
Improving MQTT Security Through the Generation of
Malicious Test Cases
Camilla Cespi Polisiani1, Maria Carla Calzarossa1, Marco Zuppelli2, Luca Caviglione2,* and
Massimo Guarascio3

1University of Pavia, Pavia, Italy
2Institute of Applied Mathematics and Information Technologies, Genova, Italy
3Institute for High Performance Computing and Networking, Rende, Italy

Abstract
The pervasive deployment of IoT technologies accounts for a variety of hazards often requiring a cross-layer
approach. For example, the security posture of brokers responsible for handling the Message Queuing Telemetry
Transport (MQTT) protocol has to be assessed at different functional layers, thus it is important to generate test
cases ranging from network traffic conditions to application-specific patterns. Alas, this is a time consuming and
poorly-generalizable process. Therefore, this paper proposes two frameworks for improving IoT security. The
first is a suite for creating traffic flows starting from real traces or arbitrary configurations. The second is a Small
Language Model that can produce realistic MQTT topics. To demonstrate their effectiveness, we showcase how
they can be used to mitigate covert communications targeting IoT ecosystems. Results indicate that our tools can
provide realistic test conditions for advancing IoT security, especially to better comprehend attacks targeting the
MQTT protocol.

Keywords
covert communications, IoT security, test cases

1. Introduction

The rapid diffusion of Internet of Things (IoT) technologies is responsible for the transformation of
various domains ranging from smart home environments to industrial control systems and digital urban
infrastructures [1]. At the same time, their ubiquitous adoption opens the way to several security
hazards that might also damage physical assets or harm individuals. In fact, the mix of hardware,
software and network protocols results in a vast attack surface difficult to control. For instance, many
modern IoT deployments are plagued by data breaches, unauthorized access, and exfiltration attempts.
Therefore, enforcing IoT security is crucial for not endangering people, homes, industries, cities or the
whole Internet [2].

Several architectural blueprints and network protocols have been introduced to support the rapid
evolution of IoT applications also with the goal of improving their robustness. Among the others,
deployments based on the Message Queuing Telemetry Transport (MQTT) are demonstrating their
effectiveness, since they allow the organization of IoT nodes and data in a hierarchical structure, thus
offering the possibility of segmenting the network to prevent bottlenecks [3]. Accordingly, many IoT
ecosystems rely on an MQTT broker, which serves as a central communication hub that receives and
dispatches messages across clients via a publish-subscribe paradigm. Given their importance, brokers
are attractive targets for attackers as they might be affected by vulnerabilities that can compromise the
entire IoT deployment [4, 5].

Owing to the critical nature of IoT technologies, efforts to counteract attacks have intensified but
spawned an “arm race” leading to malware endowed with mechanisms to “obscure” data within network

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
*Corresponding author.
$ camilla.cespipolisiani01@universitadipavia.it (C. C. Polisiani); mcc@unipv.it (M. C. Calzarossa); marco.zuppelli@cnr.it
(M. Zuppelli); luca.caviglione@cnr.it (L. Caviglione); massimo.guarascio@cnr.it (M. Guarascio)
� 0000-0003-1015-3142 (M. C. Calzarossa); 0000-0001-6932-3199 (M. Zuppelli); 0000-0001-6466-3354 (L. Caviglione);
0000-0001-7711-9833 (M. Guarascio)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:camilla.cespipolisiani01@universitadipavia.it
mailto:mcc@unipv.it
mailto:marco.zuppelli@cnr.it
mailto:luca.caviglione@cnr.it
mailto:massimo.guarascio@cnr.it
https://orcid.org/0000-0003-1015-3142
https://orcid.org/0000-0001-6932-3199
https://orcid.org/0000-0001-6466-3354
https://orcid.org/0000-0001-7711-9833
https://creativecommons.org/licenses/by/4.0/deed.en


protocols or mimic normal application behaviors, just to mention some [6, 7]. A recent offensive
trend is to deploy covert channels, which establish hidden communication paths within legitimate
traffic flows to exfiltrate sensitive data, evade signature-based detection mechanisms, or orchestrate
nodes of a botnet [7, 8]. Alas, improving security requirements of IoT ecosystems is often a complex
task because of the dynamic, heterogeneous, and resource-constrained nature of IoT nodes. Among
the various issues, enforcing segmentation through traffic engineering and the ability of performing
automatic, reproducible, and consistent tests are major concerns (see [9] and the references therein).
Therefore, this work showcases two mechanisms for the generation of test conditions to evaluate IoT
security. Specifically, the first approach entails a framework for assessing the network part of an IoT
ecosystem via the creation of traffic flows starting from real traces or arbitrary configurations. The
second leverages a Small Language Model (SLM) to produce realistic MQTT topics used to quantify the
permeability of brokers to covert communication attempts.

Summing up, the contribution of this work is threefold: i) it introduces two frameworks for testing
the security properties of IoT ecosystems at different functional layers, i.e., traffic and topic levels; ii) it
showcases the effectiveness of SLMs to automatically generate test cases for improving the robustness of
IoT deployments against covert communications; iii) it considers a threat model leveraging information
hiding, which is often neglected in the literature dealing with IoT/Cyber-Physical Systems (CPS).

The rest of the paper is structured as follows. Section 2 reviews past works on the assessment of
IoT security, while Section 3 introduces the proposed test mechanisms. Section 4 showcases numerical
results and Section 5 concludes the paper and hints at future research directions.

2. Related Work

Owing to their diffusion, the literature abounds of works dealing with security of IoT ecosystems. For
instance, a recent survey highlights the major challenges that should be addressed in the near future,
such as the lack of effective encryption schemes at the transport layer, insufficient authentication/autho-
rization mechanisms and insecure cloud interfaces [2]. Moreover, the need of orchestrating a vast array
of hardware entities (e.g., sensors, system on a chip frameworks, and resource constrained platforms)
accounts for major software hazards [10]. In fact, nodes and appliances are often plagued with back-
doors, firmware inheriting unpatched CVEs due to lack of control of the used codebase, and hazards
arising from prioritizing performance over security [11]. Another important aspect concerns the ability
of facing threats that can virtually target all the functional layers of IoT technologies, e.g., from bare
metal to the application. Hence, being able to conduct tests is mandatory, especially to capture corner
cases or the complex interplay of different hardware, software and vendors characterizing real-world
deployments.

Concerning the generation of network traffic to test IoT infrastructures, [12] introduces a tool for
supporting IoT network simulations, e.g., for evaluating security countermeasures. However, this tool
is affected by some limitations: it cannot accurately simulate event-driven IoT devices, and it imposes
a periodic publication pattern instead of more realistic time-varying behaviors. The literature offers
many works dealing with the development of synthetic traffic models. For example, [13] showcases how
the Scapy Python library can be used to produce traffic patterns characterizing IoT nodes deployed in
smart home scenarios, whereas [14] discusses a workaround to the scarcity of datasets needed to drive
models and obtain accurate results. Specifically, it suggests to deploy generative adversarial networks
to create better traffic models, e.g., capable of taking into account also location information. A more
refined approach is presented in [15].

Despite the used mechanisms, traffic generation schemes share some limitations. The first is the
lack of comprehensive datasets, especially for the case of the MQTT protocol. A major exception
is [16], which proposes a collection of IoT traffic traces capturing various network attacks. However,
background traffic conditions are generated using the tool described in [12], thus the obtained dataset
contains IoT nodes with the same “duty cycle”. The second limitation observed in the literature is that
some tools are not publicly available or have been created to investigate very narrow deployments,



e.g., smart homes. For analyzing the impact of covert communications, [17] showcases a framework to
produce traffic conditions representative of a variety of covert channels, which may also be suitable for
IoT ecosystems. Moreover, [18] deals with a tool for cloaking information within .pcap traces that also
offers a prime support to threats hiding data within MQTT message headers, such as the Keep-Alive
and Client ID.

The mitigation of covert communications can surely benefit from the availability of mechanisms for
generating test cases. In fact, identifying covert communications a-posteriori is a hard task, especially
in IoT scenarios, where data could be hidden in multiple places, e.g., measurements of sensors or traffic
traits. This is even more evident for the case of cyber-physical deployments, where the physical behavior
of sensors/actuators or the timing of protocol data units could be exploited to conceal information [19].
To this extent, the literature proposes three main paradigms. The first acts in the early design stage of
protocols, mainly to eliminate functional ambiguities, imperfect isolation issues, or optional/unused
fields that can be abused as containers for the secret data [20]. The second takes advantage of some form
of AI to develop models capable of replicating traffic conditions or “challenge” detection frameworks for
improving their robustness [21]. In both cases, a core requirement is the ability to conduct a vast array
of real trials, e.g., to gather traffic traces that can be used to drive simulations or train models. A third
alternative approach deploys network-level fuzzers, proven to be effective to produce a multitude of test
conditions in an automatic manner, especially to reveal coding errors, bugs, or security issues [22]. Even
if pseudo-fuzzing techniques based on random permutation are effective to assess the susceptibility of
HTTP headers against covert communication attempts [23], their systematic adoption is still vastly
unexplored. At the same time, the use of AI for creating network fuzzers appears a very promising
approach to investigate a wide range of security hazards or implementation issues [24].

Summing up, the limitation of available tools and the lack of comprehensive MQTT traffic datasets
underscore the need for automated approaches able to generate realistic network traffic conditions or
ad-hoc test cases for capturing specific traits of IoT deployments.

3. Mechanisms for Testing IoT Ecosystem Security

In this section, we present two mechanisms for assessing the security of IoT ecosystems. First, Section 3.1
describes a framework able to produce different traffic conditions to test IoT devices at the network
level. Then, Section 3.2 showcases how SLMs can be used to tune mechanisms to reveal manipulations
of MQTT topics.

3.1. Threat-driven Traffic Generation

To address the lack of realistic MQTT traffic datasets for engineering and research purposes, we created
a framework able to generate both benign and threat-driven MQTT traffic conditions implementing a
controlled yet realistic test environment. The tool enables the simulation of diverse network threats,
including malicious software endowed with different types of covert channels and Denial of Service
(DoS) attacks.

From an architectural viewpoint, the generator is organized into three functional layers. The ini-
tialization layer processes input configurations, establishing the parameter settings for the simulation
scenario. The traffic simulation layer generates the MQTT traffic by considering clients publishing and
subscribing to topics, and reproducing both benign and malicious behaviors. Finally, the execution and
control layer manages the overall operation of the generator, coordinating the network traffic creation
phase, ensuring the startup and shutdown of components, and enabling the traffic capture in .pcap
format for further analysis.

The tool also supports a detailed modeling of IoT devices, including periodic sensors that transmit
data at a fixed rate, and event-driven sensors that publish messages at instants of time sampled from a
specified probability distribution, such as exponential or uniform. The flexibility in customizing the
timings using different distributions makes the tool particularly suitable for simulating diverse IoT
behaviors, such as CPS or large-scale urban deployments [2].



The tool has two built-in attack templates. The first allows the simulation of DoS attacks targeting
the MQTT broker by flooding it with PUBLISH messages with large payloads from a set of tampered
IoT nodes, while legitimate IoT devices, such as environmental sensors, periodically transmit telemetry
data. These mixed traffic patterns facilitate the analysis of MQTT performance and security under
realistic attack conditions. Being able to control the number of both legitimate and illicit IoT nodes
enables a precise control over the simulated attack, especially in terms of duration and frequency.
The second template considers a malicious actor cloaking information in MQTT traffic, specifically in
MQTT topic names, either through case manipulation or ID modulation [8]. The tool allows
the configuration of multiple parameters, such as topic names, Quality of Service (QoS) for message
publishing, message payload, and to customize the IoT nodes, either publishers or subscribers, according
to the MQTT interaction pattern.

The proposed traffic generation framework is implemented in Python, and leverages libraries such as
Pandas, Numpy, and the Eclipse Paho MQTT client1 for efficient data handling and network communi-
cations. The generator provides two modes of operation, namely, a manual configuration mode using a
.csv configuration file for synthetic traffic generation, and an empirical distribution mode that replays
previously captured traffic traces from .pcap files. This adaptability makes our tool a valuable asset
for testing detection systems, refining anomaly detection algorithms, and advancing security protocols
within MQTT-based IoT networks, under conditions that closely resemble real-world threats.

3.2. SLMs for Automatic Generation of Test Cases

Manipulation of MQTT topic names is used by attackers willing to establish a covert communication
between two (or more) clients sharing the same MQTT broker. By taking advantage of the global
“visibility” of the MQTT topics to all the connected devices, a malicious IoT device could encode secret
data by altering the case sensitivity of a topic name: publishing a message on a topic composed of only
lowercase letters signals the bit 1, whereas sending a message on a topic containing an uppercase letter
signals the bit 0. We point out that such an attack model requires a suitable “visibility” over topics
handled by the MQTT broker. In fact, properly configured brokers or as-a-Service deployments (e.g.,
based on AWS) that enforce access control policies might limit the number of topics that can be used
to encode the secret data. Nevertheless, weak credentials or poor configuration choices often plagues
MQTT brokers, which are exposed over the Internet without a proper security degree [25].

In this context, to simulate an attacker modifying the topic list of a targeted MQTT broker, we
developed an AI framework based on the Bidirectional Encoder Representations from Transformers
(BERT) [26]. In essence, this framework employs a transformer-based architecture that comprehensively
understands word context within a sentence by analyzing both preceding and subsequent words. In
more detail, the BERT consists of a stack of transformer encoder layers, each comprising multiple
self-attention “heads". This bidirectional approach captures linguistic nuances more effectively than
traditional unidirectional models.

The pre-training process includes two main steps, i.e., Word Masking and Next Sentence Prediction.
In the masking step, a certain percentage of words within a sentence is either masked or randomly
substituted. The BERT model is subsequently trained to predict these masked words by analyzing
the surrounding context, which includes the words that precede and follow the masked word. This
task is designed to help the model grasp the contextual relationships between words in a sentence. In
the prediction step, the BERT model undergoes fine-tuning to identify the relationships between two
consecutive sentences. This involves generating negative examples by replacing the second sentence
with a random one. The model is then trained to differentiate between positive pairs (authentic
consecutive sentences) and negative pairs (where the second sentence has been replaced).

For generating synthetic MQTT topics allowing the emulation of an attacker cloaking information in
malicious/counterfeit topics, we employed a compact pre-trained variant of BERT2 tailored for historical

1https://pandas.pydata.org, https://numpy.org, https://pypi.org/project/paho-mqtt/
2Hugging Face Model Hub: https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased [Last Accessed: December
2024]

https://pandas.pydata.org
https://numpy.org
https://pypi.org/project/paho-mqtt/
https://huggingface.co/dbmdz/bert-tiny-historic-multilingual-cased


CLS Home Kitchen M0tion

BERT

CLS Home Kitchen MASK Tokenization and
Masking

Transfomer

Model Prediction and
Variant Generation

Home/Kitchen/M0tion

Home/Kitchen/Motion

Figure 1: Learning/Application flow on an MQTT topic example.

and multilingual text processing. This model is optimized for handling multilingual data, making it
especially effective at producing diverse and meaningful topic variations across different languages
while maintaining computational efficiency.

The MQTT topic generator is based on a masked language modeling technique. The main steps
involved in this process are:

1. Tokenization: the input MQTT topic is tokenized by the BERT tokenizer. The text is then
converted into a sequence of tokens, which are mapped to their corresponding token IDs, e.g.,
from Home/Kitchen/Motion to Home, Kitchen, and Motion.

2. Masking Tokens: some tokens in the sequence are randomly selected and replaced with a special
[MASK] token. The masking probability is set to 15%, as discussed in [27].

3. Model Prediction: the masked sequence feeds the BERT model, which predicts the original
tokens that were replaced by the [MASK] tokens. These predictions are influenced by surrounding
tokens creating a “context”.

4. Variant Generation: the predicted tokens replace masked ones to generate a variant of the
legitimate topic.

Figure 1 shows the components implemented for generating a test MQTT topic via the BERT frame-
work. As depicted, the model takes as input a legitimate topic, which is properly tokenized. In the
example, we consider the generation of a variant targeting the last level of the topic hierarchy. Masking
is performed only during the learning phase, while variant generation is performed during the applica-
tion phase. The CLS token is used as a delimiter. We point out that the generation process has been
designed to create MQTT topics very similar to the ones provided by the training distribution. In fact,
not to make the covert communication attempt obvious, the malicious actor is expected to use as the
carrier new topics (or variations of a pre-existent entry), which are very similar or highly-correlated
with the names handled by the targeted MQTT broker (see, e.g., [28]).

4. Numerical Results

In this section, we present the experimental results. Specifically, Section 4.1 demonstrates the effective-
ness of the approach to generate two different types of malicious network conditions, whereas Section
4.2 presents how pseudo-fuzz via SLMs can support the mitigation of covert channels targeting MQTT
topics.



4.1. Generation of Network Threats

To demonstrate the versatility of our traffic generation approach, we setup two distinct network threats,
i.e., a small DoS attack that tries to overwhelm an MQTT broker by flooding a specific topic name, and
a covert communication channel implemented through topic manipulation.

The first experiment refers to a smart room environment that includes a broker that receives messages
by two types of sensors: a temperature sensor that publishes a legitimate message every 5 seconds and
500 compromised humidity sensors, each publishing a message every 0.05 seconds with a QoS level
set to 2. For implementing this offensive scenario, we deploy a Mosquitto broker version 2.0.18 on a
virtualized Raspberry Pi with an ARM1176 processor and 256 MB RAM that models a setup commonly
used in IoT home appliances. Instead, the traffic generators run on a workstation with an Intel Core
i5-2500, 8 GB RAM, and 1 TB RAID 1 HDDs.

Figure 2(a) illustrates the throughput of the network, expressed in number of packets per second,
during the simulated DoS attack. As shown, the high-frequency packet flooding, sustained over a

(a) DoS attack (b) Covert channels

Figure 2: Network throughput measured during a small DoS attack implemented by flooding an MQTT broker
using a specific topic, and during a covert communication implemented by manipulating MQTT topics.

10-second interval, causes a rapid increase in the network throughput, whose peaks exceed 20, 000
packets/second, that is, approximately 13 Mbps. At the end of the attack, the load goes back to its
normal levels. Even though the attack is not able to saturate the network bandwidth, it affects the
performance of the packets. For example, the mean latency of packet delivery raises sharply from 2.88
seconds under normal traffic conditions to 51.09 seconds during the attack, clearly highlighting the
vulnerability of MQTT-based IoT networks to flooding attacks.

For the second experiment, i.e., the covert communication channel, we consider a smart home
environment consisting of ten legitimate sensors (i.e., two subscribers and eight publishers) and three
compromised IoT devices. These devices establish covert communication channels by exploiting the
MQTT topic name field, each publishing messages every 4 seconds with a different QoS level (i.e., 0, 1,
and 2). The use of various QoS levels allows the evaluation of the impact of the attack also in terms
of the additional traffic being generated. We recall that higher QoS levels require MQTT to produce
acknowledgments, which contribute to an increased packet volume and resource consumption.

Figure 2(b) depicts the network throughput over a 100-second interval, namely, the total traffic in
blue, alongside the traffic from each compromised device, represented in red, green, and orange. During
the observation interval, the peak throughput for covert traffic alone reaches approximately 8 Kbps,
compared to a peak of approximately 48 Kbps for the total traffic. These results illustrate how higher
QoS levels lead to increased packet exchanges due to the different acknowledgment schemes of the
MQTT protocol, thus impacting both the overall throughput and the detectability of the covert channels.

Figure 3 further details the behavior of one of the compromised devices of the scenario previously
described, namely, the device using a QoS level equal to 1. The flow shows the exchanges between
the device and the MQTT broker and clearly illustrates the process that involves a single PUBACK
acknowledgment per message, typical of this QoS level. Notably, the covert communication mechanism
embeds the secret information within the last level of the topic name (e.g., Home/Kitchen/Humidity)



Figure 3: Flow diagram of the exchanges between a tampered node establishing a covert channel via the topic
name case pattern and the MQTT broker. The device uses a QoS level equal to 1. Time is measured in seconds.

by utilizing the case pattern of the first letter as the container for the hidden data.

4.2. Generation of MQTT Topics for Covert Communications

As discussed in Section 3.2, an attacker could abuse MQTT topics to conceal information and build some
form of covert communications. In this vein, being able to tune ad-hoc detection metrics or anticipate
possible offensive hiding strategies are core tasks. To illustrate the effectiveness of SLMs for generating
test cases, we consider a set of 98 distinct broker configurations, each containing 30 unique topic names
representative of diverse, legitimate scenarios across multiple languages, including English, Spanish,
and German. These topic names are obtained by querying two publicly accessible MQTT test servers3

hosted by the Eclipse Foundation. The data collection process leverages a custom Python script built
with the Paho MQTT client library, enabling the connection to the test servers and the subscription to
all available topics using the # multi-level wildcard. From the total number of 4, 918 retrieved topics, a
subset of 1, 978 entries is randomly extracted to train the SLM used for generating the topic variations.

To assess the SLM, we setup 5, 880 test cases equally distributed between real topics and SLM-
generated topics that simulate an attacker crafting a covert, malicious variant closely resembling a
legitimate topic. For each of the 98 brokers used in the experiments, we sequentially exclude one
of its 30 topics at a time and we assess these topics with respect to the legitimate topic as well as a
counterfeit variant generated by the SLM. Because of the string-based nature of MQTT topic names, these
assessments are based on metrics commonly employed for text analysis, e.g., entropy, compressibility,
Levenshtein distance, and cosine similarity [29, 30]. Moreover, such metrics demonstrated to be a
prime effective mechanism to identify the presence of a threat actor trying to hide data through the
manipulations of topics, even if they require further tweaking [27]. To classify topic names as legitimate
or counterfeit, each metric is assigned a threshold value. These thresholds are determined based on
a given percentile derived from the distribution of the metric, computed across all topic pairs for the
considered brokers.

Figure 4 shows the distributions of the cosine similarity and Levenshtein distance. As can be seen
from Figure 4(a), the distribution of the cosine similarity is highly skewed towards small values. For
example, its median is equal to 0.14, whereas the first and third quartiles are equal to 0.06 and 0.25,

3https://test.mosquitto.org/, https://mqtt.eclipseprojects.io/

https://test.mosquitto.org/
https://mqtt.eclipseprojects.io/


(a) Cosine similarity distribution (b) Levenshtein distance distribution

Figure 4: Distribution of the cosine similarity scores (a) and of the Levenshtein distances (b) across all topic
pairs on all brokers. The 10𝑡ℎ, 20𝑡ℎ, 25𝑡ℎ, 50𝑡ℎ, 75𝑡ℎ, 80𝑡ℎ, and 90𝑡ℎ percentiles are highlighted.

respectively. We recall that cosine similarity quantifies the similarity of two vectors by calculating the
cosine of the angle between them, thus small values (close to 0) indicate high dissimilarity, suggesting
potential covert or counterfeit topics. On the contrary, high values (close to 1) indicate an alignment
with legitimate topics. In addition, the densely clustered lower percentiles suggest that thresholds
based on these values might effectively detect counterfeit topic names by filtering out topics with
minimal similarity with respect to the baseline. In contrast, higher percentiles exhibit greater sparsity,
indicating strongly aligned, legitimate topics. Instead, the distribution of Levenshtein distances (depicted
in Figure 4(b)) is rather evenly spread. The distances are in the range [1–60], and the first and third
quartiles are equal to 9 and 21, respectively. We recall that the Levenshtein distance measures the
minimum number of single-character edits needed to transform one string into another, thus it helps to
identify related or similar topics: smaller values indicate an alignment with expected patterns of the
considered broker, whereas higher values might signal counterfeit topics with significant deviations.
In this case, higher percentiles potentially serve as effective thresholds for detecting that topics have
been altered to conceal data, given that larger values represent greater divergence from legitimate topic
names. Results have shown that the cosine similarity achieves the best performance independently
of the value of the percentile, leading to the proposal of a detection method solely based on cosine
similarity. Specifically, according to the observed distribution, four percentiles, i.e., 10𝑡ℎ, 20𝑡ℎ, 25𝑡ℎ,
and 50𝑡ℎ, are selected to explore the balance between precision and accuracy. Each threshold percentile
is used to classify topic names, labeling a topic as counterfeit if its cosine similarity falls below the
given threshold.

Table 1 presents the classification performance assessed, as a function of the percentile, in terms of
accuracy, precision, recall, and F1 score. Results indicate that lower thresholds enhance performance by

Percentile Accuracy Precision Recall F1 Score

50𝑡ℎ 0.869 0.794 0.997 0.884
25𝑡ℎ 0.961 0.936 0.989 0.962
20𝑡ℎ 0.967 0.949 0.988 0.968
10𝑡ℎ 0.985 0.983 0.987 0.985

Table 1
Performance achieved by the proposed implementation of the cosine similarity calculated across all the brokers
with different percentile thresholds.

applying stricter criteria for identifying dissimilar topics, thereby reducing false negatives. At the 50𝑡ℎ
percentile threshold, accuracy is 0.869, with high recall (0.997) but lower precision (0.794), suggesting
that more legitimate topics are misclassified. As the threshold decreases to 20𝑡ℎ and 10𝑡ℎ, precision
and F1 scores peak at 0.968 and 0.985, respectively. This demonstrates that lower thresholds improve
the ability of the model to accurately classify legitimate topics, reducing false positives and achieving
more precise detection of covert communications.



This percentile-based approach is particularly effective because it enables adaptable thresholding,
leveraging the distribution of similarity scores on each broker to capture variations between legitimate
and covert topics across diverse broker scenarios. Detection accuracy can be further improved by
combining cosine similarity with other text analysis metrics. In this case, the complementary percentile
is applied as a threshold, with higher metric values indicating counterfeit topics, while lower values
confirm legitimacy. Although these metrics can contribute to detection improvements in specific cases,
results indicate that their overall impact on accuracy is limited. For example, combining cosine similarity
with Levenshtein distance yields a peak accuracy of 0.978 reached at the 90𝑡ℎ percentile. Moreover, the
low performance of compressibility, Levenshtein distance, and entropy in our model leads to an overall
accuracy of 0.569. These results further support the advantages of relying solely on cosine similarity,
which achieves robust performance without the complexity of implementing additional metrics.

To address a limitation of the proposed cosine similarity-based detection method, i.e., the potential
misclassification of valid topics containing synonyms inadvertently introduced by legitimate users,
we propose an enhanced approach. We still evaluate the cosine similarity of incoming topics against
the existing topics on the broker, but we incorporate a semantic equivalence analysis leveraging
Word2Vec embeddings. This integration accounts for word-level variations within incoming topics
prior to classification, thereby reducing false positives by effectively recognizing synonyms. Results
demonstrate that such an approach ensures robustness across diverse broker scenarios while maintaining
a high level of detection accuracy. For instance, at the 20𝑡ℎ percentile threshold, accuracy is equal to
0.951, that is, only slightly smaller than the value obtained without introducing synonyms. Similarly,
precision and recall are equal to 0.942 and 0.959, respectively.

5. Conclusions and Future Work

In this paper, we presented an approach to improve the security of IoT ecosystems through the automatic
generation of test data. To this aim, we introduced a tool for the creation of traffic conditions based
on real-world threat templates, e.g., DoS and covert channels hidden within the MQTT protocol. We
also discussed a framework taking advantage of an SLM to generate realistic MQTT topics especially
to assess and improve possible countermeasures. As shown, both approaches can be effectively used
to conduct a wide array of investigations, such as implementing pseudo-fuzzing approaches against
detection metrics.

Future works aim at refining the proposed tools, e.g., by improving the predefined offensive templates.
For instance, we are working towards hiding mechanisms based on topic wildcard to implement covert
communications schemes among multiple endpoints as well as channels with an increased stealthiness.
Another relevant part of our ongoing research concerns the creation of an integrated framework able to
operate simultaneously at different layers of the protocol stack. For instance, this framework could be
used to create test scenarios for assessing the robustness against advanced attack schemes, e.g., multi-
stage loading mechanisms using both the application messages and protocol data units to exchange
information with a remote command & control facility.

Acknowledgments

This research was partially funded by Project RAISE – Robotics and AI for Socio-economic Empowerment
(ECS00000035), Project SERICS – SEcurity and RIghts In the CyberSpace (PE00000014), and by Project
STRIVE/URAN – Advanced Approaches for Transitions in Urban Environments.

Declaration on Generative AI

The authors have not employed any Generative AI tools.



References

[1] G. Mylonas, A. Kalogeras, G. Kalogeras, C. Anagnostopoulos, C. Alexakos, L. Muñoz, Digital
Twins From Smart Manufacturing to Smart Cities: A Survey, IEEE Access 9 (2021) 143222–143249.
doi:10.1109/ACCESS.2021.3120843.

[2] A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif, W. H. Alshoura, H. Arshad,
The Internet of Things Security: A Survey Encompassing Unexplored Areas and New Insights,
Computers & Security 112 (2022) 102494.

[3] B. B. Gupta, M. Quamara, An Overview of Internet of Things (IoT): Architectural Aspects,
Challenges, and Protocols, Concurrency and Computation: Practice and Experience 32 (2020)
e4946.

[4] A. J. Hintaw, S. Manickam, M. F. Aboalmaaly, S. Karuppayah, MQTT Vulnerabilities, Attack Vectors
and Solutions in the Internet of Things (IoT), IETE Journal of Research 69 (2023) 3368–3397.

[5] M. M. Raikar, S. Meena, Vulnerability Assessment of MQTT Protocol in Internet of Things
(IoT), in: Proceedings of the 2nd International Conference on Secure Cyber Computing and
Communications, ICSCCC, IEEE, 2021, pp. 535–540.

[6] L. Caviglione, M. Choraś, I. Corona, A. Janicki, W. Mazurczyk, M. Pawlicki, K. Wasielewska, Tight
Arms Race: Overview of Current Malware Threats and Trends in Their Detection, IEEE Access 9
(2020) 5371–5396.

[7] F. Strachanski, D. Petrov, T. Schmidbauer, S. Wendzel, A Comprehensive Pattern-based Overview
of Stegomalware, in: Proceedings of the 19th International Conference on Availability, Reliability
and Security, ARES ’24, Association for Computing Machinery, 2024.

[8] A. Mileva, A. Velinov, L. Hartmann, S. Wendzel, W. Mazurczyk, Comprehensive analysis of MQTT
5.0 susceptibility to network covert channels, Computers & Security 104 (2021) 102207.

[9] H. Kim, A. Ahmad, J. Hwang, H. Baqa, F. Le Gall, M. A. R. Ortega, J. Song, IoT-TaaS: Towards a
Prospective IoT Testing Framework, IEEE Access 6 (2018) 15480–15493.

[10] A. N. Duc, R. Jabangwe, P. Paul, P. Abrahamsson, Security Challenges in IoT Development: a
Software Engineering Perspective, in: Proceedings of the XP2017 Scientific Workshops, XP’17,
Association for Computing Machinery, 2017.

[11] I. Nadir, H. Mahmood, G. Asadullah, A Taxonomy of IoT Firmware Security and Principal Firmware
Analysis Techniques, International Journal of Critical Infrastructure Protection 38 (2022) 100552.

[12] S. Ghazanfar, F. Hussain, A. Ur Rehman, U. Fayyaz, F. Shahzad, G. Shah, IoT-Flock: An Open-source
Framework for IoT Traffic Generation, in: Proceedings of the 2020 International Conference on
Emerging Trends in Smart Technologies, ICETST, 2020.

[13] H. Nguyen-An, T. Silverston, T. Yamazaki, T. Miyoshi, Generating IoT Traffic in Smart Home
Environment, in: Proceedings of the IEEE 17th Annual Consumer Communications & Networking
Conference, CCNC, IEEE, 2020.

[14] S. Hui, H. Wang, Z. Wang, X. Yang, Z. Liu, D. Jin, Y. Li, Knowledge Enhanced GAN for IoT Traffic
Generation, in: Proceedings of the ACM Web Conference, 2022, pp. 3336–3346.

[15] R. Li, Q. Li, Q. Zou, D. Zhao, X. Zeng, Y. Huang, Y. Jiang, F. Lyu, G. Ormazabal, A. Singh, et al.,
IoTGemini: Modeling IoT Network Behaviors for Synthetic Traffic Generation, IEEE Transactions
on Mobile Computing 23 (2024) 13240–13257.

[16] I. Vaccari, G. Chiola, M. Aiello, M. Mongelli, E. Cambiaso, MQTTset, a New Dataset for Machine
Learning Techniques on MQTT, Sensors 20 (2020) 6578.

[17] F. Iglesias, F. Meghdouri, R. Annessi, T. Zseby, CCgen: Injecting Covert Channels into Network
Traffic, Security and Communication Networks 2022 (2022) 2254959.

[18] M. Zuppelli, L. Caviglione, pcapStego: A Tool for Generating Traffic Traces for Experimenting with
Network Covert Channels, in: Proceedings of the 16th International Conference on Availability,
Reliability and Security, ARES ’21, Association for Computing Machinery, 2021.

[19] K. Lamshöft, T. Neubert, C. Krätzer, C. Vielhauer, J. Dittmann, Information Hiding in Cyber
Physical Systems: Challenges for Embedding, Retrieval and Detection Using Sensor Data of the
SWAT Dataset, in: Proceedings of the 2021 ACM Workshop on Information Hiding and Multimedia

http://dx.doi.org/10.1109/ACCESS.2021.3120843


Security, IH&MMSec, 2021, pp. 113–124.
[20] L. Caviglione, W. Mazurczyk, You Can’t Do That on Protocols Anymore: Analysis of Covert Chan-

nels in IETF Standards, IEEE Network 38 (2024) 255–263. doi:10.1109/MNET.2024.3352411.
[21] M. A. Elsadig, A. Gafar, Covert Channel Detection: Machine Learning Approaches, IEEE Access

10 (2022) 38391–38405.
[22] X. Zhu, S. Wen, S. Camtepe, Y. Xiang, Fuzzing: a Survey for Roadmap, ACM Computing Surveys

54 (2022).
[23] K. Hölk, W. Mazurczyk, M. Zuppelli, L. Caviglione, Investigating HTTP Covert Channels Through

Fuzz Testing, in: Proceedings of the 19th International Conference on Availability, Reliability and
Security, ARES ’24, Association for Computing Machinery, 2024.

[24] Y. Wang, P. Jia, L. Liu, C. Huang, Z. Liu, A Systematic Review of Fuzzing Based on Machine
Learning Techniques, PloS one 15 (2020) e0237749.

[25] Rachit, S. Bhatt, P. R. Ragiri, Security Trends in Internet of Things: A Survey, SN Applied Sciences
3 (2021) 1–14.

[26] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding, in: Proceedings of the Conference of the North American
Chapter of the Association of Computational Linguistics, volume 1 of NAACL-HLT, 2019, pp.
4171–4186. doi:10.18653/v1/N19-1423.

[27] C. Cespi Polisiani, M. Zuppelli, M. C. Calzarossa, L. Caviglione, M. Guarascio, Mitigation of
Covert Communications in MQTT Topics Through Small Language Models, in: Proceedings of
the 32nd International Symposium on the Modeling, Analysis, and Simulation of Computer and
Telecommunication System, MASCOTS, IEEE, 2024.

[28] A. Velinov, A. Mileva, S. Wendzel, W. Mazurczyk, Covert Channels in the MQTT-based Internet of
Things, IEEE Access 7 (2019) 161899–161915.

[29] C. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University
Press, 2008.

[30] W. Stallings, Cryptography and Network Security Principles and Practice, 8th Edition, Pearson
Education, 2023.

http://dx.doi.org/10.1109/MNET.2024.3352411
http://dx.doi.org/10.18653/v1/N19-1423

	1 Introduction
	2 Related Work
	3 Mechanisms for Testing IoT Ecosystem Security
	3.1 Threat-driven Traffic Generation
	3.2 SLMs for Automatic Generation of Test Cases

	4 Numerical Results
	4.1 Generation of Network Threats
	4.2 Generation of MQTT Topics for Covert Communications

	5 Conclusions and Future Work

