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Abstract

Smart Contracts are at the heart of blockchain transactions, and their integrity is essential to blockchain reliability
and performance. Specific errors in Smart Contract code are known to trigger vulnerabilities, which have been
categorized into different patterns. Following the success of Large Language Models in software analysis, several
authors have proposed the use of LLM to detect Smart Contract vulnerabilities. In this paper, we compare
the performance of various LLM as well as formal analysis tools in analyzing Ethereum Smart Contracts for
various vulnerabilities, based on standard datasets. Unlike previous work that used LLM fine-tuning, we explore
performance based on direct In-Context Learning using standard Prompt Engineering techniques. Our results
suggest that the straightforward use of LLM may still be beneficial in the analysis of Smart Contracts, depending
on the vulnerability type.
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1. Introduction

Ethereum is one of the blockchain platforms with the highest total value above $50 Billion' at the
moment of writing. Smart contracts are scripts that can be deployed on Ethereum, and the blockchain
guarantees their unalterable execution on predetermined conditions without needing a third party.
Smart contracts are written for various application domains called Decentralized Applications (DApps).
Different DApps can interact with one another [1]. Smart contracts may contain errors that can be
exploited for financial gain or lead to the loss of financial assets. To prevent the loss of assets due to
hacks or errors in the code, smart contracts are tested thoroughly to find and correct vulnerabilities
before they are deployed on the blockchain, where they cannot be altered anymore. The vulnerability
detection task involves techniques like formal verification, symbolic execution, fuzzing, intermediate
representation, and machine/deep learning [2]. Since the launch of ChatGPT, the most famous Large
Language Model (LLM) by OpenAl, and its efficiency on natural language tasks, studies have also been
conducted to apply LLMs to code-related tasks.

In contrast to traditional web applications, where bugs can cause the unavailability of desired services,
the bugs in decentralized web applications are more harmful as exploiting these bugs can result in the
theft of the money managed by those applications. In the past, there have been numerous such incidents
where bugs in the application were exploited to steal money, and one such example is the famous
DAO attack [3], which occurred in May 2016 and resulted in the loss of $150M due to a reentrancy
attack. These attacks have never stopped occurring. According to Immunefi?, Decentralized Finance
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applications have lost $114M due to hacks in 34 incidents in the third quarter of 2024, and $1.7B was
lost due to hacks in the Decentralized Finance applications in the year 2023.

LLMs have been used for finding vulnerabilities in general programming languages. Yao et al. [4]
provided a detailed overview of the research into the beneficial/offensive applications of LLMs and
discussed vulnerabilities in LLMs in their comprehensive literature review. Purba et al. [5] used LLM
for detecting vulnerabilities in C/C++ programs. Zhou [6] evaluated the impact of providing different
information in prompt on LLM performance. Noever [7] used GPT-4 for finding vulnerabilities in
real-world applications, whereas Lee [8] created a dataset to evaluate the performance of LLM for
finding syntactical errors in Python code. Guo [9] compared performances of task-specific deep learning
models, generic pre-trained LLMs, and fine-tuned LLMs for vulnerability detection. In the case of
general programming languages, there is a mixed opinion about the efficiency of LLM models in finding
vulnerabilities in code, but the majority of studies [6, 7, 8] suggest that LLMs have better performances
at detecting vulnerabilities in code than automated tools.

The development of static analysis tools based on formal methods requires a significant theoretical
background and programming skills, even for designing and implementing a proof-of-concept tool,
making it difficult for traditional developers and blockchain practitioners [10]. Several vulnerability
detection tools have been proposed in the literature. Qian et al. [11] list 29 fully automated tools that are
used to detect vulnerabilities from solidity source code and are based on formal verification, symbolic
execution, fuzzing, intermediate representation, or deep learning techniques. The efficiency of these
automated tools for finding novel vulnerabilities in smart contracts is not good, as Wei et al. [2] have
proved that these tools can only detect a specific type of vulnerabilities, and Galeb and Pattabiraman
[12] proved that automated tools sometimes can not detect the vulnerabilities that they claim they can
detect. Zhang et al. [13] and Zheng et al. [14] have proved that automated tools are not effective at
detecting vulnerabilities that could be found by manual audits of the source code. Unfortunately, the
currently available static analyzers are hardly accompanied by formal soundness guarantees whereas
the deep generative language models are gaining widespread adoption and progressively emerging as
superior to static analyzers when measuring their performance in terms of both precision and speed of
the analysis [15].

1.1. Research Gap and Novel Contribution

It is evident from the works of Zhang [13] and Zheng [14] that automated tools are not always as
efficient as desired at detecting vulnerabilities in real-world solidity smart contracts. In contrast, Wei in
[2] concluded that each automated tool is good at finding specific types of vulnerabilities in solidity
smart contracts. Noever added evidence to it [7] and Lee [8] showed that LLMs can perform better
than automated tools in finding bugs in general programming languages. So, having seen that LLMs
performs better in finding vulnerabilities in general programming languages than automated tools, we
are interested in using LLMs to find vulnerabilities in solidity smart contracts.

This paper will present an in-context learning prompt, check its performance in detecting vulner-
abilities in solidity smart contracts using different LLMs, and compare it to static analysis tools and
state-of-the-art fine-tuned models. Extensive experimental results suggest that even in the absence
of fine-tuning, straightforward use of LLMs may still be beneficial for vulnerability detection in the
analysis of smart contracts.

The rest of the paper is organized as follows. Section 2 gives a detailed overview of the literature,
Section 3 describes the vulnerabilities in Solidity smart contracts and methodology is presented in
Section 4, experiments are reported in Section 5 and conclusions are given in Section 6.

2. Literature Review

Since ChatGPT was released to the general public as the first large language model (LLM) that received
the spotlight in the general public due to its ability to generate coherent text, the scientific community has



started investigating its applications in different fields, including vulnerability detection in blockchain
scenarios using LLMs.

Chen et al. [16] use ChatGPT to find vulnerabilities in smart contracts and compared it with state-
of-the-art vulnerability detection tools and found that ChatGPT performed slightly better for 4/7
vulnerability types. In contrast, for other 3/7 types of vulnerabilities, ChatGPT does not produce good
F1-score as compared to the state of the art vulnerability detection analyzers. They compared the
vulnerability detection capability of ChatGPT with other static analyzers and also listed the limitations
of ChatGPT in detecting vulnerabilities in smart contracts. They found that ChatGPT could provide
different vulnerabilities for the same smart contracts with the same prompt. Specifically, they tested
50 smart contracts each five times and found that for 29/50, ChatGPT gave consistent results, which
means ChatGPT is not consistent in vulnerability detection for 42% of the smart contracts.

David et al. [17] used LLM for auditing 52 previously compromised smart contracts with the optimized
prompt. They used GPT-4-32k and Claude-v1.3-100k LLM models for auditing. They classified 52 smart
contracts into 38 vulnerability types. They prompted both models for a binary outcome (yes/no for the
presence or absence of each vulnerability) for each vulnerability type against each smart contract. They
got 40% accuracy, but the number of false positives is too high.

Du and Tang [18] used the ChatGPT-4 model to detect 7 types of vulnerabilities in 35 smart contracts
containing 732 vulnerabilities. The model had 96.6% precision, but recall, and f1 scores are 37.8% and
41.1%, indicating that the model does not perform well.

In GPTScan, Sun et al. [19] combined ChatGPT with a static analysis tool. It used static analysis tools
to detect candidate functions, which are then processed with the GPT module to find key statements or
variables. These key variables/statements are passed to static analysis tools with vulnerability types
to confirm vulnerabilities. They used three datasets. First, Top200 are projects from top 200 market
capitalization which are thoroughly audited and assumed to be free from vulnerabilities. Second,
Web3Bugs consists of 72 Code4rena-audited projects. Third, DefiHacks consists of 13 projects that have
been previously exploited. GPTScan doesn’t produce significant false positives and has better precision
and recall than static analysis or other GPT-based tools. Their static confirmation further reduces the
false positive cases in the Web3Bugs dataset. This tool costs 0.01 USD to analyze a thousand lines of
solidity code in 14.39 seconds, and effectively found nine new vulnerabilities in the Web3Bugs dataset
that were missed in manual audits. So, in conclusion, this tool can be useful to human auditors so that
they can perform their jobs effectively.

Regarding the efficiency of LLMs for finding vulnerabilities in solidity smart contracts, [16] finds the
GPT results inconsistent between different executions and [17, 18] report a high false positive rate. On
the other hand, [19] reports that GPT does not produce false positives and even finds bugs that are not
caught by automated tools or manual analysis.

3. Background

3.1. Ethereum Platform

Ethereum is a globally decentralized blockchain that supports smart contract functionalities. Usually,
Ethereum smart contracts are written in Solidity, the very first programming language for smart
contracts. This programming language is Turing-complete, so it can encode very complex functionalities
and interact with data from different sources. The Ethereum Virtual Machine (EVM) is the platform
that executes these smart contracts.

3.2. Smart Contract Vulnerabilities

Several studies have grouped the vulnerabilities for more effortless organization and reducing re-
dundancy. A comprehensive literature survey between 2018 and 2023 reported the most common
vulnerabilities [20], and by considering their actual impact when exploited, we will focus on the
following three.
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3.2.1. Reentrancy

This vulnerability can occur when any user’s balance is updated after transferring the balance using
msg.sender. Using this vulnerability an attacker can withdraw the balance multiple times by recursively
calling the withdraw function. In the following example in Listing 1, the user’s balance is checked on
line 9, and the amount is sent on line 11, whereas the balance is updated after the transfer on line 12. If
an attacker keeps calling the withdraw function recursively from its fallback function, he can withdraw
the amount until draining the balance of the contract completely as the balance is updated after transfer.
The example code is from [21].

contract SimpleDAO {
mapping (address => uint) public credit;

function donate(address to) payable {
credit[to] += msg.value;

}

function withdraw(uint amount) {
if (credit[msg.sender]>= amount) {
// Vulnerable: reentrancy
bool res = msg.sender.call.value(amount) () ;
credit[msg.sender]-=amount;
}
}

function queryCredit(address to) returns (uint){
return credit[to];

Listing 1: Reentrancy Code Example

3.2.2. Timestamp Manipulation

Timestamp dependency vulnerability occurs when block.timestamp is used as a condition for a critical
operation like money transfer or as a random number seed. Using this block.timestamp miners can
schedule the transaction at a favorable time. In the following code, claim function uses block.timestamp
in line 5 as a condition to execute the function. The timestamp values are generated by the node that
create the block that contain the transaction that execute the smart contract, this way the node can
generate a timestamp that is favorable to them and exploit the contract. The example code in Listing 2,
is from [20].
contract Vulnerable {

uint public prevClaimTime;

// Vulnerable: relies on block.timestamp.

function claim() public {

require(block.timestamp > prevClaimTime + 1, )
prevClaimTime = block.timestamp;

3
}

Listing 2: Timestamp Manipulatin Code Example

3.2.3. Unchecked External Call

Unchecked external call vulnerability occurs when a contract calls another contract; the called contract
can fail silently without throwing an exception. If the calling contract does not check the outcome,
it might assume that the call was successful, even if it was not. In the following code, on line 9,
winner.send does not check the outcome of the call and assumes that the call went successful, and the
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same vulnerability occurs on line 16, where the successful execution of the call is not checked. The
example code in Listing 3, is from [20].

contract Lotto {
bool public payedOut = false;
address public winner;
uint public winAmount;

function sendTowWinner() public {
require( !payedOut) ;
// Vulnerable: unchecked external call
winner.send(winAmount) ;
payedOut = true;

}

function withdrawLeftOver() public {
require(payedOut) ;
// Vulnerable: unchecked external call

msg.sender.send(this.balance) ;

}

Listing 3: Unchecked External calls Code Example

4. Methodology

In this section, we outline our methodology by detailing the key steps of our study. We start with the
choice of automated analyzers and LLM models. Next, we provide a breakdown of our LLM prompt
design based on the In-Context Learning (ICL) approach. Finally, we describe the dataset selection
process for the experimental evaluation.

4.1. Static Analyzers

Static analysis aims to infer and prove the properties of programs without executing them. Several
static analyzers have been proposed, ranging from efficient but imprecise syntactic analyzers to precise,
sound, but expensive semantic analyzers. Several approaches, such as abstract interpretation, program
verification, and model checking, have been widely applied to different contexts. Smart contracts have
also been a target of this work.

Based on the performance comparison of different automated analysis tools over different vulnerability
types presented in [2], we consider two tools that are able to detect the same set of vulnerabilities
(namely reentrancy, timestamp manipulation, and unchecked external calls) and have quite good
performance: Conkas[22] and Slither[23]. Both have more than 90% F1 score for all the vulnerability
categories we are interested in, outperforming other available tools: the F1-score for reentrancy is
98.8% and 96.9%, respectively, while for timestamp manipulation is 93% and 99% respectivery, and for
unchecked external calls is 98.3% and 96.4%, respectively.

4.1.1. Conkas [22]

is a symbolic execution tool that uses Intermediate Representation. It can analyze source or byte code.
It supports five categories: Arithmetic, Front-Running, Reentrancy, Time Manipulation, and Unchecked
Low-Level Calls.

4.1.2. Slither [23]

is a static analysis framework that uses an abstract syntax tree generated by the Solidity compiler
and converts it into an intermediate representation called SlithIR. Slither supports more types of
vulnerabilities than Conkas. The Slither GitHub page lists 93 detector modules for detecting different



vulnerabilities. We have used the following modules to detect each vulnerability type, which has taken
less time to finish the analysis.

« Reentrancy: reentrancy-unlimited-gas, reentrancy-no-eth, reentrancy-benign, reentrancy-eth,
reentrancy-events

« Timestamp: timestamp

« Unchecked: unchecked-lowlevel, unchecked-send

4.2, LLM Models

In our research, we have selected three prominent Large Language Models (LLMs) to identify vulnera-
bilities in Solidity smart contracts:

« GPT-40 by OpenAl: This model was chosen for its advanced reasoning capabilities and improved
performance in tasks such as language, vision, and speech processing. A comprehensive evaluation
of GPT-40’s multimodal proficiency is detailed in this study. [24]

+ Mistral-7B by Mistral Al: We selected this model due to its high performance in both code and
English language tasks. Mistral-7B is a 7.3 billion parameter language model that utilizes Grouped-
query Attention (GQA) for faster inference and Sliding Window Attention (SWA) for handling
longer text sequences efficiently. Details of its architecture and performance are discussed in this
paper. [25]

+ Claude-Sonnet by Anthropic: This model was included for its robust natural language processing
capabilities and effectiveness in reasoning about security vulnerabilities. Claude 3.5 Sonnet
has been evaluated in cybersecurity contexts, including capture-the-flag challenges that test
vulnerability discovery and exploit development. Insights into its performance and capabilities
are provided in this study.

By leveraging these diverse models, we aim to conduct a comprehensive analysis of vulnerability
detection in Solidity smart contract, benefiting from each model’s unique strengths.

4.3. Prompt Engineering

Prompt Engineering is a set of techniques to enhance the effectiveness of LLMs. In-context learning
(ICL) is one of these techniques that allows language models to learn tasks given only a few examples
in the form of demonstration. The model learns the hidden patterns in the demonstrated examples
and makes predictions accordingly. LLMs perform complex mathematical reasoning tasks with ICL.
The examples of a complex task are presented in the prompt to serve as an analogy and increase the
efficiency of the LLM [26].

Prompt Design: For our work, we have used ICL with vulnerability description and annotated
examples given to the LLM to make the correct decision. Zhou [6] has provided a detailed study of bits
of information to include in the ICL prompt and its impact on performance. The following information
is given to the LLM inside the prompt.

« Task Description instructs the LLM to act as a smart contract auditor for a specific vulnerability
type.

« Vulnerability Description provides a detailed description of the vulnerability in natural lan-
guage; specifically, it describes how a specific vulnerability occurs inside the code.

« Examples are annotated with HTML tags around the lines that contain the vulnerability. We
have given three example codes as Zhou [6] found that three examples effectively detect bugs.

« Certainty Score is required from the LLM to show how much confident the model is about its
response.

« Output Format restricts the LLM model to produce output in JSON format only, which should
contain the name of the contract and the location of vulnerability, if any detected (otherwise a
null message).



You are a Solidity smart contract auditor. Your task is to analyze a given
solidity smart contract for {vulnerability_type} vulnerabilities.
#Vulnerability Description: Description of the vulnerability

#Examples: Following three contracts examples contain {vulnerability_type}
vulnerabilities.

Example contract 1: {examplel_code}

Example contract 2: {example2_code}

Example contract 3: {example3_code}

#Task The contract to audit can be found in this file, analyze this contract
thoroughly and report if it contains {vulnerability_type} vulnerabilities.
Test contract to audit is as follows: {testContract_cCode}

#Certainity Score Please provide a certainty score once you have identified a
potential vulnerability, rate your level of confidence in the form of a single %
score.

#Output format The output should be a JSON object with the following format:

{"smart_contracts": [
{ "name": "SampleSmartContractl",
"contains_vulnerability": "no",
"vulnerability_location": null },
{ "name": "SampleSmartContract2",
"contains_vulnerability": "yes",
"vulnerability_location": {
"description": "line of code that produces the vulnerability", } }
1,
"certainty_score": 0
3
G y

All the smart contract code examples are taken from the smartsbugs dataset [27] and annotated
manually for each vulnerability type. The examples have annotations around lines of code that contain
bugs. One such code example for vulnerability type reentrancy is given below in Listing 4.

1 contract SimpleDAO {
2 mapping (address => uint) public credit;

4 function donate(address to) payable {
5 credit[to] += msg.value;

o)

s function withdraw(uint amount) {

9 if (credit[msg.sender]>= amount) {

10 <REENTRANCY>

11 bool res = msg.sender.call.value(amount) () ;
12 credit[msg.sender]-=amount;

13 </REENTRANCY>
14 }
5 )
16
17 function queryCredit(address to) returns (uint) {
18 return credit([to];
19 }
20 }
Listing 4: Annotated Code Example
4.4. Dataset

Two of the earliest used datasets for smart contract vulnerability detection are smartbugs-curated and
smartbugs-wild. The smart bugs-curated dataset [27] only contains solidity code that contains bugs,



but the number of examples per category was insufficient for our use since we were interested in
classification tasks. Furthermore, we needed a dataset containing positive and negative code files. The
smartbugs-wild dataset was too large for our purpose, as it contained 47,0000 solidity files and was
not annotated. Similarly, smartcontract-benchmark [2] contains two datasets, a small dataset contains
almost ten files with vulnerable code for each category, while a scaled dataset contains 20,000 unlabeled
solidity files crawled from the web site etherscan. So, this dataset was also not usable for our purpose
for the same reasons.

The dataset we selected for our experiments was published in [28]. It was crawled from etherscan,
and duplicates were removed by comparing the file hash. All the vulnerabilities were annotated after a
manual inspection of the code. It was annotated for eight vulnerability types, but we only used three
categories. The original dataset was skewed because it contained more negative instances, i.e., files
that did not contain vulnerabilities and a few cases where the contract contained vulnerabilities. So,
to overcome this imbalance in the dataset, we have used part of it, as we have taken 50 positive and
50 negative smart contract files for each of three categories: reentrancy, unchecked external call, and
timestamp dependency.

5. Experiments

5.1. Computing System

HP EliteBook 830 G6 was used for all the computations reported. The system specifications were Intel(R)
Core(TM) i7-8565U CPU @ 1.80GHz with 16 GB RAM. The versions for different programs used were:

« OS: ArchLinux 6.6.49-1-Its

+ Python: 3.9.18

o Slither: 0.10.4

« Conkas: Mar 18, 2021 release

5.2. Evaluation Metrics

For evaluation and comparison, we have used the F1-score, which is a standard evaluation technique
for classification tasks. The F1-score is calculated using precision and recall, both of which depend on
the confusion matrix.

5.2.1. Confusion Matrix

In machine learning classification, a confusion matrix is used to evaluate the performance of a model. It
summarizes the number of correct and incorrect predictions made by the model compared to the actual
values.

« True Positive (TP): The model correctly predicts the positive class.

« True Negative (TN): The model correctly predicts the negative class.

- False Positive (FP): The model incorrectly predicts positive when it is actually negative.
- False Negative (FN): The model incorrectly predicts negative when it is actually positive.

Actual / Predicted | Predicted Positive | Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Table 1
Confusion Matrix for Binary Classification



5.2.2. Accuracy

It measures the overall correctness of the model which can be calculated using this formula 1.

N TP+ TN "
T =
UMY = TP Y TN+ FP+ FN

5.2.3. Precision

It measure the portion of correctly predicted cases among all predicted cases. Precision focuses on how
many of the predicted positive cases are actually positive. The formula for calculating precision is 2

precision _ TP o
recision = TP+FP

5.2.4. Recall

It measures the proportion of correctly predicted positive cases among all actual positives. Recall
measures how many actual positive cases were correctly identified by the model. Recall can be calculated
using formula 3

Recall = 1P (3)
T TPYFN

5.2.5. F1 Score

F1 score is a harmonic mean of precision and recall and it is treated as final evaluation standard for the
classification tasks. Following formula 4 is used to calculate F1 score.

Fle9x Prec?s?on x Recall @)
Precision + Recall

5.3. Discussion of Results

Using our prompt, we tested three LLMs, i.e., gpt4o, mistral-7b and Claude sonnet, and results are
presented in Table 2 along with two static analysis tools. The F1 score varies from category to category,
and the GPT-40 model got the best F1 score, 89%, in the reentrancy category. Other models performed
better than automated tools. For the Timestamp category, the GPT-40 model performed better than
other models with a 69% F1 score. All the models have similar F1 scores on the Unchecked category:
gpt40 got 67%, mistral-7b got 68%, and Claude got 66%.

Although both Conkas and Slither are reported to achieve more than 90% F1 scores in the selected
categories, their performance varies highly. Conkas performed better on the reentrancy and Timestamp
categories, whereas Slither can only detect vulnerabilities in the Timestamp category. Both of these
analyzers didn’t perform well in the Unchecked category. Their performance is significantly lower than
that of LLMs in the reentrancy category and somewhat equal in the Timestamp category. In contrast,
LLMs performed much better than automated tools in the Unchecked category.

Another study i.e FELLMVP [29] is conducted by Luo et al. using the same dataset. They have
fine-tuned the Gemma-7B model for each category and then created an ensemble LLM for vulnerability
detection. They have got 88% F1 score across all categories using top-3 classification, but they have
also reported an increase of 75% in F1 score from top-1 to top-2 and another 19% increase in F1 score
from top-2 to top-3 classification. The comparison depicted in Table 3 shows that GPT-40 with our
In-Context-Learning prompt performs close to those ensembled fine-tuned models in FELLMVP for the
reentrancy category and for the other two categories, the performance of gpt4o is not far below that
of the fine-tuned models but this can be improved by further research into improving the prompt for
these two categories with more suitable examples or description of the vulnerability.



Metrics
Category Analyzer
Accuracy ‘ Precision ‘ Recall ‘ F1
gptdo 80.6 100.0 88.0 89.3
Mixtral 64.1 100.0 72.0 78.1
Reentrancy Claude 76.9 100.0 85.0 87.0
conkas 56.2 100.0 61.0 71.9
slither 5.9 2.0 35.0 3.0
gptdo 54.5 96.0 58.0 69.6
Mixtral 44.6 66.0 42.0 53.2
Timestamp Claude 49.4 82.0 49.0 61.7
conkas 66.0 66.0 66.0 66.0
slither 59.2 84.0 63.0 69.4
gptdo 50.5 98.0 51.0 66.7
Mixtral 58.8 80.0 62.0 67.8
Unchecked Claude 49.5 98.0 49.0 65.8
conkas 44.4 8.0 49.0 13.6
slither 57.1 8.0 51.0 14.0
Table 2
Vulnerability Categories with Metrics
Reentrancy | Timestamp | Unchecked
FELLMVP 95.1 86.1 94.1
Our Best 89.3 69.9 66.7

Table 3
F1-Score Comparison with FELLMVP

5.4. Limitations

+ LLMs are evolving rapidly, and the performance of future versions of the LLMs used in the study,
or the release of more software-specialized LLM may significantly alter the reported rankings.

« Despite setting completion parameters (e.g., temperature or top_p) to control randomness, the
inherent variability in the model’s responses remains. This variability can lead to different
outputs across runs, potentially impacting consistency and reliability. While we acknowledge
this factor, we have not systematically addressed it through repeated runs and statistical analysis.
Incorporating such an approach in future work could provide deeper insights into the stability of
results, helping to quantify uncertainty and refine decision-making based on LLM outputs.

» These results depend on the selected datasets which are a good reflection of the state-of-the-art
but may evolve as well with the smart contract technology.

6. Conclusion

While the state-of-the-art in LLM-based smart contract analysis has been established by systems relying
on application fine-tuning, we wanted to explore how simpler in-context learning could achieve a
balance between ease of development and performance. To that effect, we have explored prompting
techniques to detect three types of vulnerabilities in solidity smart contracts, using different LLMs. We
found that performance varies both across vulnerability categories and across LLMs. The GPT-40 model
we used performed best among others while also outperforming static analysis tools (on F1 score). For



the specific vulnerability of reentrancy, our model performs within 6% as the state-of-the-art model,
which can be advantageous considering the immediate readiness of a Prompt-based approach and the
need for human supervision in all cases. In comparison to fine-tuning an LLM, our strategy of Prompt
Engineering using In-Context Learning can be easily scaled up to different categories of vulnerabilities
in Solidity smart contracts and can also be adapted to other programming languages.
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