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Abstract

Protocol fuzzing is a technique used to assess the security posture of a network by sending malformed or
unexpected inputs. However, in a complex context like 5G, it requires optimization to achieve meaningful
results, which involve reaching deep network states that depend on specific message sequences, and testing
them. By using structure-aware fuzzing and a feedback mechanism, we derive the protocol’s structure to guide
input generation and apply targeted optimizations. This approach enhances vulnerability detection and ensures
comprehensive testing of the network’s resilience.
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1. Introduction

The security of mobile networks is of fundamental importance, given their role as critical infrastructure
supporting communication, commerce, and essential services. With the introduction of 5G, security
has become a predominant concern, with security features embedded in the specifications and a strong
focus on security assurance and testing. Specifically, various testing methodologies have been explored,
with fuzzing emerging as a widely used technique. This testing method, which consists of stimulating
a system with random or unexpected inputs, has seen significant advancements lately, with novel
approaches improving its effectiveness in identifying vulnerabilities, and it is widely employed across
different domains.

For security certification purposes, it is essential that testing be conducted externally, allowing
independent certification bodies to evaluate the network. This requirement necessitates a black-box
testing approach, where testers have no access to the network’s internal code. While fuzzing through
the network interface is a viable solution, it is inherently slower than traditional methods, as every
test must pass through the communication interface. This added latency underscores the need for
optimization to maintain an effective testing campaign.

In this paper, we apply and adapt known optimization techniques to address the unique challenges
of fuzzing a 5G Core Network in a remote testing scenario. Specifically, we developed a fuzzing engine
employing both structure-aware fuzzing and feedback, adapting these concepts to the specific context
of 5G and considering the added difficulty of remote testing. Our approach demonstrates how these
techniques can be tailored to improve the efficiency and depth of fuzzing campaigns in this environment.

The paper is organized as follows: Section 2 provides a brief introduction to the 5G Core Network and
fuzzing, highlighting the state of the art on these topics. Section 3 explores the motivation behind our
work. Section 4 explains structure-aware fuzzing, its application, and possible optimizations. Section 5
outlines a feedback mechanism for our fuzzer, and section 6 describes our testing architecture and the
results obtained.
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2. Background and Related Works

2.1. 5G Core Network

The increasing demand for flexibility in 5G networks has driven a transition from hardware-based com-
ponents to software-defined network functions, adopting the paradigm of Software-Defined Networking
(SDN) and technologies like Network Function Virtualization (NFV) to enable this softwarization of
the network. Thanks to these technologies, a 5G Core is composed of numerous Network Functions
(NFs), each responsible for a specific functionality. For instance, the Access and Mobility Management
Function (AMF), which we focus on, manages user access to the network and handovers between cells.
Interactions between different network components are defined in the 3GPP technical specifications
[1]: NFs utilize a service-based interface employing the HTTP protocol to handle internal control
plane functionalities, while communication between the user and control plane, or between NFs and
other network components, is based on point-to-point protocols, usually developed specifically for
cellular communication. For example, our work focuses on the NAS protocol, which governs signaling
communications between the UE and AMF.

2.2. Fuzzing

Fuzzing is a widely used testing technique in both software and protocol domains. It consists of sending
a large number of unexpected or malformed inputs to a system and analyzing its reactions [2]. The aim
is to either cause a crash, uncovering possible buffer overflows, or to discover unexpected behaviors
that could stem from vulnerabilities in the system’s implementation.

Over time, fuzzing has become increasingly popular and sophisticated, leading to the development of
various tools and the standardization of different approaches to this testing method. In the software
domain, research has primarily focused on coverage-guided fuzzing, which employs code instrumentation
to gather coverage information and use it as feedback during the fuzzer’s execution [3]. Some works
have applied feedback mechanisms in a network environment, such as [4] and [5], but these approaches
still require access to source code. On the protocol side, alternative optimizations have been explored,
particularly in the realm of structure-aware fuzzing, which focuses on crafting fuzzed yet protocol-
compliant inputs to maximize the number of meaningful tests. Examples include [6] and [7].

However, applying generic network fuzzers to mobile networks presents several additional challenges
and does not always yield the desired results [8]. Some efforts have been made to fuzz LTE networks,
with relevant studies including [9, 10, 11]. Regarding the fuzzing of 5G networks, there are works that
focus on fuzzing UEs and gNBs, even at lower layers [12, 13], as well as 5Greplay [14], which focuses
on testing the Core Network by replaying network packets with and without modifications from pcap
traces, though it does not allow for in-depth packet editing.

3. Motivation

In our testing scenario, tests must be conducted in a black-box manner to enable external entities, inde-
pendent of the network vendor, to perform the testing. However, this setup requires sending messages
over the network interface, as it is assumed that the tester does not have direct access to the network
under test or its source code, which results in substantial latency between tests. Furthermore, because
we cannot isolate specific code areas and must reset the system state after each test, communication
needs to be restarted for every attempt, leading to a considerable waste of time. These constraints
prevent us from using the high-volume random input approach common in software fuzzing, where
testing cycles are much faster. Instead, it becomes essential to design tests that are both targeted and
meaningful.

One of the main challenges we face is testing deeper layers within the network. Randomly modified
inputs allow us to test the decoding function, but only a minimal percentage of these fuzzed inputs
will penetrate further into the system. Instead, our objective is to assess how the system interprets and



handles message content, which requires semantically meaningful messages capable of successfully
completing the decoding phase. Additionally, the protocol functions as a state machine, where each
incoming message triggers a transition from one state to another. This structure means that initial
states are relatively easy to test, while deeper states—those that require a specific sequence of messages
to reach—are likely to remain untested in most scenarios.

For these reasons, it is essential to optimize which inputs are sent, moving away from a fully random
approach and instead drawing inspiration from techniques such as structure-aware fuzzing and guided
fuzzing.

4. Preliminary Optimizations: Structure-Aware Fuzzing

Structure-aware fuzzing means that when a system requires complex, structured inputs, the fuzzing
process is performed with an understanding of the input’s specific structure rather than in a completely
random way. This approach requires both preliminary knowledge of the input’s semantics and a
fuzzing engine capable of making modifications according to those rules. Unlike protocols with ASN.1
specifications [15], which are common in the telecommunications landscape and allow for straight-
forward automatic parsing, NAS messages are described in tabular format [16] and lack standardized,
automatically parsable specifications. Therefore, our initial step was to derive the structure of possible
NAS messages to enable a more targeted and effective fuzzing approach. Once these structures are
defined, we can specify message modifications through configuration files, which indicate the parts of
each message type to alter.

4.1. Messages’ Structures Extraction

Representation. While ASN.1 is a common language for specifying network messages in a stan-
dardized, independent manner, its strength lies in its conciseness, allowing messages to travel quickly
without wasting network resources. However, although we aim to describe a network protocol, our
primary need is a representation format specifically for fuzzing inputs, so brevity is not a priority. In-
stead, we chose to represent inputs as JSON objects, drawing inspiration from fuzzers used to test REST
APIs, such as [17]. These fuzzers perform structure-aware fuzzing based on OpenAPI specifications,
which provide a standardized, language-agnostic interface to HTTP APIs. This interface allows both
humans and machines to understand the service’s capabilities and can be represented through YAML or
JSON files [18]. JSON objects are easily processed by computers, offer a versatile representation, and
maintain human readability.

Messages’ structure. NAS messages can be either plain or security-protected: each security-protected
message encapsulates an (eventually ciphered) plain-text message. A fundamental principle of our
fuzzing campaign is that messages must successfully pass decoding, which requires having messages
with a valid MAC. For this reason, modifications are performed on plain-text messages, and the MAC is
recomputed afterward if necessary. Another constraint on the structures we can obtain is the scope
of our fuzzing campaign: our target is the AMF, but NAS messages can be processed by different NFs,
such as the SMF. Nevertheless, we focused on obtaining structures only for Mobility Management NAS
messages, although the tool can be expanded.

Each NAS message is composed of a header and a sequence of Information Elements (IEs). The header
structure is quite simple and is the same for every message, but it is still included in every file for clarity.
It consists of four values: extended protocol discriminator (EPD), some spare bits, security header type,
and message type. However, the only field that varies among our messages is the message type field.

IEs are more varied and complex: each message type can have both mandatory and optional IEs, and
each IE consists of a combination of type, length, and value. The type field contains the IE identifier
(IED), is present only for optional IEs, and is relative to the specific IE inside the message. Depending on
the specific IE, the value can have either a fixed or variable length, and the length field is included only
when the value can be variable [19].



This kind of structure is centered around the message. Some applications could benefit from a
representation where the focal point is the Information Element, listing the messages to which each IE
belongs. We decided to create and store both structures so that the fuzzing engine can use the most
suitable one.

Information extraction. The structure of NAS messages is described in the specifications defined by
the 3rd Generation Partnership Project (3GPP) [1]. These specifications are written in natural language
by hand and contain thousands of pages. Therefore, understanding them comprehensively is nearly
impossible, and manual parsing is a cumbersome task. Even automatic parsing requires significant
effort due to the lack of a defined structure and the large file size.

For these reasons, we sought a more efficient approach. Some libraries already handle the automatic
parsing and generation of NAS messages, such as Pycrate [20], a Python library for manipulating
various digital formats related in one way or another to cellular network signaling. This library features
classes that describe the possible NAS messages: within each class, the list of all IEs that are usable
by the message it represents—including optional ones—is encoded. By employing reflection—i.e., a
feature that allows a programming language like Python to examine or "introspect” upon itself—we
were able to extract the structure of these classes from Pycrate and convert them into our desired JSON
representation.

4.2. Fuzzed inputs generation

Starting from message specifications, we need to derive new inputs for the Core Network. Typically,
fuzzing techniques for input generation can be divided into two main categories: generation-based and
mutation-based. The former starts with an input grammar to create entirely new inputs, while the latter
focuses on mutating existing, valid inputs to generate new ones [21]. We opted for a mutation-based
approach, as it ensures that unmodified IEs have valid values, which would otherwise be difficult to gen-
erate. To achieve this, we must determine both the types of modifications that can be applied—ensuring
they are random but still respect the message’s structure to some extent—and how this information can
be provided to the fuzzing engine.

Structured modifications applicable to NAS messages can be divided into two categories: modifications
affecting the entire information element (IE) and those targeting values within an IE. The former includes
actions like adding new IEs, even if the Core Network is not in the appropriate state to process them,
while the latter includes creating inconsistencies, such as mismatches between a value and its declared
length, which can be more effective in uncovering vulnerabilities like buffer overflows or crashes.
Although our testing architecture can monitor the Core Network to detect crashes, it is not designed
to identify protocol errors. Nevertheless, we have designed the input generation process to be more
generic, enabling its use within other systems.

For modifications involving the entire IE, we implemented a system capable of removing IEs from
a message, adding new IEs in various ways—such as inserting an optional IE between mandatory
ones—taking an IE from one message and adding it to another, duplicating IEs, or swapping the order
of IEs. Intra-IE modifications can be performed either consistently, where the value is changed while
maintaining a valid format, or inconsistently, such as creating an IE with a value but no length or adding
an IEI to a mandatory IE.

Before each fuzzing run, a JSON file specifying which modifications should be applied to which
messages is generated and provided to the fuzzing engine. The engine parses this file and applies the
modifications when the corresponding message is intercepted. The structure of this file is simple enough
to be written manually, making it a programmable tool. For example, if a specific Core Network is
known to crash upon receiving certain messages, those messages can be reproduced directly to replicate
the failure. This programmability provides additional advantages, such as greater control over the tests
conducted and the ability to bring the network into specific states.

However, fuzzing inherently relies on executing a large number of varied tests, and manually
generating such tests is both complex and time-consuming. To address this, we devised a mechanism for
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Figure 1: Fuzzed Message Generation

automatically generating a meaningful set of tests using a probabilistic approach based on thresholds.
For each fuzzing technique, we set a probability of application, and during input generation, a random
number is drawn and compared against this threshold to decide whether the specific rule should be
applied. Additional thresholds determine whether a specific IE should be considered for modification,
and further thresholds can be incorporated depending on the type of rule being applied. Figure 1
illustrates how the selection process for modifications is performed.

To retain both the benefits of programmability and the higher speed of automatic input generation,
we devised a hybrid approach: even when automation is used, a programmer can manually specify
certain modifications to apply. During automatic generation, manually specified rules take precedence,
and manually modified IEs are never considered for random fuzzing techniques.

Two key points must be highlighted for the correctness of the automatic approach: how the thresholds
are chosen and how random numbers are generated. For the former, an initial tuning phase is performed,
with details provided in section 4.3, while for the latter, we employed a Lehmer Generator [22].

Pseudo-Random Number Generator. There are several factors to consider when choosing a
suitable source of randomness for input generation. First, test repeatability is indispensable: once
an interesting result is obtained, the test must be repeatable to pinpoint the bug and verify whether
it has been successfully resolved. Pseudo-random number generators produce numbers based on a
predetermined sequence defined by an initial seed. This seed can either be manually selected or derived
from a truly random value on the machine and then saved for reuse, ensuring repeatability.

Another important consideration is the independence of different extractions. For each modification
to an IE, we select multiple values. However, if these values are drawn from the same random stream,
correlations may arise, causing some outcomes to have a higher probability than others. This could skew
the testing process and reduce its effectiveness. To avoid this problem, we chose to use separate streams
based on where the generated value will be used. This is possible because the selected generator offers
the functionality of employing multiple independent streams, thereby ensuring statistical independence.

4.3. Tuning

Why? The success of a fuzzing campaign heavily depends on how inputs are generated. Therefore,
setting appropriate thresholds to determine which modifications will be applied is essential. These
thresholds depend on both the type of rule and the information element involved. For instance, removing
an IE has a predictable outcome, whereas the result of modifying a value depends on the new value



chosen. To ensure even coverage, the first rule should have a higher threshold. Additionally, thresholds
must align with the objectives of the testing campaign.

The goal of our fuzzer is to explore deeper states within the analyzed procedure rather than focusing
on inputs that trigger decoding errors because, while such errors are useful for testing decoding
functionality, they fail to reach or test other critical aspects of the system. Therefore, thresholds should
discourage modifications that create an undecodable message.

How? To perform tuning successfully, we need a deeper understanding of the events that follow each
message, as the output obtainable without direct access to the Core Network is insufficient. We opted
for a grey-box fuzzing approach for this step: while we do not directly modify the Core Network’s
software, we assume that logs from the network function under test are accessible. This does not
hinder the fuzzer’s functionality, as tuning can be performed on an open-source Core Network, with
the obtained values later reused on another Core.

Tuning is conducted using the same fuzzing engine employed during testing. We initialize some
thresholds, which are incrementally adjusted based on new results. A clearer understanding of the
impact of a specific fuzzing rule can be achieved by analyzing each rule in isolation. For this purpose,
each strategy is optimized individually, with its initial threshold set to 1, while thresholds for all other
techniques are set to 0.

Regarding information elements, assigning a threshold to each individual IE is too cumbersome.
Instead, we group them into categories: for each rule, we set different thresholds for mandatory and
optional IEs, both initially set to 0.5. During the tuning phase, applied modifications are recorded along
with their timestamps. At the end of the run, the Core Network logs are accessed and analyzed, using
the timestamps to match the inputs sent to the NF with the resulting errors.

The threshold for each fuzzing strategy is calculated as:

total inputs — inputs causing decoding errors

threshold = -
total inputs

For IEs, the threshold is determined as:

success ful inputs for method 1

threshold =

Zj success ful inputs for method j

5. Runtime Optimizations: Feedback

While tuning provides a useful baseline, it is insufficient for an effective fuzzing campaign, particularly
since thresholds are often determined heuristically and may be calculated on a Core Network different
from the one under test. Although tuning offers a convenient starting point, runtime optimizations are
more adaptable and enable greater efficiency during testing.

Our primary focus when determining thresholds was to minimize decoding errors. However, another
critical principle for selecting suitable inputs is recognizing that bugs can be complex and may arise
from multiple contributing factors. Reaching such bugs often requires a sequence of fuzzed messages.
Given our interest in uncovering complex issues, we implemented a feedback mechanism that prioritizes
messages introducing unexpected values while still allowing communication between the UE and the
AMEF to continue. This approach facilitates deeper exploration of the network function’s internal states.

Why? The idea behind feedback is that if a specific modification sequence produces a communication
failure, repeating the same sequence on the same Core Network is redundant. The outcome will remain
unchanged, providing no additional insights. Conversely, if communication between the UE and AMF
persists despite the modification, replaying the same sequence up to that point and continuing to fuzz
with different values can be beneficial. Changes in subsequent messages might reveal new issues, as
illustrated in Figure 2.
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Figure 2: Fuzzing With and Without Feedback

How? Although our fuzzer includes the capability to execute a single test—an especially useful
feature for replaying bugs—the general fuzzing approach involves executing a series of registration and
deregistration procedures, effectively fuzzing extended message traces. Specifically, at the start of each
communication attempt, a fuzzing file is generated and utilized throughout a single fuzzing era. An
era ends when a certain amount of time has elapsed, all modifications specified in the file have been
tested and discarded, or a configurable number of successful communication attempts—i.e., interface
setup—has been achieved. Upon completing an era, a new fuzzing file is created, initiating the next
phase of testing.

During each fuzzing era, multiple attempts are made to successfully register and establish a PDU
session. When feedback mechanisms are introduced, the fuzzing file is dynamically updated at the end
of each registration attempt, ensuring that subsequent attempts incorporate a new set of modifications.
This iterative process leads to diverse outcomes and deeper exploration of potential issues.

Initially, we implemented a feedback technique that removes all modifications applied to a message
from the fuzzing file whenever the message causes communication between the Core Network and UE to
interrupt. While this approach effectively eliminates the blocking modification, it proves overly drastic
when a large number of modifications are applied to the same message. Removing all modifications
can result in the loss of potentially useful inputs. Additionally, although this feedback technique is
valuable for testing deep network states -since eliminating modifications on earlier messages ensures
progression to deeper ones- it fails to capture the effects of modification stacking, which may uncover
more complex bugs.

A slower but more effective feedback technique involves selectively removing a random subset
of modifications applied to a blocking message. If communication blocks again, further subsets of
modifications are removed iteratively. This approach increases the likelihood that the resulting messages
are processed, as the randomness diminishes with each iteration. However, it still retains some fuzzed
inputs while working toward reaching the Core Network’s internal states, thereby maintaining the
potential to uncover bugs. Although this strategy is slower, it avoids the unproductive focus on
unprocessable messages that often characterizes fuzzing without feedback, while preserving the benefits
of modification stacking.
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Figure 3: Number of decoding errors encountered with different fuzzing techniques.

6. Testing Architecture and Results

6.1. Testing Architecture

This work builds upon AMFuzz [23], a previous study on fuzzing the 5G Core Network, which focused
more on creating a suitable architecture than on optimizing the fuzzing engine. AMFuzz’s architecture
is based on a proxy that intercepts messages between the gNB and the Core, along with configurable
hooks that process intercepted messages, enabling decoding and security handling. The new fuzzing
engine has been developed as a series of new hooks, replacing the previous rudimentary approach with
a more structured fuzzing mechanism.

Tests can be performed on any Core Network as long as the N2 interface is exposed and configured
to allow connections from our framework. Theoretically, multiple instances of the framework could
connect to the same AMF, but running parallel tests is ineffective since the results could interfere with
each other.

Our tests were conducted on two open-source Core Networks: Open5GS [24] and free5GC [25]. Both
Core Networks were deployed using Docker and follow a disaggregated architecture.

6.2. Results

We evaluated our framework based on two key questions:

Q1 Does the tuning process reduce the number of decoding errors encountered during a fuzzing
run?

Q2 Does the feedback system enable a deeper analysis of the Core Network?

Structure-aware. Question Q1 assesses the benefits of introducing structure-aware fuzzing, particu-
larly the impact of tuning compared to applying a raw version of this method. We evaluated our fuzzer
by comparing the number of decoding errors caused by each technique. To determine the number of
decoding errors, we analyzed the Core Network’s logs after executing each method.

To demonstrate that tuning remains effective even when derived from a different Core Network,
we generated thresholds using Open5GS and tested both cores with them. As shown in Figure 3, the
naive fuzzing engine, which flips random bytes without considering message structure, is never able
to produce decodable messages. In contrast, introducing structure-aware fuzzing yields significantly
better results. With the addition of tuning, the number of decoding errors decreases even further. As
expected, the drop is more pronounced with Open5GS; however, tuning remains portable between
different Core Networks.
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Figure 4: Messages reached with different feedback methods.

Feedback. Question Q2 evaluates whether introducing a feedback method enables deeper exploration
within the Core Network. We tested our feedback techniques on Open5GS by executing different fuzzing
runs and measuring how many times a message was reached without feedback or with each of the
proposed feedback methods.

As shown in Figure 4, removing all modifications whenever communication stops results in the most
even distribution and the highest number of successful registrations. On the other hand, reducing the
number of modifications leads to a higher number of deviations from the standard path, as indicated by
an increased occurrence of Authentication Failure and Identity Response messages.

Overall, the best feedback method depends on the objectives of the fuzzing campaign. However, both
techniques are effective in achieving their respective goals.

7. Conclusions

Both methods proposed for optimizing the fuzzing of a 5G Core Network have proven effective in
enhancing the fuzzer’s performance, enabling deeper testing of the Core’s internal states. Fuzzing, by
nature, is not a fast testing technique. Therefore, despite optimizations, achieving meaningful results
still requires substantial execution time. However, when the goal is to test the deeper states of the Core
Network, such optimizations are essential to prevent an exponential increase in execution time.

Another important outcome of this work is the structured representation of NAS messages, which
are easily parsable and hold significant potential for reuse. These structures could be leveraged with
alternative feedback or tuning techniques, broadening their applicability. Furthermore, they could serve
as a foundation for testing other components, such as the User Equipment, extending the impact of this
research.
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