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Abstract
As modern security threats evolve, purely stateless defenses cannot capture the progressive nature of malicious
behaviors. To address this limitation, we propose to track potentially malicious actions via stateful abstractions
based on the eXtended Finite-State Machine (XFSM) paradigm, enabling not only the modeling of process
evolution but also the management of system components—including physical ones like RAM frames—within the
operating system kernel. By leveraging extended Berkeley Packet Filter (eBPF) technology, our approach ensures
minimal performance overhead while facilitating flexible, real-time detection of complex attack patterns. We
demonstrate its effectiveness through functional evaluations on real-world scenarios and confirm its practical
feasibility via comprehensive performance assessments. Our solution delivers a powerful yet user-friendly defense
mechanism, balancing kernel-level complexity with adaptability to contemporary security challenges.

1. Introduction

In recent years, security threats have grown increasingly complex [1], demanding defenses that, unlike
stateless rules or policies, track the evolving behavior of processes and system components. More
generally, it would be extremely useful to rely on security solutions where specific objects—like an I/O
session, or a frame of RAM—could be associated with a state machine oriented to security management.
At the same time, supporting the programmability of such state machine through a simplified in-kernel
support would be a significant asset. Existing solutions often rely on system call filtering, but many
are not fully stateful [2, 3], since they apply filters just based on used parameters or sequences of
invoked system calls—hence the state information might be limited to keeping the history of invoked
services. Hence, they do not really track the state of generic system-level objects—used at any point
in the vertical hardware/software layering—which can be ultimately exploited while really executing
(malicious) activities in the system.

In this context, a prominent example is related to an individual RAM frame. In fact, it could represent
the backed RAM store underlying shared memory services when mapping logical pages that belong to
different address spaces, whose processes could even be active in non-overlapping time intervals. In
this scenario, the content of the RAM frame can actually represents a Write-Execute (WX) RAM area
where malware could be un-encrypted (by one process) and then executed (by the other process) even
if none of the two processes might have had both Write and Execute permissions on the logical page
that was mapped on the frame. In this work we propose a system architecture for associating a state to
any generic logical/physical object in the IT system, which evolves along time. The final advantage of
this solution is the one of enabling the discovery of the entrance of objects—like the aforementioned
frame—into states that can be critical for security. To model the evolution of the objects in the operating
system architecture, we relied on the “eXtended Finite State Machine” paradigm [4, 5, 6, 7]. XFSMs are
finite-state machines enhanced with state variables and condition-based transitions. While traditional
finite-state machines rely solely on discrete states, XFSMs incorporate state variables that can hold
multiple values. This approach reduces the need to create distinct states for every possible combination
of conditions, effectively addressing the “state space explosion” problem [8, 9]. Transitions in an XFSM
occur when specified conditions involving state variables are met, allowing for more dynamic and
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flexible behavior. Moreover, a single transition can simultaneously modify internal state variables and
execute actions, streamlining the state management process.
Basing on the XFSM paradigm, in this work we make the following key contributions:

1. Stateful Abstraction Based on XFSM: We propose a stateful abstraction model based on the XFSM
paradigm to effectively track and represent the evolution of system objects, in particular within
the operating system kernel.

2. Implementation Using eBPF: We develop an efficient XFSM engine for Linux leveraging extended
Berkeley Packet Filter (eBPF) technology [10, 11], enabling the execution of multiple XFSMs
directly within the kernel with minimal performance overhead.

3. Functional Evaluation with Attack Use Cases: We conduct a functional evaluation using real-
world attack scenarios to demonstrate the effectiveness of our approach in detecting complex
attack patterns.

4. Performance Evaluation (Overhead Assessment): We perform a comprehensive performance
evaluation to assess the overhead introduced by our solution, showing that it remains practical
for deployment in production environments.

Our solution strikes a balance between the flexibility of kernel modules—which however are complex
to write and manage—and the ease of use of security tools like Tetragon [3] and Falco [2]—which
however offer less expressive policies. By leveraging XFSMs and eBPF, we provide a powerful yet
efficient mechanism in Linux for stateful monitoring and defense against sophisticated attacks.

The remainder of this article is structured as follows. In Section 2 we discuss related work. In Section
3 we detail the design of our XFSM engine and discuss its implementation using eBPF. In Section 4 we
show the system effectiveness via case studies. In Section 5 we evaluate its run-time cost. Conclusions
are discussed in Section 6.

2. Related Work

Traditional operating system security has been based on Discretionary Access Control (DAC). To
enhance these controls and address their limitations, Mandatory Access Control (MAC) mechanisms
were introduced. In Linux, MAC is implemented through the Linux Security Modules (LSMs) framework
[12], which provides security hooks into the kernel. Among the various implementations of LSMs,
Security-Enhanced Linux (SELinux) [13] is widely adopted. It allows for the definition of rules to
prevent critical security scenarios by making access control decisions based on labels. Each resource
managed by SELinux has an associated label, and system actors referred to as “subjects”, also have
associated labels. Through SELinux transitions, it is possible to define the state evolution of system
objects. However, a significant limitation of SELinux is its inability to track the state of generic system
objects due to the constraints of the LSM hooks. For instance, SELinux cannot be relied upon if one
needs to associate a state (and a state trajectory) to a physical memory frame, just because of the absence
of apposite hooks [14]. Incorporating monitoring at the physical memory level would require adding
custom hooks to the kernel.

Several research proposals have focused on protecting the execution context of system calls through
system call filtering mechanisms. Bastion [15] is a prototype that aims to protect against the abuse of
system calls by verifying whether the calling context of a system call is permissible. It achieves this
by checking system call arguments and sequences. Another approach involves extending SecComp
(Secure Computing Mode) with eBPF [16] to introduce a notion of state into the traditional SecComp
filtering mechanism. SecComp [17, 18] is a Linux kernel feature that allows processes to be sandboxed
according to predefined filters. The eBPF extension enables stateful filtering by incorporating state
into the decision-making process. However, this tool is specifically designed to handle a limited set
of scenarios—related to tracking the state of system calls—and has no support for monitoring and
recording the state of generic system-level objects, including physical objects. To protect containerized



Solution Stateful
monitoring

Layering cov-
erage

Custom pol-
icy support

Runtime
reconfiguration

SELinux Yes Partial Yes Partial
Bastion No Partial Partial Yes
SecComp + eBPF Yes Partial Partial Yes
Phoenix Yes Partial Yes Partial
Tetragon No Partial Yes Yes
Falco No Partial Yes Yes
XFSM + eBPF (our
approach)

Yes Yes Yes Yes

Table 1
Comparison of security solutions and their features.

environments, Phoenix [? ] is a research tool designed to safeguard against unpatched vulnerabilities.
It relies on SecComp and Ptrace [19] to filter system call arguments and sequences, using SecComp
for pre-filtering and Ptrace for deep inspection of system call parameters. Like the SecComp-eBPF
extension, this mechanism has limitations in monitoring and recording generic types of logical and
physical objects. There are also widely used solutions based on eBPF for containerized environments.
Tetragon [3] is a runtime security enforcement and observability tool that performs filtering directly
within the kernel. It provides a series of filtering policies and allows users to define their own without
hard-coded filters. Users specify policies by defining the hook point, the condition to check, and the
action to perform when the condition is met.
Falco [2] is another tool used in containerized environments that detects and notifies about suspicious
behaviors without taking reactive measures. While Tetragon utilizes eBPF kprobes and tracepoints,
Falco employs eBPF kprobes and kernel modules. Like Tetragon, Falco allows users to define custom
rules in addition to the default ones provided by the engine. Both Tetragon and Falco parse YAML files
to extract the policies to be executed, making them flexible and easy to configure. However, a limitation
of these tools is that they do not allow filtering based on conditions applied to the state of an object;
they are essentially stateless.

Overall in Table 1 we report a schematized comparison of the discussed solutions, and of what we
propose, by relying on a few relevant indexes.

3. The XFSM + eBPF Approach

Our system is implemented as an XFSM executor which is based on two layered architectural components.
The topmost one offers a mapping component that allows specifying the state transitions that a state
machine needs to implement in order to model the state trajectory of a given object. We call this
component as Management-Layer (ML). Currently, our maps kept by the management layer are statically
defined by the user, although nothing prevents the possibility to modify the design for offering maps
that are in their turn state machines. The lower layer in our architecture is the Per-Object XSFM Layer
(POXL). This layer is in charge of maintaining for each object of interest its current state. The different
system objects are of interest depending on specific events that occur within the system, which are
anyhow linked to specific actions executed by some running thread, either in process context or in
interrupt context. In our architecture, these events are generated via an hooking mechanism, that can
be applied in a flexible manner depending on the specific points of the execution of the kernel code that
needs to be intercepted—since they may have some effect on the state of particular monitored objects.
The technology used for hooking is twofold, and is linked to the different ways according to which an
eBPF hook can be installed in the Linuk kernel. In particular, our architecture uses both:

- eBPF Tracepoints: these are predefined hooks embedded within the Linux kernel, designed to
allow eBPF programs to attach and execute custom logic at key kernel events without modifying
kernel source code.
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Figure 1: System architecture

- Kprobes: dynamic instrumentation mechanisms used when tracepoints are not available, allowing
eBPF programs to hook into almost any kernel function.

Interceptors can be placed at both the entry and exit points of generic kernel functionalities, including
system calls. Within each interceptor, activities are performed in our solution at both the levels of the
architecture. In particular:

1. POXL: to handle the current object state, its access-key is retrieved and the state information is
accessed.

2. ML: the object state information is passed in input to the ML layer, which determines the action to
perform according to the rules the user has defined for that specific object type—hence depending
on such state and the occurred event intercepted via the hooks.

One key point in the above description is related to the retrieval of the access-key for an object state. In
our architecture, the access key can be defined by the user by relying on whatever information can
be accessible when running the eBPF hook that traces the occurring events. For example, whatever
metadata related to the currently executing thread, such as its PID, can be used. Also, for events
generated by hooks installed at the entry points of services that are invoked by the thread—like for
example system calls—the key can correspond to whatever parameter the service has received. Actually,
we also offer in our architecture the possibility to combine different information to generate the key—like
for example combining the PID with the value of a specific parameter of a service. This will enable the
access to a specific object type, and to its state, at the POXL level. As for the employed data structures,
both the levels of our architecture are implemented using eBPF hash maps, which require a unique
identifier for each element due to their exact matching mechanism. Overall, for the two layers, we have
the following binding to the hash maps, and to the < 𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 > pair that they manage:

• For ML we have what follows:

Key - Composed of the current state of the object and the event that occurs (e.g., the type of
system call intercepted).

Value - Contains a set of conditions involving environment variables, such as XFSM registers
and system call parameters. Based on these variables, the system decides which action to perform,
allowing actions to adapt dynamically to the current state.

• For POXL we have what follows:

Key - A unique identifier for each system object, depending on the type of object (e.g., process
ID for processes, frame number for memory frames).

Value - Represents the object’s current state and includes a set of registers that store various
information about the object.



The state transitions of the POXL state machines are driven by the configuration of ML. Transitions
triggered under specific conditions guide the evolution of per-object XFSMs over time. Since in our
monitoring architecture system objects can interact, one object’s state may influence another one,
allowing a per-object XFSM to trigger a state transition in another per-object XFSM. This is supported
by simply maintaining in the state of an object the access key to retrieve the state of another object.

In Figure 1 we schematize tha main parts of our achitecture, also showing the relation with eBPF
hooks and system calls or traps.

3.1. Actions and Reactive Engine

The actions to be performed when an object transits into a specific state constitute the “reactive engine”
of our solution. These actions are selected from a set implemented using eBPF helper functions or
custom kernel functions. By deciding which action to execute, the system’s behavior can be customized
flexibly depending on the scenario. Examples of actions that are supported in our architecture include:

• Notifying: Alerting users or administrators about suspicious behaviors via logs or user-space
notifications.

• Restricting: Modifying or blocking system calls to prevent malicious activities.

• Updating States: Modifying internal states or XFSM registers to reflect changes in object behaviors.

• Interacting with Kernel Modules: Leveraging kernel functions to perform complex tasks or to
extend functionality beyond eBPF’s capabilities.

Custom kernel functions enable eBPF programs to interact with kernel modules, allowing the develop-
ment of any required functionality that is not natively supported by eBPF.

3.2. Workflow

The workflow is executed within the interceptors of system calls, or handlers of other events, which,
depending on the scenario, can be located either at the entry or the exit point of the intercepted module.
It consists of two main phases:

1. Per-Object XFSM lookup: this phase retrieves information specific to the object being processed
by the intercepted function.

2. Management XFSM lookup: this phase evaluates a set of conditions and determines the
appropriate actions and state transitions. The management XFSM operates as follows:

• Conditions are evaluated in priority order, starting from the most critical to the least
important, similar to how rules are processed in firewalls. The last rule handled is the
default one, which must be processed if no condition is met. This ensures that higher-
priority conditions are handled first.

• Each condition involves one or more checks on parameters and is matched against predefined
criteria.

• Based on the matched conditions, the XFSM executes the following steps: (a) Performs the
specified action(s) - (b) Updates parameters or objects’ states as needed - (c) Transits to the
next state.

This modular design allows the workflow to adapt dynamically to varying conditions by using a flexible
matching system for parameter evaluation, ensuring effective control over the behavior of function
interceptors.



API Behavior
void* add_policy(enum fsm_state state, enum
fsm_event event)

Builds the key based on the given state and event, then adds an entry to
the management layer map.

void *add_combination(struct key_struct, enum
action todo, enum fsm_state state, int num_cond,
int combination_index)

Adds a combination by providing the key, action to perform, transition
state, number of conditions to check and combination index.

void *add_condition(int arg_pos, enum
param_type type, enum match_type match)

Adds a condition to a combination by specifying the argument’s position,
parameter type and matching method.

void *remove_policy(enum fsm_state state, enum
fsm_event event)

Builds the key based on the given state and event, then removes the entry
corresponding to the key from the management layer map.

void *remove_condition(enum fsm_state state,
enum fsm_event event, int index)

Builds the key based on the given state and event, then removes the condi-
tion at the specified index from the object associated with the key in the
management layer map

void *remove_combination(enum fsm_state state,
enum fsm_event event, int condition_index, int
combination_index)

Builds the key based on the given state and event, then removes the combi-
nation at the specified index from the object associated with the key in the
management layer map

struct stateful_state *find_POXL_entry(__u64
id)

Retrieves the POXL entry associated to a given identifier

struct value_struct *find_ML_entry(struct
stateful_state *state, enum fsm_event event)

Builds the key based on the given state and event, then retrieves the ML
entry associated to the generated key

struct combination *retrieve_combination(struct
stateful_state *state, enum fsm_event event,
struct value_struct *val, union arguments
*args)

Builds the key based on the given state and event, then retrieves the com-
bination according to the key. The combination contains conditions, state
changes and registers’ updates

void update_state(struct combination *comb,
__u64 id)

Updates the state of the object with the given identifier according to the
combination retrieved

Table 2
Available APIs

3.3. Available APIs

Our system offers the APIs listed in Table 2, which are divided in two families. The first family is used
to configure the system. In particular it provides APIs to dynamically add and remove custom policies
in ML. The first API enables the creation of state-event-based rules, where conditions and parameter
combinations dictate the transition logic. The API supports the seamless integration of new policies into
the management map by defining key-value structures along with the associated conditions that must
be satisfied. To initialize the key, the user must choose both the state and the event from a predefined
list of available options.

To initialize the associated value, the user specifies the number of combinations to evaluate and the
number of conditions within each combination. The user then defines the type of parameters and the
match type for each condition. For the match type, a predefined list of options is provided for the user
to choose from. The user must carefully manage the order of the policies, ensuring that they are defined
from the highest priority to the lowest priority.

The system also provides an API to remove specific conditions on parameters. To do so, the user
must specify the key of the map and the index of the condition to be removed, ensuring precise control
over the conditions associated with a given policy.

Here an example using state1 and event1, the call add_policy(state1, event1) creates
a key (struct key_struct with current_state=state1 and current_event=event1) and a
value (struct value_struct) holding combinations. Each combination (struct combination)
defines parameters, conditions, action (todo), register updates and next state. In this example the
condition is the following:

s t r u c t p a r a m _ c o n d i t i o n c o n d i t i o n = { . a rg_pos =0 , . match=EQUALS , . v a l u e ="
example " , . t ype =STRING } ;

Optionally you can define some register update:

s t r u c t r e g _ u p d a t e update = { . r e g _ i n = s o m e _ r e g i s t r y _ i n , . r e g _ o u t =
s o m e _ r e g i s t r y _ o u t , . reg_num=ONE , . v a l u e =42 , . op=ADD } ;

The system also provides an API to remove specific conditions on parameters. To do so, the user
must specify the key of the map and the index of the condition to be removed, ensuring precise control
over the conditions associated with a given policy.



A similar mechanism is available for an API that allows the removal of an entire combination. The
user specifies the key of the map and identifies the combination to be removed. Doing this the user can
remove all the conditions associated to the given parameters’ combination. Additionally, the user has
the option to remove an entire entry from ML. This API eliminates all policies associated with a specific
object, effectively resetting its configuration. This functionality is particularly useful when the user no
longer wishes to monitor the state of specific objects. The other family of APIs enables the seamless
interaction between POXL and ML. These APIs facilitate object retrieval and state management across
the two layers. Specifically, two APIs allow the retrieval of objects from ML and from the POXL. Both
APIs internally leverage eBPF helper functions, specifically bpf_map_lookup_elem, to fetch the value
associated with a key in a hashmap.

Another API is used to determine the actions required based on the current state and event. This API
performs a lookup in the ML hashmap for the event being processed, and retrieves the corresponding
actions. According to these actions, the object’s state is updated through another API, employed to
modify the state of the XFSM associated with an object. This API internally leverages the eBPF helper
function bpf_map_update_elem.

4. Functional Aspects

The designed solution was evaluated over several scenarios to test its flexibility and adaptivity, two of
which are illustrate in this section.

4.1. System Calls’ Sequence

The first scenario is the sequence of system calls memfd_create and execve. This is a pattern usually
met in Reflective Code Injection attacks [20, 21, 22, 23]. Through the call to memfd_create the attacker
creates a file, then he executes it through the execve. Doing so the code injection is performed without
touching the hard drive. To face this attack the system intercepts the calls to memfd_create and
execve through tracepoints. The tracepoints are at the entry point of the system calls. Both the
tracepoints retrieve the PID of the process that invoked the system call and they update the entry of
the per-object XFSM with the new state. If there is no entry associated to a process, they create a new
entry.

In the memfd_create tracepoint the state changes from SAFE to MEMFD_CREATE_ATTENTION. If
the current state is MEMFD_CREATE_ATTENTION in the execve tracepoint the critical condition is met
and the process is killed.

To check if a condition is met the tracepoint looks into ML. The management map has two entries
related to this system call sequence: one associated with the SAFE state and the other associated with
the MEMFD_CREATE_ATTENTION state. In this use case there is no need to use the XFSM’s registers,
the only action to perform is the XFSM’s state evolution.

When an object is no longer of interest, its associated entry must be removed. Since in this use case
the process ID serves as the identifier for the entries, the system intercepts the invocations of do_exit,
and when the corresponding PID is encountered, it deletes the associated entry from the POXL.

4.2. Physical Memory Frame vs Access Permissions

In this use case, checks are performed in relation to the used physical memory frame. The used identifier
is the frame number, instead of the process ID. This proves the fact that our system can manage different
types of objects. The scenario considered is a code injection attack carried out in a distributed manner
across two processes [24]. In particular, we may have two processes, each one living in its own address
space. A logical page in each of the two address spaces can map on the same physical address. This
is a classical scenario when relying on shared-mapping of memory. The first process can set write
permissions on its logical page, hence enabling writes on the physical frame, and then the second
process can set execution permissions. This sequence of permission changes indicates a potential



cross-process code injection attack exploiting a specific physical frame. To properly track this scenario
in our system, it is important to remember that logical pages are not immediately materialized into
physical frames. In fact, the page is not immediately materialized after the call to mmap. Instead, it is
materialized when a real access (e.g., write/execute) to the page is made. When a process attempts to
access a memory page that has not yet been materialized, a page fault occurs. The operating system’s
page fault handler is invoked to resolve this event. In a typical scenario, the handler allocates a physical
frame, retrieves the required page from disk (if necessary), and maps it into the process’s virtual address
space, thereby making the page accessible.

In this scenario, our system intercepts mmap, mprotect and the page fault handler. In particular
there are two interceptors for each of them, at the entry and exit points. Relying solely on mmap and
mprotect interceptions would not guarantee that the page has been fully materialized.

Since eBPF tracepoints are not available for the page fault handler, it is intercepted using a combination
of a kprobe and a kretprobe. The kprobe captures the parameters passed to the handle_mm_fault
function, while the kretprobe checks whether the page fault handler returns an error. If no error
is returned, the kretprobe retrieves the parameters saved by the kprobe at the entry point of the
page fault handler and logs an entry into the per-object XFSM at the POXL level. This log entry uses
the actual frame number of the involved memory frame as the key. The mmap and mprotect system
calls are also intercepted at both entry and exit points. At the entry tracepoints, the system saves the
arguments of the respective calls. At the exit tracepoints it checks whether the suspicious sequence of
permissions set on the memory frame is satisfied. If the condition is not met, the system updates the
register that tracks the protection state of the frame. For both system calls, this update occurs at the
exit tracepoint, following the evaluation of the return value.

To release the object inserted into the POXL when it is no longer needed, the system intercepts
the invocation of free_pages through a kprobe. If free_pages completes successfully without
returning an error, the system deletes the corresponding entry from the XFSM.

This scenario also accounts for cases where two processes share the same memory location but
access it through different logical addresses. Such a situation arises when dealing with file mapping. By
tracing back to the physical address of the memory frame, the system can track these cases even when
the logical addresses differ.

5. Run-time Cost

To assess the run-time cost of our solution, we considered its nesting for the management of two types
of operating system services (system calls): virtual file system services and address space management
services. Our evaluation aimed to cover both a minimal utilization scenario of our facilities, and
an intermediate one, incorporating various tracepoint implementations. Specifically, we analyzed
empty tracepoints, tracepoints with map accesses (to simulate XFSM’s checks), and their counterparts
implemented using kprobes. To ensure the reliability of the performance measurements, we followed
established guidelines [25] designed to minimize errors. The measurements were conducted on a server
equipped with two Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz processors, distributed
across two distinct NUMA nodes. Each processor features 8 cores, with hyper-threading disabled. The
server is configured with four memory modules, each with a capacity of 32 GB, providing a total of 128
GB of system memory.

Before carrying out the measurements, the processor frequency was fixed at 2.10 GHz using the
cpufreq command, with turboboost disabled, to ensure repeatability of the experiments. Additionally,
CPU affinity was set to avoid interference by the Linux load balancing mechanism.

5.1. Virtual File System Services

The operations considered are read and write, and we used the disk-duplicate system tool via the com-
mand “dd if=/dev/zero of=/dev/empty bs=... count=1000000”. This command performs
a disk duplicate from the input file to the output file using a given block size. We considered several



Figure 2: Tracepoints’ overhead Figure 3: Kprobes’ overhead

block sizes—256 B, 512 B, 1024 B, 2048 B and 4096 B—hence evaluating if the overhead was influenced
by the block size choice. /dev/zero is the well-known device filled with 0s, while /dev/empty is an
ad-hoc created device, not really storing received data. Hence these devices have negligile real costs of
their operations, representing therefore a well case study for the assessment of the pure overhead of
our solution.

For every kind of interceptors’ combination we evaluated, it emerged that making the block size
grow the overhead reduces. This means that, except for specific values of the service parameters, the
overhead appears to be low. In particular, as shown in Figures 2 and 3, for block size of 4096—which
is the common size used in Linux systems for most I/O operations—the worst overhead generated by
the usage of tracepoints or kprobes over read and write is about 14%, and is 10% or less for the other
tested scenarios, even with lower block size.

5.2. Address Space Management Services

To asses the overhead for address space management services we considered mmap and munmap system
calls. To measure the overhead, we used the perf command to capture the execution time of a program
performing 200000 iterations of the following sequence: a mmap operation, a single-byte write to
materialize the memory, and a munmap operation. To gain reliable results we computed the average time
over 100 invocations to perf. The results in Figures 4 and 5 show how the pure usage of tracepoints
gives rise to essentially negligible costs of our solution, which appear to be more pronounced only
when relying on kprobes. We note however that this case study is a real stress scenario, given the
un-likelihood of the frequency of such mmap and munmap of a same area with no real usage of that area
for memory accesses related to the program actual workflow.

Figure 4: Tracepoints’ overhead Figure 5: Kprobes’ overhead

6. Conclusions and Future Work

The system proposed in this work is designed to provide eBPF developers with the capability to
define policies for monitoring/handling complex security scenarios, leveraging the high expressiveness



achieved through the use of a stateful approach. Our approach enables greater expressiveness compared
to other currently available solutions, making the system more versatile and suitable for a wide range of
security scenarios. The system has been designed with a strong emphasis on performance optimization,
ensuring low overhead when its tools are used appropriately. As demonstrated by the use cases we
presented, the system can adapt to and protect against several types of attacks, proving its effectiveness
and flexibility.

So far, our work has focused on the core architecture—managing state transitions and recording object
states—so as to provide a foundation for stateful security-oriented detection mechanisms. However,
several enhancements remain on our roadmap. A first area for improvement revolves around the
introduction of more versatile key matching for state machines; replacing the current eBPF hashmap
with a data structure supporting longest-prefix match would allow for broader and more flexible object
management, overcoming the current limitation posed by exact matching. In addition, we plan to extend
the available APIs, enabling more responsive actions based on user-defined conditions. Another key
objective is developing a set of predefined scenarios the system can autonomously handle, minimizing
manual intervention and simplifying adoption. Collectively, these improvements would simplify the
adoption of the system, enhance its usability, and make it more accessible to users/programmers.

Acknowledgments

This work was partially supported by the projects SERICS (SEcurity and RIghts In the CyberSpace -
PE00000014) and RESTART (Telecommunications of the Future - PE00000001) under the MUR National
Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] J. Singh, G. Singh, S. Negi, Evaluating security principals and technologies to overcome security
threats in iot world, in: 2023 2nd International Conference on Applied Artificial Intelligence and
Computing (ICAAIC), IEEE, 2023, pp. 1405–1410.

[2] T. F. Authors, Falco, 2023. URL: https://falco.org, [Online].
[3] T. T. Authors, Tetragon, 2023. URL: https://tetragon.cilium.io, [Online].
[4] G. Bianchi, M. Welzl, A. Tulumello, F. Gringoli, G. Belocchi, M. Faltelli, S. Pontarelli, Xtra: Towards

portable transport layer functions, IEEE Transactions on Network and Service Management 16
(2019) 1507–1521.

[5] K. T. Cheng, A. S. Krishnakumar, Automatic functional test generation using the extended finite
state machine model, in: Proceedings of the 30th International Design Automation Conference,
DAC ’93, Association for Computing Machinery, New York, NY, USA, 1993, p. 86–91. URL: https:
//doi.org/10.1145/157485.164585. doi:10.1145/157485.164585.

[6] V. I. Ulyantsev, F. N. Tsarev, Extended finite-state machine induction using sat-solver, IFAC
Proceedings Volumes 45 (2012) 236–241. doi:10.3182/20120523-3-RO-2023.00179.

[7] N. Walkinshaw, R. Taylor, J. Derrick, Inferring extended finite state machine models from software
executions, Empirical software engineering 21 (2016) 811–853.

[8] J. E. Hopcroft, R. Motwani, J. D. Ullman, Introduction to Automata Theory, Languages, and
Computation, 3rd ed., Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[9] F. J. Lin, P. Chu, M. T. Liu, Protocol verification using reachability analysis: the state space
explosion problem and relief strategies, in: Proceedings of the ACM workshop on Frontiers in
computer communications technology, 1987, pp. 126–135.

https://falco.org
https://tetragon.cilium.io
https://doi.org/10.1145/157485.164585
https://doi.org/10.1145/157485.164585
http://dx.doi.org/10.1145/157485.164585
http://dx.doi.org/10.3182/20120523-3-RO-2023.00179


[10] L. Rice, Learning eBPF, " O’Reilly Media, Inc.", 2023.
[11] R. Davoli, M. D. Stefano, BERKELEY PACKET FILTER: theory, practice and perspectives, Ph.D.

dissertation, Università di Bologna, 2019.
[12] C. Wright, et al., Linux security modules: General security support for the linux kernel, in: 11th

USENIX Security Symposium (USENIX Security 02), 2002.
[13] S. Smalley, C. Vance, W. Salamon, Implementing selinux as a linux security module, NAI Labs

Report 1 (2001) 139.
[14] E. de Bourges, Extending selinux to track memory-pages accesses (2011). URL: http://www.mupuf.

org/media/files/selinux_memory_access.pdf.
[15] C. Jelesnianski, M. Ismail, Y. Jang, D. Williams, C. Min, Protect the system call, protect (most of) the

world with bastion, in: Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 3, 2023, pp. 528–541.

[16] J. Jia, et al., Programmable system call security with ebpf, arXiv preprint arXiv:2302.10366 (2023).
[17] The Linux Kernel Documentation, Seccomp BPF (Berkeley Packet Filter), 2018. URL: https://www.

kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html, [Online].
[18] A. Arcangeli, seccomp for 2.6. 11-rc1-bk8, 2005. URL: https://lwn.net/Articles/120192/.
[19] The Linux Kernel Documentation, ptrace() API for PowerPC, 2024. URL: https://www.kernel.org/

doc/html/next/powerpc/ptrace.html, [Online].
[20] R. Guo, Reflective code loading in linux — a new defense evasion tech-

nique in mitre att&ck v10, https://medium.com/confluera-engineering/
reflective-code-loading-in-linux-a-new-defense-evasion-technique-in-mitre-att-ck-v10-da7da34ed301,
2021. [Online].

[21] Stuart, In-memory-only elf execution (without tmpfs), https://magisterquis.github.io/2018/03/31/
in-memory-only-elf-execution.html, 2018. [Online].

[22] G. T. Bonicontro, Running elf executables from memory, https://www.guitmz.com/
running-elf-from-memory/, 2019. [Online].

[23] M. Salvatori, G. Bernardinetti, F. Quaglia, G. Bianchi, Shiftyloader: Syscall-free reflective
code injection in the linux operating system, in: G. D’Angelo, F. L. Luccio, F. Palmieri
(Eds.), Proceedings of the 8th Italian Conference on Cyber Security (ITASEC 2024), Salerno,
Italy, April 8-12, 2024, volume 3731 of CEUR Workshop Proceedings, CEUR-WS.org, 2024. URL:
https://ceur-ws.org/Vol-3731/paper02.pdf.

[24] E. Connor, T. McDaniel, J. M. Smith, M. Schuchard, {PKU} pitfalls: Attacks on {PKU-based}
memory isolation systems, in: 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
1409–1426.

[25] M. Becker, S. Chakraborty, Measuring software performance on linux, arXiv preprint
arXiv:1811.01412 (2018).

http://www.mupuf.org/media/files/selinux_memory_access.pdf
http://www.mupuf.org/media/files/selinux_memory_access.pdf
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.19/userspace-api/seccomp_filter.html
https://lwn.net/Articles/120192/
https://www.kernel.org/doc/html/next/powerpc/ptrace.html
https://www.kernel.org/doc/html/next/powerpc/ptrace.html
https://medium.com/confluera-engineering/reflective-code-loading-in-linux-a-new-defense-evasion-technique-in-mitre-att-ck-v10-da7da34ed301
https://medium.com/confluera-engineering/reflective-code-loading-in-linux-a-new-defense-evasion-technique-in-mitre-att-ck-v10-da7da34ed301
https://magisterquis.github.io/2018/03/31/in-memory-only-elf-execution.html
https://magisterquis.github.io/2018/03/31/in-memory-only-elf-execution.html
https://www.guitmz.com/running-elf-from-memory/
https://www.guitmz.com/running-elf-from-memory/
https://ceur-ws.org/Vol-3731/paper02.pdf

	1 Introduction
	2 Related Work
	3 The XFSM + eBPF Approach
	3.1 Actions and Reactive Engine
	3.2 Workflow
	3.3 Available APIs

	4 Functional Aspects
	4.1 System Calls' Sequence
	4.2 Physical Memory Frame vs Access Permissions

	5 Run-time Cost
	5.1 Virtual File System Services
	5.2 Address Space Management Services

	6 Conclusions and Future Work

