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Abstract
As cyber threats are becoming more sophisticated than ever with the rapid expansion of internet-connected
systems and increased use of containerized environments, we present Soft-Forgetting Self-Organizing Incremental
Neural Network (SF-SOINN), a novel approach to unsupervised anomaly detection in containerized platforms.
Whereas traditional Intrusion Detection Systems (IDS) utilize supervised learning that uses known attack signa-
tures for training, SF-SOINN employs a continuous learning approach to adapt dynamically to new data patterns,
thereby eliminating the need for labeled datasets. This capability enables effective real-time detection of zero-day
threats in dynamic environments. SF-SOINN have demonstrated efficacy in identifying malicious attacks on
the real-world NSL-KDD dataset, and we extended its application to containerized environments, using the
KubAnomaly framework. Our benchmark results reveal that SF-SOINN outperforms traditional supervised models
like Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and unsupervised KubAnomaly,
particularly in scenarios involving complex attacks. The performance metric considered here focused on the
optimization of False Positive Rate (FPR), while balancing other key performance metrics like accuracy, recall,
and precision to achieve best results – and we anticipate this approach will lay a strong foundation for developing
robust anomaly IDS in future.
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1. Introduction

As Docker containers become more prevalent and organizations are able to deploy and manage ap-
plications at scale, the challenges associated with securing the network systems in these production
environments are also growing. Traditional security methods that rely on tagged data sets struggle to
detect novel threats, especially in dynamic environments. Abnormal activity in containerized environ-
ments can be an indication of potential security breaches that could undermine operational stability
and compromise data integrity [1].

IDS have long been at the forefront of cybersecurity and are the primary tool for monitoring network
activity and identifying malicious behavior [2, 3]. IDS can be broadly divided into two categories:
Anomaly-based Intrusion Detection Systems (A-IDS) and Signature-based Intrusion Detection Systems
(S-IDS) [4]. S-IDS rely more on predefined signature attack patterns, making them very effective at
identifying known threats. However, the reliance on previously known patterns limits their effectiveness
in detecting zero-day attacks, which can evade detection if the signature is not known. On the other hand,
A-IDS can analyze deviations from normal behavior and are more adaptable in dynamic environments
to detect previously unknown threats (zero-day attacks).
Containerized environments run on conventional hardware and operating systems like any other

traditional computer network with all the challenges that entails. For this reason, containers still use
similar network and system calls as traditional computer networks and the same security, as they
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Figure 1: Conflict of Interests: High False Positive Rate versus Zero Day Attacks

remain vulnerable to cyber threats such as bruteforce, Distributed Denial of Service (DDoS), Structural
Query Language (SQL) injections and various forms of malware [5].
Unlike static servers or virtual machines, containers are lightweight, ephemeral, and designed for

semales orchestration at scale, with instances dynamically created, scaled and terminated based on
workload demands. This dynamic behavior alters normal traffic baselines and makes it difficult to
differentiate between benign fluctuations and malicious activity, such as against a container deployed
as a microservice on a website or an insider attack in the production environment. This is because the
shared kernel model of containers provides new attack surfaces that do not map cleanly to the threats
and defense strategies commonly associated with monolithic servers [6].

The general goal of anomaly detection systems deployed in a variety of application contexts [7, 8, 9],
is to detect deviations from normal behavior indicative of intruders — this is still consistent, but the
methods and models must also be adapted to the containerized context. Consequently, there is an
urgent need to evaluate and adapt anomaly detection approaches specifically for critical container
ecosystems [10].
We identified the following key challenges, which are illustrated in Figure 1:

• High False Positive Rates: IDS can incorrectly classify benign activity as a threat, leading to
disruption of normal activities, which can be too damaging in a production environment and
raise serious concerns [11].

• Interpretation Challenges: Understanding the cause of detected anomalies can be a difficult
thing even with unsupervised learning [12]. However, it is in our interest to take strict measures
(such as shutting down the network system) when a zero-day attack is detected.

• Dependence on Data Quality: The accuracy of models depends heavily on the quality and
representativeness of any training data used [13].

This paper contains the following main contributions: First, SF-SOINN is introduced and its ability
to continuously learn and adapt to changing data patterns to detect zero-day attacks without requiring
labeled datasets is demonstrated. Second, it enables the application of SF-SOINN to containerized envi-
ronments by leveraging the KubAnomaly framework for practical deployment. Third, it shows superior
performance compared to supervised (SVM and CNN) and unsupervised (KubAnomaly) methods in a
benchmark with the KubAnomaly framework and containerized datasets by reducing the FPR while
maintaining high accuracy, recall, and precision. Fourth, it provides actionable insights on how we can
optimize anomaly detection systems for dynamic and ephemeral containerized ecosystems, paving the
way for robust and scalable cybersecurity solutions in modern production environments.



2. Related Work

The use of machine learning (ML) in IDS has been explored with considerable success in the past.
Serkani et al. combined decision trees with least squares support vector machines (DT-LSSVM) to
achieve over 98% accuracy on the KDD Cup 99 dataset, demonstrating the effectiveness of supervised
methods in detecting network intrusions [14]. Jianliang et al. also used k-means clustering for anomaly
detection and achieved a 96% detection rate; however, the method struggled to adapt to evolving threats
in dynamic network environments [15]. Although these traditional methods offer high accuracy, they
often need to be retrained to remain current and effective.
Anomaly detection, especially using unsupervised learning techniques, is emerging as a promis-

ing approach to address new or unknown threats in dynamic environments. Li et al. proposed an
autoencoder-based method with clustering and achieved an anomaly detection rate of 95.4% [16]. Chen
et al. used a stacked autoencoder to extract features in combination with Random Forest, and achieved
an accuracy of 94.7% on the NSL-KDD dataset demonstrating the effectiveness of using deep learning
techniques for anomaly detection [17]. However, both methods need to be retrained to deal with
evolving attacks, which may be impractical in real-time due to the resource overhead.
Some recent studies have focused on detecting malicious behavior in container environments. For

example, Siracusa et al. proposed a novel approach for anomaly-based intrusion detection by contextu-
alizing system calls in containers [18]. Repetto et al. presented a framework for monitoring multilevel
logs to detect malicious code injections in containerized applications [19]. And He and Li also developed
a method for detecting malware in container runtimes using virtual machine introspection [20].
With the growing importance of monitoring virtual networks in containerized environments, tools

such as Calico and Weave Net, both of which are open-source and also supported by commercial
companies, enable segmentation and monitoring of traffic to detect network-based threats. Traditional
IDS such as Suricata and Snort have also been adapted for container networks, enabling packet inspection
and real-time threat monitoring [21]. Gomez et al. proposed a framework that extends traditional IDS
capabilities to containerized networks and focuses on detecting threats such as botnet installations at
the network layer [22]. Although these tools provide layered security by combining traffic analysis
with policy enforcement, the problem is that they are not always effective against novel threats.

Falco is an open-source tool developed by Sysdig that monitors the behavior of containers by analyzing
system calls in real time and enables anomaly detection based on predefined rules [23]. While these
tools improve security through policy-based monitoring, they often have problems with zero-day
vulnerabilities due to their rule-based nature, which limits their adaptability.

Anomaly detection based on logs is another approach that is becoming increasingly important in
container environments. Xu et al. and Lou et al. have developed models that focus on analyzing system
logs to detect runtime anomalies. For example, Xu et al. used source code analysis to extract features
from console logs, while Lou et al. grouped log messages based on program workflows [24]. Although
these methods are effective in identifying operational problems, they are limited in detecting complex
security threats as they rely on analyzing static log schemes and predefined anomaly patterns.
To address the limitations of static anomaly detection methods, we proposed the model that was

developed from Self-Organizing Incremental Neural Networks (SOINN) for its capability to adapt
to evolving data distributions. SOINN builds upon the foundational principles of Self-Organizing
Maps (SOM) and extends them by enabling continuous learning and adaptability in non-stationary
environments [25]. While SOM reduces data dimensionality and preserves topological relationships,
SOINN dynamically adjusts its structure to accommodate new data without requiring retraining [26]. SF-
SOINN, a variant of SOINN, incorporates a soft-forgetting mechanism that balances memory retention
and adaptability, making it our choice for enhancing security in dynamic environments like containerized
applications [27].

The remainder of the paper is organized as follows: Section 2 provides and overview of related work;
Section 3 discusses the proposed framework; Section 4 describes the experiment; Section 5 presents the
results and implications; and Section 6 concludes the paper and provides directions for future research.



Figure 2: The Recommended Architectural Framework and Workflow

3. The Architectural Framework

To address the security challenges in Docker containers, this study integrates the SF-SOINN model into
the existing open-source framework KubAnomaly [28], which serves as a fundamental approach for
ML models testing and A-IDS development in containerized environments.

The framework consists of two main components: a backend and a frontend. The backend includes
the deployment of containers on the web, and monitoring tools to collect system and network logs,
while the frontend contains the dataset, training, and classification methods.

Figure 2 illustrates how the data is collected and processed within the framework. The system and
network activity logs of Docker containers were collected using the monitoring tools Falco and Sysdig.
These logs were recorded at 10-second intervals, processed, and analyzed by the model to identify
anomalies, such as brute-force attacks, DDoS attempts, and exploits targeting Common Vulnerabilities
and Exposures (CVEs). For this experiment, we tested SF-SOINNwith the KubAnomaly dataset, available
on GitHub. However, we did not have access to the live data stream and used the dataset dump instead.

3.1. The Model

Figure 3: A visual representation of the SF-SOINN

SF-SOINN: The Soft-Forgetting Self-Organizing Incremental Neural Network (SF-SOINN) algorithm
builds on the fundamental principles of Self-Organizing Incremental Neural Networks (SOINN) by
integrating a soft-forgetting mechanism that enables continuous learning in dynamic environments
[27]. Unlike traditional machine learning models, which require complete retraining to adapt to new
data distributions, SF-SOINN maintains adaptability by gradually reducing the influence of outdated
information. This ensures that the model responds to emerging patterns without compromising memory
retention. These properties make SF-SOINN particularly well-suited for containerized environments,
where operational behavior changes frequently. A detailed description and performance of SF-SOINN
on the NLS-KDD dataset can be found in the paper by Foresti et al [27].

Figure 3 illustrates SF-SOINN: the network initializes with at least three random nodes. Each node is
assigned a weight vector W𝑛 and idle time IT𝑛, which are updated based on a similarity threshold T𝑛 to
determine whether a match is found. The soft-forgetting mechanism removes nodes when their utility,
calculated as U𝑛 =

WT𝑛
IT𝑛

, falls below a certain threshold, with the idle time counter IT(𝑎,𝑏), determining
when nodes should be removed. For each node 𝑛 ∈ N and edge (C ⊂ N × N), the network adapts its
structure based on incoming labeled data. Supervised learning occurs when the accumulated labels in
the list CL𝑛 are used to determine the final class C𝑛 of each node.



In summarize, each node 𝑛 ∈ N has:

• W𝑛 : Weight vector (feature representation).
• IT𝑛 : Idle time (number of rounds since last selection as a winner). [ IT(𝑎,𝑏) : the idle time counter]
• T𝑛 : Similarity threshold.
• WT𝑛 : Winning times (how often the node was selected as the winner).

• U𝑛 : Utility score, defined as U𝑛 =
WT𝑛
IT𝑛

• CL𝑛 : List of class labels assigned to the node.
• C𝑛 : Final class assigned to the node.

3.2. An Overview of the Anomaly IDS

The architecture of the integrated anomaly detection system consists of several key components that
together improve its adaptability and scalability within containerized environments:

Kubernetes nodes: Kubernetes, often abbreviated as “K8s,” orchestrates the containerized workloads
in a cluster. It manages tasks such as container provisioning, scaling and networking, and provides a
unified framework for container management. This setup enables efficient monitoring and scalability
in large and complex environments.
Docker containers: Each application runs in isolated Docker containers managed by Kubernetes.

Docker ensures that applications are deployed in secure, consistent environments, which helps mitigate
cross-container contamination and enabling controlled access to resources.
Agent services: Agent services, including Sysdig and Falco, act as intermediaries by collecting

system call data (such as read, write, socket, mmap, clone and connect) and access logs from the
Docker containers. Sysdig provides insights into container-level activity and collects detailed logs
about processes, file access patterns and network communication. Falco enables security monitoring by
defining custom security rules and flagging anomalies based on predefined criteria. .
Data flow and processing: The data collected by Sysdig and Falco is processed in several stages,

including normalization and feature extraction, before being fed into the anomaly classification model.
After normalization and training, the unsupervised algorithm analyzes the normalized data to detect
anomalous patterns. In doing so, it learns dynamically from the incoming data and adapts to new threat
patterns without the need for complete retraining.
The anomaly classification model is used at the frontend to access the dataset (log collections)

collected by the backend agent services of the KubAnomaly system as comma-separated (CSV) files and
used for testing. Next, in subsection 3.3, we will outline the steps from collection to feature extraction
and normalization to classification to show how the data passes through the anomaly detection system.

3.3. The Anomaly Classification Model

In the classification model, the logs collected by Sysdig and Falco go through several processing
steps before they are analyzed by the SF-SOINN model. These steps include feature extraction, data
normalization and anomaly classification to ensure that the model can dynamically adapt to new
threat patterns in real time. The process of anomaly classification in the integrated model includes the
following steps:

• Log Collection and Feature Extraction: Sysdig and Falco collect system-level logs from
container activities, capturing events such as process executions, network connections, and root
directory accesses. The collected logs are parsed, and relevant features are extracted for analysis.

• Data Normalization: The extracted features are then normalized to ensure consistent input
data for all classification algorithms. For the KubAnomaly model, normalization is performed
using the L2 norm function from the sklearn library, which has been shown to be more effective
in testing than other methods such as StandardScaler and MinMaxScaler [28].



• The Anomaly Classification Model is a Python implementation that contains its own nor-
malization and training methods and uses 80% of the dataset for training and 20% for testing.
It serves as a basis for the evaluation of ML algorithms such as SF-SOINN, SVM and CNN on
the KubAnomaly dataset. The SF-SOINN model labels data based on observed patterns and
continuously learns from new data points, allowing the framework to effectively identify zero-day
threats and other novel anomalies.

• Evaluation and Adaptation: The model’s performance is evaluated using metrics such as
accuracy, precision, recall, and the area under the curve (AUC) and the partial area under the
curve (pAUC). These evaluations procedure are helpful for the development and optimization an
anomaly model.

This framework’s design leverages Kubernetes for deployment and scalability; Docker for container
management, and agent services for real-time data collection. and agent services for real-time data
collection. By integrating SF-SOINN into this framework, the model achieved a high level of adaptability,
making it capable of detecting complex threats in containerized environments without relying on tagged
data.

4. The Experiment

The aim of the experiment was to benchmark SF-SOINN with ML algorithms using the KubAnomaly
framework [28, 29, 30, 31]. The algorithms tested include Linear SVM, RBF SVM and CNN (supervised
models), as well as KubAnomaly and SF-SOINN (unsupervised models). This was done to evaluate the
effectiveness of SF-SOINN in detecting complex, evolving threats and attacks on web services and to
determine whether it provides better adaptability and accuracy in anomaly detection in containerized
environments.

4.1. Methodology

The KubAnomaly framework source codes was obtained from GitHub [28]. SF-SOINN was integrated
into the existing codes without modifying the operational parameters of the other pre-existing algo-
rithms. Data normalization was performed using the L2 norm method from sklearn, chosen for its
better performance compared to StandardScaler and MinMaxScaler within the framework, as reported
by Tien et al [28]. The data processing involves 4 stages, starting from data normalization to model
evaluation.

Table 1
The Simple and Complex Dataset

Dataset Category CSV Files App Tools

Simple
Normal

DVWA_Normal
JMeter

NormalV1.1(wordpress)

Web attack (DoS)
AttackV1.1(bruteforce)

JMeter
InsiderV1.1(bruteforce)

Web attack (Zap)
DVWA_SQLInjection1

OWASP Zap
DVWA_SQLInjection2,
DVWA_SQLInjection3

Complex

Normal
DVWA_Normal

JMeterNormalV1.1(wordpress)
NormalV1.2(SQLcmd)

Web attack (Zap) InsiderSql(SQLcmd) OWASP Zap
Web attack (SQL Injection) sqlinject sqlmap

Command Injection
AttackV1.1(SQLcmd)

CVE-2017-5638
cmdinjection

Two datasets were used for testing as presented in Table 1 above:



• Simple Dataset: Consists of well-known web attacks such as DoS and SQL injection.
• Complex Dataset: Includes more sophisticated threats like command injection and multi-vector
attacks, which pose a greater evaluation challenge for anomaly detection models.

4.1.1. Algorithm Execution

The algorithms in this study followed a standardized training and evaluation process, structured into
four stages:
Algorithm 1 (Data Preparation and Normalization): Initially, data files were loaded, labeled,

and then normalized using L2 normalization. Next, the normalized data 𝑋normalized was linked to its
labeled category 𝑌, representing normal or anomalous instances. This preprocessed dataset was then
split into training and testing subsets in a 4:1 ratio to ensure fair evaluation.
Algorithm 2 (Model Training and Testing): Five models were trained and evaluated. Support

Vector Machines (SVM) were trained using linear and RBF kernels in sklearn, with performance
assessed through metrics like accuracy, precision, recall, F1-score, and AUC. The KubAnomaly MLP,
a deep neural network with ELU activations and Dropout layers, was trained using one-hot encoded
labels and optimized with categorical cross-entropy loss. Similarly, a Convolutional Neural Network
(CNN) was trained, reshaping input data for Conv1D layers followed by MaxPooling and Dense layers.
The SF-SOINN algorithm incrementally processed data, dynamically clustering normal and anomalous
instances without requiring labeled training; anomaly detection was achieved through adaptive learning.

Algorithm 3 (ROC Plotting): Post-testing, the partial Area Under the Curve (pAUC) of the Receiver
Operating Characteristic (ROC) curve was plotted for each algorithm. This provided insights into each
model’s sensitivity to False Positive Rates (FPR) across different thresholds, with the AUC serving as a
benchmark for comparing detection capabilities.

Main Execution Flow: The main algorithm coordinated the entire process, applying each algorithm
to the datasets, automatically generating performance metrics, and producing ROC plots.

5. The Result and Discussion

The experiment was conducted with the native KubAnomaly dataset, which simulates real-world attack
scenarios. The two datasets, shown in Tables 2 and 3, were split into training (80%) and test (20%)
datasets. In the training phase, activities were classified as either normal or anomalous, which the
models used to identify patterns indicating potential security threats.

Table 2 (Simple Dataset) consists of a collection of normal traffic data and basic web attacks, including
DoS and SQL injection attacks that simulate common web attack vectors. Table 3 (Complex Dataset),
on the other hand, contains data with activities that include sophisticated and cross-vector attacks.
These include incremental attacks and workloads such as Command Injection and Multi-Faceted SQL
Injection, which are designed to overwhelm traditional models.

Table 2
Simple Dataset

Simple Data # of Samples
Normal 5,165
Web Attack (DoS) 5,072
Web Attack (Zap) 9,723
Total Abnormal Samples 14,795

5.1. Metrics

To ensure comprehensive evaluation, the following metrics were used:



Table 3
Complex Dataset

% Light gray header row Complex Data # of Samples
Normal 3,422
Web Attack (SQL Injection) 2,147
Web/CVE Attack (Command Injection) 6,303
Web Attack (Zap) 3,422
Total Abnormal Samples 11,892

• Detection Rate (Recall): Equivalent to Recall in anomaly detection, detection rate is the
proportion of actual positives (anomalies) that are correctly identified. It measures the algorithm’s
ability to detect all relevant anomalies: 𝐷𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 (Where TP = true positives, and FN = false
negatives). High recall indicates that the model successfully detects most of the anomalies, which
is critical in security contexts where missing an attack can have severe consequences.

• False Positive Rate (FPR): The proportion of normal instances incorrectly classified as anomalies.
It is calculated as: 𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃+𝑇𝑁 (Where FP = False Positives, and TN = True Negatives)
• Accuracy (ACC): The proportion of all instances (both normal and abnormal) that the model
correctly classifies. While accuracy gives an overall measure, it can be misleading in imbalanced
datasets. If the dataset contains far more normal instances than anomalies, a high accuracy might
not indicate good performance on detecting anomalies. 𝐹𝑃𝑅 = 𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
• Precision: The proportion of instances classified as anomalies that are actually true anomalies.
High precision indicates that when the model flags an instance as an anomaly, it is likely to be
correct. Precision is especially important when the cost of investigating a false alert is high.
𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃
• Recall: It corresponds to Detection Rate. Measures the proportion of true anomalies detected
by the model. It focuses on the model’s ability to identify all actual anomalies. Important
for evaluating the model’s effectiveness in identifying anomalies, especially critical in security
contexts.

• F1 Score (F1 %): The harmonic means of Precision and Recall, providing a balance between them.
F1 Score is a useful single metric when you need to balance precision and recall, especially in
cases of imbalanced data. It provides an overall sense of the model’s accuracy in terms of both
identifying true anomalies and avoiding false positives. 𝐹1 = 2 x𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑋𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
• AUC (Area Under the Curve): Measures the model’s ability to distinguish between normal and
anomalous instances across thresholds and represents the probability of ranking an anomalous
instance higher than a normal one [32].

• pAUC (Partial Area Under the Curve): Measures the model’s sensitivity within a critical range
of False Positive Rates (FPR). It is usess in scenarios where controlling false positives is crucial
[32].

5.2. Quantitative Result

The KubAnomaly framework codes use y_pred (binary prediction) to generate the metrics and the
AUC. This represents the actual predictions that the models make. While this is useful decision-based
evaluation in the real-world, evaluating IDS performance in the [0,1] interval of the False Positive Rate
(FPR) has little practical significance. Studies show that pAUC is more useful for measuring performance
in the critical FPR range [0,0.1], as it provides a more realistic assessment for controlling false positives.
Since pAUC uses y_prob (probability score) to calculate its values, we modified the codes accordingly.
For this reason, separate results were also generated for pAUC, as we are interested in minimizing false
positives.
Table 4 analysis, all the algorithms achieved relatively high recall. CNN leads with a 95.7% recall

but SF-SOINN was slightly lower at 93.23%, showing it detects most attacks but not consistently like



Table 4
Results for Simple Dataset - AUC

Algorithm ACC (%) Precision (%) Recall (%) F1 (%) AUC (%)
Linear SVM 92.77 92.77 92.77 92.77 91.64
RBF SVM 95.64 95.64 95.64 95.64 94.19
KubAnomaly 95.59 95.59 95.59 95.59 94.18
CNN 95.70 95.70 95.70 95.70 95.70
SF-SOINN 93.16 93.16 93.16 93.16 94.23

the others. CNN had the highest AUC score at 94.27%, indicating it excels at distinguishing between
normal and abnormal activities across different threshold. SF-SOINN follows closely behind with an
AUC of 94.23% that shows how effective it is at class differentiation.

Table 5
Results for Complex Dataset - AUC

Algorithm ACC (%) Precision (%) Recall (%) F1 (%) AUC (%)
Linear SVM 90.77 90.77 90.77 90.77 88.36
RBF SVM 94.18 94.18 94.18 94.18 92.94
KubAnomaly 93.98 93.98 93.98 93.98 92.70
CNN 94.14 94.14 94.14 94.14 92.46
SF-SOINN 95.80 95.80 95.80 95.80 94.09

For Table 5 analysis, which involves multiple-vector attacks, SF-SOINN achieved the highest Recall
(detection rate) at 95.80%, indicating its strength in detecting anomalies. SF-SOINN also obtained the
highest AUC at 94.09%, demonstrating excellent ability to distinguish between classes regardless of
the threshold. Linear SVM exhibited the weakest class distinction capabilities compared to the other
models, with an AUC of 88.36%. While detecting multiple-vector attacks was challenging for all the
algorithms, SF-SOINN’s performance stands out with superior Recall and AUC.

Table 6
Results for Simple Dataset - pAUC

Algorithm ACC Precision Recall F1 pAUC
Linear SVM 0.9399 0.9399 0.9399 0.9399 0.0000
RBF SVM 0.9712 0.9712 0.9712 0.9712 0.0000
KubAnomaly 0.9697 0.9697 0.9697 0.9697 0.0000
CNN 0.9717 0.9717 0.9717 0.9717 0.0084
SF-SOINN 0.9707 0.9707 0.9707 0.9707 0.2736

Table 7
Results for Complex Dataset - pAUC

Algorithm ACC Precision Recall F1 pAUC
Linear SVM 0.9078 0.9078 0.9078 0.9078 0.1596
RBF SVM 0.9418 0.9418 0.9418 0.9418 0.8712
KubAnomaly 0.9394 0.9394 0.9394 0.9394 0.0729
CNN 0.9427 0.9427 0.9427 0.9427 0.0959
SF-SOINN 0.9580 0.9580 0.9580 0.9580 0.3319

For Table 6 analysis (Simple Dataset), SF-SOINN had the highest pAUC (0.2736), which shows its
superior sensitivity within a critical range of FPR. This demonstrates SF-SOINN’s effectiveness in
scenarios where controlling false positives is essential. CNN also performed second best pAUC (0.0084)
and had the highest Precision and Recall (0.9717), but SF-SOINN Precision and Recall (0.9707) is unpar.



Overall, SF-SOINN’s performance was more optimized, showcasing its robustness in handling false
positives.

In Table 7 analysis (Complex Dataset), SF-SOINN had the second highest pAUC (0.3319), while RBF
SVM had the highest pAUC (0.8712). However, SF-SOINN’s outperformed the other models in Precision
and Recall (0.9580) and therefore the best performer.

6. Conclusion and Future work

The research shows the effectiveness of SF-SOINN in detecting anomalies, especially in complex attack
scenarios that can overwhelm traditional IDS, and highlights its suitability as an anomaly-based IDS for
Docker containers. Its low FPR makes it a valuable alternative to models such as CNN and KubAnomaly
for real-time anomaly detection.
This study also highlights the complementary role of unsupervised and supervised models in im-

proving security: while SF-SOINN performs excellently on complex, high-dimensional, less structured
attack scenarios, traditional supervised models often perform better on known and frequent attack
vectors, as demonstrated in this experiment, making them desirable as a primary defense mechanism
against cyberattacks. However, unsupervised learning models such as SF-SOINN, which proactively
emerging threats, are well suited to improve security in dynamic environments. .
Future work will focus on optimizing the overall performance metrics of SF-SOINN to increase

accuracy and precision, as the low false positive rate in zero-day attacks is quite satisfactory. We
will also investigate the development of alternative ML models and perform real-world tests with
network traffic data to evaluate the practical performance of SF-SOINN in Docker over time. To support
this, we aim to develop a scalable testing framework for evaluating ML algorithms in containerized
environments, leveraging the findings from this research.
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