



BS-AVG BS-UO BS-LF BS-LF-A BS-LF-M

a
m
d
6
4

nDCG

@1 0.068 0.938 0.938 0.913 0.935
@10 0.080 0.495 0.499 0.503 0.498
@100 0.223 0.636 0.650 0.652 0.647
avg 0.206 0.620 0.632 0.635 0.631

precision

@1 0.069 0.938 0.938 0.913 0.938
@10 0.082 0.403 0.408 0.413 0.407
@100 0.057 0.106 0.109 0.110 0.109
avg 0.062 0.154 0.158 0.158 0.157

recall

@1 0.004 0.072 0.072 0.070 0.072
@10 0.054 0.287 0.289 0.294 0.289
@100 0.383 0.741 0.762 0.764 0.758
avg 0.350 0.682 0.699 0.702 0.698

a
a
r
c
h
6
4

nDCG

@1 0.143 0.975 0.969 0.950 0.975
@10 0.115 0.447 0.469 0.479 0.466
@100 0.230 0.587 0.645 0.657 0.633
avg 0.215 0.570 0.617 0.633 0.610

precision

@1 0.144 0.975 0.969 0.950 0.975
@10 0.111 0.341 0.365 0.374 0.362
@100 0.057 0.104 0.118 0.119 0.115
avg 0.064 0.143 0.156 0.161 0.154

recall

@1 0.009 0.077 0.076 0.074 0.077
@10 0.067 0.237 0.256 0.265 0.254
@100 0.366 0.686 0.787 0.795 0.764
avg 0.334 0.623 0.698 0.716 0.687

Table 1
Comparison between the BS-AVG baseline with BS-UO, BS-LF, BS-LF-A, and BS-LF-M matching algorithms
according to nDCG, precision, and recall metrics, considering 1, 10, and 100 as search depth values.

5.1.2. Results on aarch64.

Figure 2(b) presents the results for the aarch64 architecture. These reflect the performance observed for
amd64, with BS-LF-A consistently outperforming all other approaches across all metrics. Specifically,
for nDCG, it surpasses BS-UO by 9.95%, BS-LF by 2.53%, and BS-LF-M by 3.63%. In terms of precision,
BS-LF-A improves upon BS-UO by 11.18%, BS-LF by 3.11%, and BS-LF-M by 4.35%. Finally, for recall,
BS-LF-A outperforms BS-UO by 12.99%, BS-LF by 2.51%, and BS-LF-M by 4.05%.

The results in Table 1 confirm the trend observed for amd64, with BS-UO outperforming the other
approaches for low search depth values, whereas BS-LF-A becomes the most effective method as the
search depth increases. Interestingly, the performance gap between our approaches widens significantly
when aarch64 binaries are used as queries.

5.2. RQ2: Impact of Graph Topology

In this section, we examine how inter-procedural information derived from call graph topology con-
tributes to identifying similar binaries. Based on the results of the previous section, we focus exclusively
on BS-LF-A and its performance against the BS-AVG baseline.

Results in Table 1 demonstrate that call-graph information is fundamental in determining whether
two binaries are similar. When considering amd64 binaries, BS-LF-A consistently outperforms BS-AVG,
with an average improvement of 67.56% in nDCG, 60.76% in precision, and 50.14% in recall. Moving to
aarch64, we observe similar results, with BS-LF-A improving BS-AVG by 66.03% in nDCG, 60.25% in
precision, and 53.35% in recall.



6. Related Works

Existing works on Binary Code Similarity detection can be divided into traditional and learning-based
solutions.

Traditional BCS detection methods leverage manually crafted features derived from static or dynamic
analysis, combining them using various approaches to compute similarity. Solutions like BinDiff [15]
and Genius [20] use semantic features to represent CFG nodes and apply graph-matching algorithms
to compute similarity. TEDEM [16] measures function similarity by calculating the edit distance
between CFG nodes represented as expression trees. Some methods avoid graph matching; for instance,
Tracelet [21] calculates function similarity through the edit distance between instruction sequences,
while [9] uses a program verifier to assess the similarity between basic block slices (strands) before
lifting the results to functions.

Learning-based approaches harness recent advancements in NLP and Graph Neural Networks to
generate low-dimensional representations (i.e., embeddings) of the input that capture the semantics
of code snippets. Similarity is then measured by calculating the distance between these vectors.
During training, the parameters of the DNN model are adjusted so that embeddings of semantically
similar snippets are positioned close in the vector space. SAFE [5] proposes an RNN that generates
function embeddings starting from the linear disassembly, treating instructions as tokens. More recent
approaches, like jTrans [6], TREX [13], and BinBert[14] propose a Transformer-based architecture
to learn function semantics from instruction sequences that explicitly represent the execution trace.
Gemini [1] consists of a GNN for learning the attributed control-flow graph of binary functions, where
basic blocks are encoded using manually-selected features. Finally, DeepBinDiff [4], combines an NLP-
based methodology for learning function semantics with a graph-matching algorithm for computing
similarity at the binary level.

7. Limitations

In this paper, we have demonstrated how combining function embedding techniques, particularly SAFE,
with information from the call graph can yield valuable results in measuring program-level similarity.

Our BinSAFE system is designed for use in security-sensitive scenarios. In this context, it is crucial to
understand its behavior when analyzing obfuscated code or when facing adversaries capable of crafting
binaries specifically to mislead the BinSAFE system (i.e., adversarial examples). The robustness of our
system is closely tied to the underlying FS system, which is responsible for modeling the semantics of
binary functions within the analyzed binary. Since SAFE was not trained to handle obfuscated code,
this presents a clear limitation for the entire BinSAFE system, as well as its vulnerability to adversarial
examples, as demonstrated in [22, 23].

8. Conclusions and Future Works

In this paper, we presented our BinSAFE system. Our main contribution is a technique to extend FS
similarity systems to BCS. In this paper, we tested our system using SAFE [5] as the FS model. However,
our approach can be used as it is with other FS embedding-based models. Future work would include a
more extensive evaluation of BinSAFE using different FS models to assess their impact.
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Appendices

A. BinSAFE BCS Algorithm

We present our matching procedure in Algorithm 1. Here, we begin by computing the similarity matrix
(line 2), calculating the pairwise similarity between the functions in 𝐹1 and 𝐹2 using SAFE. Then, we
match by name library functions, setting their similarity to 1 or 0 and scaling it by frequency. At
this point, every pair of matched library functions is considered a hotspot, so the procedure tries to
recursively match all the matchable neighbors of the pairs identified before (lines 3-8). After this first
phase, we now start matching the user-defined functions (line 9) by iteratively determining the next
hotspot pair and matching the subsequent pairs along the two graphs (lines 11-16). Finally, we identify
the percentage of matched functions in 𝑏1 and 𝑏2 (line 17) and calculate the similarity (line 18) using
Equation 1.

B. Threshold Tuning

An important aspect of our approach is deciding which function pairs from the two call graphs to match.
The strategies introduced in Section 3 pair only those functions from the two binaries with a similarity
score above a specified threshold 𝜏 , which is determined through experimental evaluation.

In these experiments, we perform 181 queries on a knowledge base containing 5,256 binaries and
libraries. Specifically, the knowledge base includes binaries from the following projects: busybox,
coreutils, dnsmasq, dropbear, libBoost, lighttpd, libzip, readline, and zlib. These binaries were compiled
for the amd64 architecture using gcc 8.3, gcc 10.2, clang 11, and clang 13.

The results of these experiments are presented in Figure 3, where we evaluate the performance of
BS-LF using three threshold values for 𝜏 : 0, 0.50, and 0.75. All metrics indicate a significant difference
between 𝜏 = 0 and 𝜏 ∈ {0, 50, 0.75}. Specifically, considering nDCG, there is an average increase of
1.49% from 0 to 0.50 and 1.78% from 0 to 0.75, with a smaller improvement of 0.3% between 0.50 and
0.75. A similar trend is observed for precision and recall: precision improves by 1.61% from 0 to 0.50
and 2.24% from 0 to 0.75, while recall increases by 2.3% from 0 to 0.50 and 3.41% from 0 to 0.75.

For our experiments, we choose the value 𝜏 = 0.75.

https://github.com/ReFirmLabs/binwalk
https://ghidra-sre.org
https://ghidra-sre.org
http://arxiv.org/abs/2412.04163


Algorithm 1 Matching algorithm for computing similarity at the binary level
Input:

• Call graphs: 𝑏1 = (𝐹1, 𝐸1) and 𝑏2 = (𝐹2, 𝐸2).

• Library functions: 𝐿1 ⊂ 𝐹1 and 𝐿2 ⊂ 𝐹2.

• Similarity threshold: 𝜏 .

Output: Similarity value between 𝑏1 and 𝑏2.
Definitions:

• getSimilarities(𝐹1, 𝐿1, 𝐹2, 𝐿2): Compute the pairwise similarity between functions in 𝐹1 and 𝐹2 using SAFE.
Match library functions by name in 𝐿1 and 𝐿2, setting similarity to 1 or 0, then scale by frequency. Set similarity
between library and user-defined functions to 0. Return matched library function pairs and the similarity matrix.

• getNeighbors(𝑏, 𝑓): Get neighbors of 𝑓 in the call graph 𝑏.

• matchNeighbors(𝑛1, 𝑛2, m, sim_matrix): Match recursively functions in 𝑛1 and 𝑛2 if their similarity is above
𝜏 and if they have not already been matched in m.

• getUnmatched(𝐹 , m): Get the functions in 𝐹 that are not part of any match in m.

• getHotspot(𝑢1, 𝑢2, sim_matrix, m): Get the pair ⟨𝑓, 𝑔⟩ ∈ 𝑢1 × 𝑢2 with highest similarity value in sim_matrix
among those not in m.

• getCoverage(𝑏1, 𝑏2, matches): Get the percentage of functions across 𝑏1 and 𝑏2 that are in m.

• computeSim(sim_matrix, 𝑚1, 𝑚2): Compute the similarity according to Equation 1.

1: matches← 𝑠𝑒𝑡()
2: match_libs, sim_matrix← getSimilarities(𝐹1, 𝐿1, 𝐹2, 𝐿2)
3: for ⟨𝑓, 𝑔⟩ ∈ match_libs do
4: sim_score← sim_matrix[𝑓][𝑔]
5: matches.add(𝑓, 𝑔, sim_score)
6: 𝑛1, 𝑛2← getNeighbors(𝑏1, 𝑓), getNeighbors(𝑏2, 𝑔)
7: if sim_score ≥ 𝜏 AND ⟨𝑓, 𝑔⟩ /∈ matches then
8: matches← matchNeighbors(𝑛1, 𝑛2, matches)

9: 𝑢1, 𝑢2← getUnmatched(𝐹1, matches), getUnmatched(𝐹2, matches)
10: while 𝑢1 ̸= ∅ AND 𝑢2 ̸= ∅ AND ∃ ⟨𝑓, 𝑔⟩ ∈ 𝑢1 × 𝑢2 s.t. sim_matrix[𝑓 ][𝑔] ≥ 𝜏 do
11: 𝑓 , 𝑔, sim_score← getHotspot(𝑢1, 𝑢2, sim_matrix, matches)
12: matches.add(𝑓, 𝑔, sim_score)
13: 𝑛1, 𝑛2← getNeighbors(𝑏1, 𝑓1), getNeighbors(𝑏2, 𝑓2)
14: matches← matchNeighbors(𝑛1, 𝑛2, matches)
15: 𝑢1.remove(𝑓1)
16: 𝑢2.remove(𝑓2)
17: 𝑚1, 𝑚2← getCoverage(𝑏1, 𝑏2, matches)
18: return computeSim(sim_matrix, 𝑚1, 𝑚2)
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Figure 3: Evaluation of SAFE-LF considering 𝜏 ∈ {0, 0.50, 0.75}. The metrics are evaluated considering the
search depth parameter𝐾 ∈ {1, 20}.
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