
VFSMon: an Innovative Reference Monitor in Linux
Edoardo Manenti

1,2
, Pasquale Caporaso

1,2
, Giuseppe Bianchi

1,2
and Francesco Quaglia

1

1UNIVERSITÀ DEGLI STUDI DI ROMA "TOR VERGATA" | Via Cracovia, n.50 - 00133, Roma (RM)
2CNIT NAM LAB | Via del Politecnico, n.1 - 00133, Roma (RM)

Abstract
This paper introduces VFSMon, a path-based reference monitor that selectively protects files and device files

in Linux. VFSMon operates at the Virtual File System (VFS) layer, ensuring independence from underlying file

systems. VFSMon’s key features include selective write access restrictions, time-based protection with resilient

time management, and an embedded credential mechanism for configurable control over privileged users like root.

Furthermore, VFSMon offers place-holding paths, that can be exploited for common data management workflows

based on production of (backup) files and their unmodificability for specific time windows. By protecting both

pathname and device file access, VFSMon enhances security while supporting flexibility, providing a practical

solution for safeguarding critical data against unauthorized modifications.

Keywords
Linux, Virtual File System, Kernel Module, Kernel Probes, Reference Monitor, Data Protection,

1. Introduction

A wide range of critical applications rely on the permanent recording of data. This need is especially

evident in contexts where backup images of virtual machines, file systems, and databases are fundamental

for responding to adverse events and ensuring that applications and services can be correctly restarted.

At the same time, in most common scenarios, simply relying on offline data copies is insufficient

to provide urgent data accessibility when specific events occur. As a result, data are often accessible

online, albeit behind protection mechanisms such as VPNs [1] and authentication protocols [2].

However, this approach increases the level of risk since the data are more exposed. Once an attacker—

such as a malicious insider—can manipulate applications on the operating system instance where the

data reside, the complete removal or encryption of that data becomes a genuine possibility.

This problem has been long studied in the literature, and several solutions have been proposed to

attempt the prevention of unwanted data modifications. A few of them are suited for specific attacks,

like for example Ransomware and its typical data update pattern [3]. Other proposals operate at the

level of the file system where data are stored, and exploit additional attributes for files and directories,

like for example the “immutability" flag (+i) in ext2/3/4 filesystems.

Additional, proposals rely on Write-Once Read-Many (WORM) technology for the devices where

data are really stored [4, 5, 6]. Also, other solutions exploit the concept of reference monitor [7], and

embed within the reference monitor policies that prevent any thread, running on behalf of any user, to

overwrite or delete data in the file system.

While each of these solutions has its own advantages, they also show limits. In particular, WORM

technology involves non-reusable storage blocks, protection based on data update patterns is essentially

a statistical technique, additional flags in the file system can be anyhow reset by threads running with

effective root-ID, and common reference monitors are not enough flexible to enable specific properties

in the data protection system. In this article we present an alternative solution named VFS-Monitor

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
$ edoardo.manenti@uniroma2.it (E. Manenti); pasquale.caporaso@uniroma2.it (P. Caporaso);

giuseppe.bianchi@uniroma2.it (G. Bianchi); francesco.quaglia@uniroma2.it (F. Quaglia)

� http://netgroup.uniroma2.it/GiuseppeBianchi/ (G. Bianchi); https://francescoquaglia.github.io/ (F. Quaglia)

� 0009-0008-3503-1209 (E. Manenti); 0009-0001-0552-7894 (P. Caporaso); 0000-0001-7277-7423 (G. Bianchi);

0000-0002-5616-7980 (F. Quaglia)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:edoardo.manenti@uniroma2.it
mailto:pasquale.caporaso@uniroma2.it
mailto:giuseppe.bianchi@uniroma2.it
mailto:francesco.quaglia@uniroma2.it
http://netgroup.uniroma2.it/GiuseppeBianchi/
https://francescoquaglia.github.io/
https://orcid.org/0009-0008-3503-1209
https://orcid.org/0009-0001-0552-7894
https://orcid.org/0000-0001-7277-7423
https://orcid.org/0000-0002-5616-7980
https://creativecommons.org/licenses/by/4.0/deed.en

(VFSMon), which combines features that characterize the different aforementioned techniques, while at

the same time counteracting their disadvantages.

VFSMon is a software architecture we developed for integration in the Linux kernel, and is fully

based on the Linux Kernel Module (LKM) technology. It can be configured like a traditional reference

monitor, requiring that update operations on files and directories can be prevented at all (depending on

the security policies defined by the security administrator). At the same time it also offers additional

mechanisms, which permit the setup of common workflows in data management, like the possibility to

include in the file system new data images (like database backups) which can be protected from updates

along a predefined time window—this is the classical workflow exploited for enabling the deletion of

older data copies that become no longer relevant at some point in time. All these activities can be

done through VFSMon with no need for any reconfiguration of parameters at run time, and with the

impossibility to make changes in the managed policies, even by root-ID threads.

At the same time, VFSMon can also be setup with a less critical operating mode, enabling the

possibility of easy reconfigurations of the data protection rules, still relying on proper credentials that

do not coincide with the ones of the root user of the operating system—it therefore supports the notion

of security administrator, in a similar manner to the one used by commercial products like [8]. Also,

VFSMon is usable with any kind of file system to be mounted, being it an object essentially working at

the virtual level of the overall file system architecture, which expands its usability significantly.

The remainder of this article is structured as follows. In Section 2 we discuss related work. In Section

3 we present VFSMon. A study on the overhead introduced by the proposed solution is provided in

Section 4. Conclusions are discussed in Section 5.

2. Related Work

One of the main problems when dealing with data kept at the file system level are Ransomware attacks

[9, 10]. Solutions oriented to tackling this type of attacks are either based on the inclusion of file

recoverability at the file system level [11, 12] or on the delayed flushing of updated data from the

page-cache to the actual hard drive [3]. The recovery support, or the suspended flush, are maintained

until threads are still under judgment of their activities, and in any case not beyond a time limit. Our

VFSMon proposal works in a different manner, since it can support the unmodificability of data for

time windows whose length is independent from thread activities in the system. This allows supporting

specific data management workflows in a more suitable manner.

Another technique for preventing data alteration or deletion, has traditionally relied on WORM

(Write-Once Read-Many) device technologies [4, 5, 6]. Our VFSMon solution stands apart from these

approaches, since it purely operates at the software level, particularly at the level of the virtual file

system, eliminating the need for any specialized hardware investment.

A recent solution able to tackle both Ransomware and insider attacks is VaultFS [13], which is a

Linux oriented file system that enables a single session write activity on files. Each file can therefore

remain stable after it is created, e.g., by some backup generation system. One core difference between

VaultFS and our VFSMon solution is that the former operates on a file system that needs to reside on a

physical device—and that is managed by a specific driver, while VFSMon works on any file/directory

belonging to whichever file system, including the ones that are embedded within device files residing

on a different file system (like those manageable via the -o loop driver). Furthermore, working at the

level of the virtual file system, our solution stands above any file system specific driver, being therefore

compatible with differentiated data management solutions offered at the level of the operating system.

The Linux kernel also offers FS-VERITY [14], a feature that provides transparent integrity and

authenticity protection for read-only files. It operates by constructing a Merkle tree over the content

of a file, allowing the system to verify any read operation against this tree to detect unauthorized

modifications that might have occurred. This mechanism ensures that if any part of the file has been

altered, the verification process will fail, thereby preventing the compromised data from being used.

While this solution is extremely useful for blocking the usage of programs—like libraries—that can have

Solution Protects from intruder Extra HW Time-based File system Dynamic
(root-level) adversary needed protection independent reconfiguration

Ransomware-specific [11, 12, 3] No No No No Limited

WORM-based [4, 5, 6] Yes Yes No No No

FS-VERITY [14] Detection Only No No No Complex

SELinux [7] Yes No No Yes Complex

VaultFS [13] Yes No Yes No Yes

VFSMon (this article) Yes No Yes Yes Yes

Table 1
Comparison of different data protection solutions

been altered (modified) by whatever attack, it doesn’t block modifications, which can anyhow take

place. VFSMon offers protection against modification, for time windows that can be predefined by the

security administrator (ideally they can have infinite length).

Security-Enhanced Linux (SELinux) [7] is a robust security framework that provides a mechanism

for supporting access control security policies, including mandatory access control (MAC). It operates

on a whitelisting approach, enforcing security through comprehensive policies that define what actions

are explicitly permitted. In SELinux, everything not expressly allowed is denied by default. On the

opposite side, VFSMon relies on a blacklisting approach, thus enabling the easy definition of borders

for security. Also, SELinux’s policies are generally static—this is the way it uses in order to guarantee

MAC—which can be a drawback in environments where security requirements can change—like for

example depending on the age of a specific file. VFSMon, on the other hand, also offers time-based

protection for both files and directories. Hence, administrators can easily enforce access control during

specific time frames, making VFSMon highly adaptable to varying operational contexts. Additionally, a

feature that distinguishes VFSMon is that is can be setup to manage protection for file system paths of

objects that do not already exist. Once they will be created, they will keep their update protection for

the predetermined time window.

Finally, being VFSMon oriented to MAC protection, it can prevent threads that run with root-ID to

carry out any operation that can damage the content of critical (hence protected) data. Several supports

for Access Control List (ACL) offered by common implementations of file systems—like it occurs for

example for ext4—do not reach this level of operations, since their setup can be anyhow subverted by

root-ID threads running in the system.

Table 1 summarizes a high-level comparison of the discussed solutions.

3. VFSMon

3.1. Architectural Overview

As mentioned, the architecture of VFSMon is fully embedded within a LKM. In order to gain control

when specific calls to the services of the virtual file system are issued, VFSMon exploits the KPROBE

support offered by Linux. In particular, upon inserting the LKM, it installs probes on specific points in

the kernel in order to intercept the occurrence of specific events.

This part of the architecture directly exploits results that are offered by Linux to explicitly support

security frameworks. In particular, the probes installed by VFSMon are placed on all the hooks already

present in Linux for supporting the Linux Security Module (LSM) technology, which are destined to

file system management. These hooks can be seen in Table 2, where we also show the ret-probes we

installed, and synthesize their activities. Although we used ret-probes, our design and implementation

exploits both the entry and exit interceptions of the services offered by ret-probes.

The objective of the interception that is carried out by our kernel probes, applied to the listed hooks,

is the one of determining if an operation that is requested at the file system level is compatible with the

current file-system management state that is kept by VFSMon.

Hooked Function
↓

Kretprobe

Description of probe activities

security_file_open
↓

krp_security_file_open

Intercepts file opens on protected paths. If a file is opened for
writing and is protected, the operation is blocked and logged.

security_inode_rename
↓

krp_security_inode_rename

Intercepts rename operations. Blocks and logs attempts
involving protected paths, ensuring no bypass through

renaming.

security_inode_unlink
↓

krp_security_inode_unlink

Intercepts file deletions. Blocks and logs removal attempts on
protected files.

security_inode_rmdir
↓

krp_security_inode_rmdir

Intercepts directory removals. Blocks and logs attempts to
remove protected directories.

security_inode_create
↓

krp_security_inode_create

Intercepts file creation in protected directories. Blocks and
logs unauthorized creations.

security_inode_mkdir
↓

krp_security_inode_mkdir

Intercepts directory creation in protected directories. Blocks
and logs these attempts.

security_inode_link
↓

krp_security_inode_link

Intercepts hard link creation. Blocks and logs operations
involving protected files or directories.

security_inode_symlink
↓

krp_security_inode_symlink

Intercepts symlink creation referencing protected paths.
Blocks and logs these attempts to prevent indirect access.

Table 2
A summary of the hooked LSM functions and their corresponding kretprobe handlers.

Such a state is characterized by a set of path-names. These path-names are not embedded in any

real file-system structure, hence they do not require any management at the level of i-nodes and

i-node caches. Rather, they are maintained by VFSMon in an apposite memory area. Currently, for the

organization of this area, we have exploited hash-tables, which are already supported by the Linux

kernel, in order to provide non-time-consuming operations when the search of a specific path-name

needs to be carried out by the kernel probes of VFSMon.

These path-names are included in a set—which we simply refer to as Protected-Paths—and the

passage in any of the above listed hooks—hence in any of the kernel probes—can take place with no real

intervention by VFSMon only if the file/directory name involved in the requested operation—the one

that leads to activating the hook—is not actually registered in the Protected-Paths set kept by VFSMon.

If the path-name is registered, then any attempt to execute file-system operations that can provide

the ability to update (e.g. write) on the file or the directory is denied by VFSMon. For example, the

opening of an I/O session on a file with write capability is denied. This is the baseline mechanism offered

by VFSMon in terms of data protection, but as we will discuss in the successive sections, additional

facilities are supported to enable the effective use of VFSMon when specific workflows, in terms of data

management, need to be supported.

The Protected-Path set can be configured in VFSMon in two different manners:

- Purely at startup: in this case VFSMon is configured as a pure reference monitor offering pure

MAC support for the access to files/directories, and no user is permitted to execute any action

in terms of modifications (insertions/deletions) of the Protected-Paths set. This set is therefore

hard-coded in the setup data of VFSMon;

- At runtime: the reconfiguration can be put in place—in particular VFSMon supports it via an

ioctl(...) service.

However, while the scenario offering runtime reconfiguration does not represent a pure MAC

operating mode, in VFSMon the reconfiguration can be put in place only relying on a couple of keys

< 𝐾1,𝐾2 >—of which 𝐾2 needs to be passed in input to the ioctl(...)—such that:

- 𝐾1 is the ID of a specific user—not necessarily coinciding with the root-user—which was setup in

the LKM at its startup. This ID must correspond with the actual user-ID of the thread that runs

the ioctl(...) command, otherwise any reconfiguration is denied by VFSMon by default.

- 𝐾2 is a password, whose encrypted version is maintained internally by VFSMon.

By the above description, even under the scenario where the reconfiguration based on the

ioctl(...) is supported (i.e., when VFSMon is not under pure MAC operations), any possible

attacker that acquired the ID of the enabled user needs to have already tampered the usage of the

setuid(...) service, hence requiring to tamper some other application running under (effective)root-

ID. This anyhow provides an additional level of protection, which is combined with the protection

offered by the encrypted password 𝐾2 kept by VFSMon. Overall, the < 𝐾1,𝐾2 > couple identifies that

operations are executed by a specific security administration user, which can operate reconfigurations

only if non-pure MAC operating mode has been setup for VFSMon.

As hinted before, a file/directory used at the virtual file system level is managed via specific security

policies offered by VFSMon only if it is included in Protected-Paths. However, this set of protected

file/directory names has no direct relation with the actual data representing the file, and its i-node

information. In particular, any information kept by VFSMon is fully external to the actual file systems

where protected stuff is located.

Concerning this point, one core aspect that characterizes modern virtual file system architectures is

that a same file content can be reachable by exploiting several different path-names. This is for example

what takes place when using hard-links. In our kernel probes, we prevent the possibility to install

a new hard-link to an existing file whose path-name is currently kept in Protected-Paths. This only

leaves out of protection files which already have some unprotected hard-link in the file system when

VFSMon starts protecting another hard-link to the same file. Also, the protection offered by VFSMon

for avoiding the installation of hard-links also copes with privilege escalation, since such installation is

prevented for (effective)root-ID threads too.

However, another aspect appears to be more critical in relation to the possibility to rely on multiple

path-names for reaching a same content. It is related to bind-mount operations that can be executed by

the root-ID user. These are not based on hard-links, but rather they rely on the classical mount(...)
system call. To cope with this aspect, we installed a kernel probe also on the mount(...) system call

service offered at kernel level. Each time it is invoked, a check is performed by VFSMon to determine if

the new path for reaching stuff in the bind-mounted file system can lead to reach an object that already

has its corresponding path in the Protected-Paths set. If this is the case, the new path to be protected is

automatically inserted by VFSMon in Protected-Paths, and is also automatically removed when the

unmount of the original bind-mount operation takes place. We think this kind of protection is relevant

still in relation to privilege escalation based attacks, when some (effective)root-ID thread can operate

calls to the mount(...) service offered by the kernel.

Additionally, considering the possibility of working with namespaces at the level of the virtual file

system, the Protected-Paths offered by VFSMon is used, in terms of application of protection policies to

the corresponding files/directories, independently of the current namespace the applications are working

in—this is how we have designed our kernel probes. This automatically leads to the possibility to exploit

a single setup of the content of the Protected-Paths set to actually protect the same files/directories

that stand in different containers managed by the underlying operating system kernel.

In Figure 1 we show the architecture of VFSMon, details of which will be further discussed in the

following sections.

3.2. Time Passage and Protected-Path Placeholding

In many general purpose workflows, some of the sensible data that was protected at a time 𝑡 may be not

sensible at a time 𝑡+ 𝑘 and would just result in a waste of memory given the fact that removal would

not be allowed. To cope with this scenario, a cardinal aspect of our system is indeed in the concept of

“time to live" (TTL) associated with path protection. Essentially, it represents the time span in which

Figure 1: VFSMon Architecture

the path needs to stay protected and the file/directory associated with it cannot be modified. This TTL

information is added by VFSMon to the protection metadata associated with a path in the used data

structures. Of course it is still possible to set the time as infinite, which means that, until VFSMon is up,

the file/directory will never be modifiable or deleted unless it is unprotected explicitly by the VFSMon

security administrator.

However, in relation to the actual means for measuring the passage of time in VFSMon, our objective

is the one of defending ourselves from attackers that are assumed to have escalated privileges—hence

they can run (effective)root-ID thread. Therefore they can even be able to change date and time of the

system.

Considering this aspect, we decided not to rely on any retrieval of time information to avoid creating

security weaknesses and introduce possible protection bypasses. Hence, we decided to include in

VFSMon a kernel daemon setup by the same VFSMon initialization block. The daemon basically

triggers itself at regular intervals, exploiting relative-timeouts along the actual time passage via the

High-Resolution-Timer (HRT) interrupt architecture. The only tasks run by this daemon are 1) the

update of a VFSMon-internal counter that would then represent the VFSMon time and 2) the loop on

Protected-Paths checking for TTL and eliminating paths when their TTL expires.

However, VFSMon not only offers the possibility to rely on TTL for reporting a file/directory into

the traditional state in terms of its management—with no update protection still enforced. Rather, it

also supports the management of a protected path associated with a file not yet existing. In particular, a

protected path can be marked in its metadata as a place-holding one. Each of these paths is anyhow

associated with a TTL (infinite or not), and will be protected for avoiding the opening of I/O sessions

with write capabilities. However, this protection will start at the time instant where the first write

session on the file is opened (and is intercepted by our probes). This means that a single session for

updating the file is guaranteed to be supported, and after setting it up, new data on the file can only

be placed passing through that specific I/O session. Combining this capability of VFSMon with the

management of TTL enables the user to put in place workflows where specific files are allowed to be

created (and populated) for keeping critical data that are guaranteed to be unmodifiable for a selected

time window. This is the classical workflow related to backup procedures (of databases, virtual clusters,

etc.) on an common operating site.

3.3. Managing Devices

In a modern data management system, the presence of block devices, including logical ones—like,

regular files representing the device file of, e.g., virtual machine or container file systems—is crucial.

Hence, providing support for the management of block devices and device files, according to their

common usage—they offer file systems to be mounted—is another interesting objective.

By construction, in VFSMon a device (or device file) that cannot be written since its path-name is kept

in Protected-Path, cannot be opened in write mode by any driver. However, this scenario is somehow

restrictive of the real usage one can imagine for the hosted file system. In particular, a more flexible

scenario would be the one where the device (or device file) is protected from updates that can occur on

the file system where it is recorded, but operations in its hosted file system can anyhow occur.

VFSMon offers the possibility to support such flexible scenario. In particular, an element in Protected-
Path is also marked with an additional flag that tells if a mount operation targeting that device file can

be executed, also considering write-mode while mounting. This flag is managed by our probes of the

mount service (see Figure 1). Hence, when the actual open operation takes place in the device driver,

we recognize that the execution flow has passed through the mount task and we can enable file system

mounting.

Clearly, the content of Protected-Paths still applies to files in the file system hosted on the device (or

device file). Hence, VFSMon supports the scenario where file systems hosted on devices (or device files)

are mounted because of the activation of, e.g. containers, and their internal content still undergoes the

protection policies natively offered by VFSMon.

At the technical level, this means that these devices are only accessible through the operating system

page-cache, but are not accessible as common streams on the file system where they reside. This is

an additional feature that distinguishes VFSMon from common file management services offered by

operating systems.

3.4. Security Assessment

Based on the explained details, we can say that our system, once in operation, succeeds in preventing

any changes to protected files/directories by ensuring integrity for the required time (see TTL in

Section 3.2). Integrity is guaranteed also in face of arbitrary commands or software execution by any

(effective)root-ID attacker, since VFSMon supports MAC policies.

This is possible also because of some measures that have been taken for a release of VFSMon, such

as not providing a cleanup_module function for a possible attacker to unmount the module under

privilege escalation.

At the same time, the operations by VFSMon are guaranteed to work correctly unless the kernel

probes it adopts are removed, or its internal modules fall under installation of additional probes that

operate on them—changing their behavior. This requires anyhow tasks that cannot be executed, even

under privilege escalation, except if a malicious Linux kernel module making these tasks is mounted.

To protect against this scenario, VFSMon can be used under secure-boot constraints, leading to the

impossibility to mount arbitrary Linux kernel modules that are not guaranteed to be trusted.

4. Run-time Cost

In this section, we present experimental data illustrating the run-time overhead introduced by VFSMon.

We first describe the testing methodology, then we discuss the obtained results.

4.1. Testing Methodology

We constructed a test framework using Python and C, capable of timing file operations using the Time

Stamp Counter (TSC) for cycle-accurate measurements. We measured the time taken for file open(...)
operations in various modes (O_RDONLY, O_WRONLY, O_CREAT | O_TRUNC | O_WRONLY) both with

and without VFSMon while running differentiated workloads by varying the number of threads and

protected paths.

At first we conducted a baseline test without the presence of VFSMon, measuring the inherent latency

of file operations under normal conditions and then, after mounting the module, we run the tests again,

saving the new measurements. In particular, each test configuration was repeated 200 times, with

each repetition performing 1000 iterations of the aforementioned file operations. These iterations were

conducted while varying the size 𝑁 of the set of elements kept in Protected-Paths. In particular, we

used 0, 10, 100, 200, 300, 400 and 500. Furthermore, we also varied the thread count (1, 2, 4, 8) to assess

the impact of concurrent file system operations intercepted and managed by VFSMon. In relation to

this aspect, we recall that concurrency is managed in VFSMon with the usage of read/write spinlocks,

in order to manage access to its internal structures. Hence, no blocking service is used.

In all the tests each thread targets always the same file for performing the open(...) operation.

This choice has been motivated in order to gather latency samples related to a scenario where the device

blocks that keep data/metadata required for opening the file (e.g. for performing the lookup at the level

of the file system) are highly likely kept in the page-cache offered by the Linux kernel. This allows

assessing the run-time cost by VFSMon in the scenario where actual I/O interactions with the device

hosting the file system are avoided (thanks to the page-cache), which allows a better characterization of

the potential intrusiveness of VFSMon operations.

4.2. Results

Now we proceed to present the results for the aforementioned tests by illustrating the distribution of

operation times in terms of clock cycles across different thread counts and numbers of protected files.

All the tests we are going to describe have been carried out on a machine equipped with 12th Gen Intel

i7-12700H (10 VCPUs allocated to the used VM out of the 20 total of the host machine) @ 4.6GHz, and

8Gb (allocated out of the 16Gb of the host machine).

In Figure 2 we report the latency of open operations in read-mode. Since in the access control carried

out by VFSMon checks are only triggered on write-mode opens, read operations experience negligible

overhead, even with an increasing number of protected files. The data indicates consistent median

read times across all configurations, with only minor differences observed between the absence or

presence of our kernel module. We can then see the illustration of the latency of write-mode operations

in Figure 3 where, although access control checks are triggered, the overhead remains low due to the

fact that VFSMon employs a hashmap-based path-matching mechanism during its security checks,

which scales efficiently with the number of protected files. Lastly, in Figure 4 we present the results

for file creation operations. The create mode involves opening files with flags O_CREAT | O_TRUNC
| O_WRONLY, triggering both write-mode access control checks and additional file system operations.

This use case shows how the overhead by VFSMon is further reduced, given the larger amount of

intrinsic operations that are executed at the level of the actual file system, which leads to reduce the

percentage incidence of VFSMon operations.

5. Conclusions and Future Work

In this paper, we introduced VFSMon, a path-based reference monitor that operates at the Virtual File

System layer to deliver a flexible and dynamically configurable security solution for Linux. By combin-

ing selective write-access restrictions, time-based protection windows, and an embedded credential

mechanism, VFSMon addresses several critical shortcomings of traditional reference monitors, offering

a more practical and fine-grained approach to safeguarding both file and device file access. In addition,

the novel concept of place-holding paths facilitates common data management workflows, such as

controlled backup generation and enforced file immutability over defined periods. Our evaluation

demonstrates that VFSMon achieves these enhancements at a reasonable performance toll with respect

to the Linux baseline. This makes it well-suited for environments where security requirements are high

Figure 2: Read-mode open time cycles by number of protected files for each thread count

Figure 3: Write-mode open time cycles by number of protected files for each thread count

Figure 4: Create time cycles by number of protected files for each thread count

but must remain adaptive to changing operational conditions. Future work includes extending policy

configuration options and integrating user-friendly management tools.

Acknowledgments

This work was supported by Agenzia per la cybersicurezza nazionale under the programme for

promotion of XL cycle PhD research in cybersecurity - CUP E83C24002600001. The views expressed

are those of the authors and do not represent the funding institution.

This work was supported by the European Union - Next Generation EU under the Italian National

Recovery and Resilience Plan (NRRP), Mission 4, Component 2, Investment 1.3, CUP F83C22001690001,

partnership on “Telecommunications of the Future” (PE00000001 - program “RESTART”)

Declaration on Generative AI

During the preparation of this work, the author(s) used WRITEFULL in order to perform Grammar and

spelling check. After using these tool(s)/service(s), the author(s) reviewed and edited the content as

needed and take(s) full responsibility for the publication’s content.

References

[1] W. Stallings, Cryptography and Network Security: Principles and Practice, 5th ed., Prentice Hall,

2007. URL: https://www.pearson.com, discusses VPNs in the context of network security.

[2] M. Bishop, Introduction to Computer Security, Addison-Wesley, 2003. URL: https://www.pearson.

com, covers authentication protocols and related topics in computer security.

[3] A. A. Elkhail, N. Lachtar, D. Ibdah, R. Aslam, H. Khan, A. Bacha, H. Malik, Seamlessly safeguarding

data against ransomware attacks, IEEE Trans. Dependable Secur. Comput. 20 (2023) 1–16. URL:

https://doi.org/10.1109/TDSC.2022.3214781. doi:10.1109/TDSC.2022.3214781.

[4] Compliant worm storage using netapp snaplock, https://www.netapp.com/pdf.html?item=/media/

6158-tr4526pdf.pdf, 2023.

[5] An overview of microsoft project silica and its archive use, https://www.techtarget.com/

searchstorage/feature/An-overview-of-Microsoft-Project-Silica-and-its-archive-use, 2024.

[6] Write-once-read-many (worm) tamper proof technology, https://www.nexusindustrialmemory.

com/write-once-read-many/, 2023.

[7] S. Smalley, C. Vance, W. Salamon, Implementing selinux as a linux security module, NAI Labs

Report 1 (2001) 139.

[8] Enabling isg to interact with external policy servers, https://www.cisco.com/c/en/us/td/docs/

ios-xml/ios/isg/configuration/xe-3s/asr1000/isg-xe-3s-asr1000-book/isg-ext-pol-svrs.pdf, 2017.

[9] Crowd strike 2022 global threat report, https://go.crowdstrike.com/global-threat-report-2022.html,

2022.

[10] Kaspersky security bulletin 2021, https://securelist.com/ksb-2021/, 2021.

[11] A. Continella, A. Guagnelli, G. Zingaro, G. D. Pasquale, A. Barenghi, S. Zanero, F. Maggi, Shieldfs:

a self-healing, ransomware-aware filesystem, in: S. Schwab, W. K. Robertson, D. Balzarotti (Eds.),

Proceedings of the 32nd Annual Conference on Computer Security Applications, ACSAC 2016, Los

Angeles, CA, USA, December 5-9, 2016, ACM, 2016, pp. 336–347. URL: http://dl.acm.org/citation.

cfm?id=2991110.

[12] J. Huang, J. Xu, X. Xing, P. Liu, M. K. Qureshi, Flashguard: Leveraging intrinsic flash properties to

defend against encryption ransomware, in: B. Thuraisingham, D. Evans, T. Malkin, D. Xu (Eds.),

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,

CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017, ACM, 2017, pp. 2231–2244. URL:

https://doi.org/10.1145/3133956.3134035. doi:10.1145/3133956.3134035.

[13] P. Caporaso, G. Bianchi, F. Quaglia, Vaultfs: Write-once software support at the file system level

against ransomware attacks, arXiv preprint arXiv:2410.21979 (2024).

[14] Fs-verity: read-only file-based authenticity protection, https://docs.kernel.org/filesystems/fsverity.

html, 2019.

https://www.pearson.com
https://www.pearson.com
https://www.pearson.com
https://doi.org/10.1109/TDSC.2022.3214781
http://dx.doi.org/10.1109/TDSC.2022.3214781
https://www.netapp.com/pdf.html?item=/media/6158-tr4526pdf.pdf
https://www.netapp.com/pdf.html?item=/media/6158-tr4526pdf.pdf
https://www.techtarget.com/searchstorage/feature/An-overview-of-Microsoft-Project-Silica-and-its-archive-use
https://www.techtarget.com/searchstorage/feature/An-overview-of-Microsoft-Project-Silica-and-its-archive-use
https://www.nexusindustrialmemory.com/write-once-read-many/
https://www.nexusindustrialmemory.com/write-once-read-many/
 https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/isg/configuration/xe-3s/asr1000/isg-xe-3s-asr1000-book/isg-ext-pol-svrs.pdf
 https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/isg/configuration/xe-3s/asr1000/isg-xe-3s-asr1000-book/isg-ext-pol-svrs.pdf
https://go.crowdstrike.com/global-threat-report-2022.html
https://securelist.com/ksb-2021/
http://dl.acm.org/citation.cfm?id=2991110
http://dl.acm.org/citation.cfm?id=2991110
https://doi.org/10.1145/3133956.3134035
http://dx.doi.org/10.1145/3133956.3134035
https://docs.kernel.org/filesystems/fsverity.html
https://docs.kernel.org/filesystems/fsverity.html

	1 Introduction
	2 Related Work
	3 VFSMon
	3.1 Architectural Overview
	3.2 Time Passage and Protected-Path Placeholding
	3.3 Managing Devices
	3.4 Security Assessment

	4 Run-time Cost
	4.1 Testing Methodology
	4.2 Results

	5 Conclusions and Future Work

