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Abstract
The evolving nature of malware poses significant challenges for machine learning-based detectors, demanding
frequent updates to handle new threats. As keeping all historical data is impractical due to storage constraints,
Continual Learning (CL) algorithms come to help by incrementally updating the detectors without retraining
over all previously collected data. Unfortunately, updating the model might cause inconsistencies: the new model
can have false positives for goodware that was previously correctly classified, and malware that was detected
by the previous model can become undetected by the new one. This issue, referred to as security regression,
is often overlooked in concurrent work but can undermine user trust despite overall detection performance
improvements. In this work, we address this issue by proposing a learning strategy that combines a replay-based
CL method with a regression-aware penalty to preserve the correct decisions of earlier models. Specifically, we
adapt the Positive Congruent Training (PCT) strategy to a CL setting, presenting the first regression-aware CL
algorithm. Experiments conducted on the ELSA Android dataset demonstrate how this approach significantly
reduces security regression while keeping up with the data drift, maintaining high detection performances over
time.
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1. Introduction

The detection of malicious software (i.e., malware) is a critical aspect of cybersecurity, driven by the
need to protect sensitive data, maintain system integrity, and ensure the continuous operation of
services. To this end, Machine learning (ML) has revolutionized malware detection by leveraging vast
amounts of data to identify complex patterns and correlations that manual analysis might miss [1, 2].
Unfortunately, ML is built on the assumption that training and testing data are sampled from the same
underlying distribution, which is not the case for Android applications, as they are characterized by a
fast-paced evolution during deployment. In fact, malicious users continuously adapt malware to evade
detection, e.g., by obfuscating lines of code usually considered malicious by most ML-based detectors.
Additionally, the frequent updates in the Android OS framework, such as the introduction of new
APIs or the deprecation of old ones, make legitimate applications evolve as well. This phenomenon is
known as concept drift [3], and is the leading cause for the severe performance degradation that affects
ML-based malware detectors as time passes [4].

To avoid this issue, ML-based detectors require constant retraining to keep pace with the Android
malware evolution. Since millions of new Android applications appear every single day,1 retaining all
historical data for full retraining of the model reveals to be infeasible for storage limitations. On the
other hand, simply retraining on the current data causes the model to forget how to classify previously
learned data, a phenomenon known as catastrophic forgetting [5]. To this end, Continual Learning (CL)
algorithms allow to incrementally learn new patterns while retaining useful past knowledge [5]. This
can be achieved, for example, by adding a regularization term to preserve prior knowledge or using a
replay buffer to store a small subset of past examples for rehearsal [5]. While CL may be particularly
effective in updating Android malware detectors as the data distribution changes using a limited number
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of recent samples [6], the application of CL methods for malware detection remains under-explored.
Nevertheless, CL algorithms do not account for a critical issue arising from the updating process itself,
known as regression. This is a well-known term in software development, indicating a particular type of
bug arising when a software update that comes with new features comes at the cost of compromising
previous functionalities that should have been preserved [7]. From the machine learning perspective,
the regression problem translates to samples that were correctly classified by the previous model but
are now misclassified after updating it. These samples have been referred to as negative flips (NFs)
in [8] and can consistently jeopardize the reliability of subsequent model updates. In Android malware
detection, negative flips may pose a significant threat as they reopen previously patched vulnerabilities,
increasing the risk of infecting devices.2

In the image classification domain, Yan et al. [8] mitigate this issue by proposing Positive Congruent
Training (PCT), which minimizes the classification loss together with a knowledge-distillation term
that up-weights samples that were correctly classified by the previous model. However, this kind of
approach has only been applied in updating scenarios that are different from the ultimate goal of CL,
i.e., train continually without retaining all past data, as they aim either to (i) improve performance
on a fixed set of data, or (ii) learn additional data that are included in the whole training set. Thus, to
the best of our knowledge, none of the previous works have considered the regression issue in a CL
pipeline in which retaining all past data is not allowed. Moreover, this has never been applied in the
malware detection domain.

In this work, we address this issue by proposing PCT-replay, the first regression-aware CL algorithm
that combats both catastrophic forgetting and regression in Android malware detectors. In particular,
our PCT-replay (i) employs the objective function proposed in [8] to minimize negative flips, and (ii)
learn current data jointly with a limited amount of past Android applications (a.k.a. rehearsal memory)
to retain past knowledge, while adapting the model to the drifting data. Our experiments on the ELSA
dataset, which contains Android applications spanning from January 2017 to December 2019, show
that our PCT-replay outperforms all five state-of-the-art CL strategies while maintaining competing
detection performance over time, both in terms of retaining past knowledge as well as anticipating
the drift. This study lays the groundwork for consistent classification of previously learned data when
applying CL to the malware detection domain. For future research, there is still room for improvement,
exploring semi-supervised settings, where only a limited number of samples are labeled, reflecting more
realistic conditions.

2. Continual Learning and Regression of Performance

Before delving into the details of our method, we first lay the foundations for incrementally learning
new threats over time and present how regression is quantified and tackled by previous works in a
non-CL update scenario.

2.1. Continual Learning Pipeline

Let us denote as 𝑥 the Android application represented as a 𝑑-dimensional feature vector, for which we
assign a label 𝑦 that is 0/1 if the sample belongs to the goodware/malware class.

In a CL scenario, we consider a sequential stream of data 𝒟 = {𝒟1,𝒟2, . . . ,𝒟𝐾} composed of
𝐾 experiences. We then consider each experience 𝒟𝑘 = {𝑥𝑘

𝑖 , 𝑦
𝑘
𝑖 , 𝑡

𝑘
𝑖 }

𝑛𝑘
𝑖=1 comprised by 𝑛𝑘 samples

registered at time 𝑡𝑘𝑖 ∈ Δ𝑡𝑘 = [𝑡𝑘−1, 𝑡𝑘], such that the sequence of experiences well describes the
temporal evolution of the data. This kind of scenario is typically referred to as a domain-incremental
learning problem, which aims to continuously adapt the model to new emerging domains (in this
case, the drifting Android applications).3 We then denote as 𝑓(𝑥) the model that outputs a probability

2https://cloud.google.com/blog/topics/threat-intelligence/churning-out-machine-learning-models-handling-changes-in-model-predictions/
3We do not consider the class-incremental and task-incremental scenarios as we do not deal with an increasing number of
unique classes or distinct tasks. We refer the reader to [9] for further details.
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distribution over the two classes (e.g., [0.1, 0.9], representing the probability assigned to the goodware
and malware class, respectively), and denote the predicted label as 𝑦 = arg max𝑐∈{0,1} 𝑓(𝑥). Training
the model sequentially amounts to finding, for each experience 𝒟𝑘, a function 𝑓𝑘 within a feasible
domain ℱ that minimizes the error on the current experience as well as on past ones. To achieve
this goal, previous works proposed different types of CL strategies, which can be grouped into three
categories: (i) replay-based methods, regularization-based methods, or (iii) parameter isolation-based
methods [5]. In this work, we focus on the first two, as the latter is rarely considered for domain
incremental scenarios. Replay-based methods store past samples in a limited buffer 𝒟𝐵 and replay them
when training each experience [10]. Regularization-based methods focus instead on regularizing the
loss function to preserve previous knowledge by constraining model parameters important for previous
experiences [11] or by using knowledge-distillation loss w.r.t. the previous model [12].

2.2. Regression in Model Updates

When updating an ML model to follow the drift, the newly-updated model introduces new mistakes on
samples that were correctly predicted before the update, which have been referred to as negative flips
(NFs) in [8]. Let us consider a single update scenario in which a model 𝑓𝑜𝑙𝑑 is substituted with a model
𝑓𝑛𝑒𝑤 having better performance. We can then measure the negative flip rate (NFR) on the dataset 𝒟 as
follows:

NFR =
1

𝑁

𝑁∑︁
𝑖=1

I(𝑦𝑛𝑒𝑤𝑖 ̸= 𝑦𝑖 ∧ 𝑦𝑜𝑙𝑑𝑖 = 𝑦𝑖), (1)

where 𝑁 is the number of samples in 𝒟, I is an indicator function that outputs 1 if the input statement
is true and 0 otherwise, and 𝑦𝑛𝑒𝑤𝑖 and 𝑦𝑜𝑙𝑑𝑖 are the predictions assigned by 𝑓𝑛𝑒𝑤 and 𝑓𝑜𝑙𝑑 (respectively)
to the input sample 𝑥𝑖 with true label 𝑦𝑖.

To reduce NFR, Yan et al. [8] proposed Positive Congruent Training (PCT), which includes a regular-
ization term ℒ𝑃𝐶 to the classification loss ℒ (e.g., the cross-entropy loss):

min
𝑓∈ℱ

𝑁∑︁
𝑖=1

ℒ(𝑦𝑖,𝑥𝑖) + 𝜆ℒ𝑃𝐶(𝑓(𝑥𝑖), 𝑓
𝑜𝑙𝑑(𝑥𝑖)), (2)

where 𝑓 can be initialized as 𝑓𝑛𝑒𝑤 before training if available beforehand, and ℒ𝑃𝐶 penalizes changes
in the decision function in the regions containing samples that 𝑓𝑜𝑙𝑑 already classified correctly. The
ℒ𝑃𝐶 term is referred to as focal distillation, and can be formally defined as:

ℒ𝑃𝐶 =

𝑁∑︁
𝑖=1

[︁
𝛼+ 𝛽 · I

(︁
𝑦𝑜𝑙𝑑𝑖 = 𝑦𝑖

)︁]︁
ℒ𝐷

(︁
𝑓(𝑥𝑖), 𝑓

𝑜𝑙𝑑(𝑥𝑖)
)︁
, (3)

where 𝛼 is the base weight applied to all samples in the training set, 𝛽 is the additional weight applied
to the samples that are correctly predicted by the old model, and ℒ𝐷 is a generic knowledge-distillation
loss. As suggested in [8], we can set ℒ𝐷 as the Euclidean distance between the probabilities of 𝑓 and
𝑓𝑜𝑙𝑑 as detailed in Equation 4:4

ℒ𝐷(𝑓(𝑥), 𝑓
𝑜𝑙𝑑(𝑥) =

1

2

⃦⃦⃦
𝑓(𝑥)− 𝑓𝑜𝑙𝑑(𝑥)

⃦⃦⃦2
2
. (4)

3. Mitigating Regression in Continual Learning

In this section, we (i) adapt the NFR metric to be used in a CL setting and (ii) present our PCT-replay to
mitigate forgetting while learning incrementally to follow the drift.

4This is denoted in [8] as logit matching as it promotes the output logits to be as similar as possible in terms of Euclidean
distance.



Measuring NFR in CL. CL strategies incorporate new information while striving to preserve existing
knowledge, offering a promising solution to the problem of catastrophic forgetting. However, forgetting
is typically measured as an average metric (e.g., the average classification accuracy on past experiences)
and does not sufficiently account for sample-wise performance such as NFR. To this end, we adapt
Equation 1 and define the NFR𝑘 as follows:

NFR𝑘 =
1

𝑁

𝑁∑︁
𝑖=1

I(𝑦𝑘𝑖 ̸= 𝑦𝑖 ∧ 𝑦𝑘−1
𝑖 = 𝑦𝑖), (5)

which measures the percentage of NFs on the testing experience 𝒟(𝑘−1) when comparing the predictions
of model 𝑓𝑘−1 to the newly-updated model 𝑓𝑘 trained on the latest experience 𝒟𝑘.

PCT-replay. To reduce NFR𝑘 when learning the 𝑘-th experience 𝒟𝑘 , we employ the objective in Equa-
tion 3 and include a rehearsal memory 𝒟𝑀 containing 𝑀 samples collected from previous experiences,
as done in [10]. We can then formally define the PCT-replay objective as follows:

min
𝑓∈ℱ

𝑁+𝑀∑︁
𝑖=1

ℒ(𝑦𝑖,𝑥𝑖) + 𝜆ℒ𝑃𝐶(𝑓(𝑥𝑖), 𝑓
𝑜𝑙𝑑(𝑥𝑖)), (6)

where (𝑥𝑖, 𝑦𝑖) are now sampled from the 𝒟𝑘 ∪ 𝒟𝑀 . After training on the 𝑘-th experience, we replace
some of the samples in 𝒟𝑀 with the ones contained in 𝒟𝑘 , which allows us to repeat the process when
learning on the subsequent experience 𝒟𝑘+1 This enables minimizing NFR on each experience while
retaining previous knowledge thanks to the rehearsal memory.

4. Experiments

We now quantify the ability of our PCT-replay to reduce the regression of performance while learning
continually with minimal amount of forgetting.

4.1. Experimental Setup

Dataset. We conducted our experiments on the ELSA dataset, which contains Android applications
collected from the AndroZoo repository.5 Each application is labeled as malicious if detected by at least
10 detectors from VirusTotal,6 and benign if the number of detections is zero. It is instead discarded if
the number of detections is between 1 and 9 to avoid including applications for which the true label is
uncertain. We consider 75000 applications (67500 goodware and 7500 malware), spanning from January
2017 to December 2019. According to the evaluation guidelines presented in [4], we consider a 3-months
time window containing 6,250 for each experience. We then dedicate 5000 samples for training on each
experience and leave the rest to test the performance (as detailed below). We use the first training split
to extract binary features according to Drebin [1], where each one represents the presence or absence
of a specific characteristic extracted from the apk file. We exclude all features having variance lower
than 10−3, resulting in a total of 4,681 features.

Model Architecture and Training. We used a multi-layer perceptron (MLP) as our main classifier,
for which we set a hidden layer of size 512 and 2 outputs. We minimize the cross-entropy loss using
the SGD optimizer with learning rate of 10−3 and momentum set to 0.9. We train the models for one
epoch, and we set the batch size to 1 for all strategies except for the cumulative one, for which we set it
to 12 as it aims to minimize the loss uniformly for all training experiences considered.

Evaluation Metrics. We evaluate the classification performances by considering three main metrics:
(i) the precision, (ii) the recall (a.k.a. detection rate), and (iii) the 𝐹1 score, which summarize the first two
by taking their harmonic mean. Following common evaluation protocols in CL, we average each metric

5https://androzoo.uni.lu/
6https://www.virustotal.com/gui/home/upload
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after training on the 𝑘-th experience according to two modalities: (i) backward mode, which quantifies
the ability to retain past knowledge by taking the average on all past and current testing experiences
(i.e., ≤ 𝑘), and (ii) forward mode, which quantify the ability to generalize to future data by taking the
average on all future testing experiences (i.e., > 𝑘). We then evaluate the regression when training
model 𝑓𝑘 on the 𝑘-th experience (considering samples from each class, separately) by measuring the
NFR w.r.t. its previous model 𝑓𝑘−1 on the (𝑘 − 1)-th testing experience, e.g., considering the update
from 𝑀3 to 𝑀4 we evaluate NFR on the testing experience 𝒟3.

CL Methods. As our main baselines to compare our method, we first consider two strategies: (i)
the naïve strategy, i.e., simple retraining on new experiences without using any knowledge retention
mechanism, and (ii) the cumulative strategy, i.e., retraining on new experiences by also accumulating
data from previous ones, to assess the lower and upper bound of the performance, respectively. We
consider five state-of-the-art CL methods: Replay with a buffer size set to 100 [10]; Averaged Gradient
Episodic Memory (A-GEM) [13] with buffer size set to 300 and number of examples set to 11; Elastic
Weight Consolidation (EWC) [11] with 𝜆=0.001; Synaptic Intelligence (SI) [14] with 𝜆=0.01 and 𝜖=0.1;
and Learning without Forgetting (LwF) [12] with 𝛼=0.8 and the temperature=1. We then use our
PCT-replay with 𝛼=1, 𝛽=0.3, and replay buffer size set to 200. For the sake of clarity, we only compare
the classification performances of our method (and the two baselines) with the two CL methods that
achieve the highest 𝐹1 score in the backward mode, on average. We only make this selection for
classification performances, instead, for NFR we consider all the tested strategies.

4.2. Experimental Results

Backward Mode Evaluation. In Figure 1, we show the precision, recall and 𝐹1 score, considering the
backward mode. All strategies generally maintain a high level of precision across the 12 experiences,
with values mostly between 70% and 90%. LwF and Replay show strong performance, highlighting their
effectiveness in maintaining high precision. Between the CL strategies, PCT is the one that exhibits
the best results. In terms of recall, LwF and Replay demonstrate strong and consistent performance,
highlighting their effectiveness in retaining knowledge about malware and improving detection accuracy.
Instead, PCT-replay performs poorly compared with the other strategies. In terms of 𝐹1, LwF, Replay
and the proposed PCT-replay provide stability and good overall performance, considering that they
are trained with much less data and that computational and time costs are significantly reduced. The
cumulative baseline generally performs better, indicating that retaining the entire training dataset
provides higher performance according to all the considered metrics. In contrast, the naïve baseline
shows the most variability, which undermines the reliability of the predictions, emphasizing the
importance of employing CL techniques to maintain stable performance.

Forward Mode Evaluation. In Figure 2, we show the precision, recall and 𝐹1 score, considering the
forward mode. In this evaluation setting, precision shows an upward trend. Until experience 4, there
is a 10% performance range, with PCT-replay outperforming all other strategies. After experience 4,
there is rapid growth, and best-performing strategies, baselines, and PCT-replay are close together.
From experience 4 to 10, there is a downward trend followed by growth until experience 11, with all
the strategies paired together. In terms of recall, there is still a growing trend as training experiences
increase. The cumulative baseline starts with a dramatic recall value close to 20%, but it rapidly grows
to match the performances of the CL strategies and the naïve baseline. PCT-replay underperforms
compared to the other strategies. The 𝐹1-score shows a stable and growing trend. The cumulative
baseline performs poorly in the first experience, but by experience 2, it reaches the performance level
of the other strategies. PCT-replay, on the other hand, is very close to the other strategies but performs
slightly worse.

Evaluating Regression. We show in Figure 3 the NFR for both the goodware (left) and the malware
class (right). None of the strategies show significant NFR for the goodware class, with mean values
ranging from 0.7% to 0.15%. The naïve baseline offers the worst results, while all the other CL strategies
demonstrate better performance. Notably, our proposed PCT-replay strategy outperforms all other CL
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Figure 1: Average Precision, Recall and 𝐹1 over current and past experiences. The numbers on the x-axis
represent the sequential experiences, labeled from 1 to 12. Each number corresponds to the model generated
after training on the training set of the specified experience n. Models are then evaluated on the test sets of
all previous experiences and the current one (from 1 to n). The y-axis shows the average of the metric under
consideration for the different models.
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Figure 2: Average F1, Recall and Precision over future experiences. The numbers on the x-axis represent the
sequential experiences, labeled from 1 to 11. In this mode, it does not make sense to train on the 12𝑡ℎ experience
due to the lack of future experiences for testing. Each number corresponds to the model generated after training
on the training set of the specified experience n. Models are then evaluated on the test sets of all future
experiences. The y-axis shows the average of the metric under consideration for the different models.

strategies, including the cumulative baseline, with a mean NFR of 0.15%. This result provides initial
evidence of the effectiveness of PCT-replay strategy in mitigating the phenomenon of regression. For
the malware class, instead, the impact of CL strategies is more notable. The naïve baseline reaches a
maximum of 15.8% NFR. EWC, Replay, LwF, AGEM, and SI demonstrate that CL strategies are effective
in mitigating regression caused by negative flips, with LwF having a mean NFR of 3.26%. Our PCT-replay
strategy outperforms all other approaches, including the cumulative baseline, with a mean NFR of 1.18%.
This further reflects the ability of the PCT-replay to preserve the knowledge of the previous model
when it was correct.

Discussion. In summary, our analysis of the various CL strategies reveals critical insights into their
knowledge retention effectiveness. The cumulative baseline, while demonstrating superior performance
due to its retention of all previously seen data, incurs higher computational and time costs. naïve baseline
offers good results as well, suggesting that, despite the realistic 9:1 goodware to malware ratio setting,
the samples in the dataset do not fully capture realistic changes in data distributions over experiences.
Nevertheless, it exhibits significant fluctuations, underscoring the necessity of incorporating knowledge
retention mechanisms to ensure model stability and reliability. The relatively lower performance of
PCT-replay in recall metric, compared to the other strategies, may be due to the replay buffer selecting
samples from previous experiences randomly. Given the 9:1 goodware to malware proportion, it is
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Figure 3: NFR for goodware and malware. The columns in the heatmaps represent the comparison between
adjacent models. Model n− 1 vs Model n, obtained respectively by training on experiences n− 1 and n. NFR
is computed on the test set of experience n− 1. Each row shows the strategy under consideration. The last
column represents the mean of row values.

likely that the majority of stored samples are goodware, causing the strategy to primarily preserve the
knowledge of the goodware class. It can be said that none of the strategies achieve high performance in
detecting malware samples. This could be attributed to the unbalanced nature of the dataset, which,
on the other hand, reflects a real-world scenario where goodware samples significantly outnumber
malware samples. LwF, Replay and our PCT-replay show good stability and performance, offering
a balanced trade-off between performances and resource efficiency. These findings underscore the
importance of evaluating multiple metrics to gain a comprehensive understanding of each strategy’s
strengths and limitations in handling unbalanced datasets and maintaining robust performance over
time.

In the forward mode, precision shows worse results compared to precision in the backward mode.
This suggests that while CL strategies are able to retain knowledge and preserve precision on old
experiences, they struggle to achieve good precision on unseen data. In terms of recall, our PCT-replay
underperforms with respect to the other strategies, aligning with the conclusions in backward setting.
It is possible to say that, although CL strategies primarily focus on mitigating the phenomenon of
catastrophic forgetting, this does not compromise the models’ ability to generalize to unseen data.
The evaluation results indicate that these strategies not only help retain knowledge from previous
experiences but also enable the models to adapt effectively to new, unseen data. This dual capability
is crucial for applications such as malware detection, where models must continuously learn from
evolving data distributions while maintaining high performance on previously encountered data.

PCT-replay consistently outperforms other CL strategies in mitigating regression and maintaining
stable performance across updates. For both goodware and malware classes, it demonstrates a superior
ability to preserve the knowledge of the previous models, highlighting its effectiveness and reliability
in CL scenarios. With respect to the results obtained in backward evaluation, it can be said that the
PCT strategy loses some performances in terms of detection rate, but, on the other hand, it is very good
at preventing negative flips, ensuring that the knowledge of the old model is positively transferred to
the updated one.

5. Related Work

We now discuss the state-of-the-art related to our work and highlight the main differences.

Continual Learning for Malware Detection. Few works have applied CL methods in the malware



detection domain. Rahman et al. [6] investigate the application of 11 CL techniques to malware
classification tasks. It explores their performance across task, class, and domain incremental learning
scenarios, using realistic EMBER and Drebin datasets to evaluate their effectiveness in handling evolving
malware threats. Kou et al. [15] propose SSCL-TransMD a transformer-based semi-supervised continual
learning model for malware detection. It handles evolving malware by combining new and historical
samples and leverages pseudo-labeling to improve the detection of emerging variants. MalFSCIL [16]
introduces a method that enables malware detection systems to incrementally learn new malware
classes from limited samples without forgetting previously learned classes. By leveraging few-shot
learning techniques, the approach addresses the challenges of class imbalance and the dynamic nature
of malware evolution, enhancing the adaptability and robustness of detection models. The work in [17]
addresses malware detection from a continual semi-supervised one-class learning perspective, relying
only on normal/benign data. It focuses on the application of two replay strategies on anomaly detection
models. Sun et al. [18] propose a novel approach to adapt malware classifiers to temporal shifts by
training on chronologically organized data. Their method leverages multimodal features of malware
and claims to enable efficient updates.

None of the existing works explore the role of regression in a CL setting, and we are the first to
formulate and quantify this problem in contrast to catastrophic forgetting.

Reducing Regression. In our work, we focus on the regression problem that hinders model updates.
Previous works tackled this issue by either employing weight regularization [8] (as also discussed in
section 2) or ensembles [19, 20, 21]. Zhao et. al [19] propose ELODI a method to reduce negative flips
during model updates by using ensembles as references. It employs Logit Difference Inhibition (LDI) to
align a student model with ensemble predictions while improving accuracy. Instead, [20] proposes
BCWI to reduce negative flips during model updates by interpolating between old and new model
weights. This method maintains backward compatibility while preserving the accuracy improvements
of the updated model. Gated Fusion [21] uses a learnable gating mechanism to blend predictions from
old and new models. The gate decides whether to prioritize backward compatibility (old model) or
improvements (new model).

None of these works address the regression problem within a CL scenario, nor do they extend the
concept to the domain of malware detection. Moreover, we do not consider methods that make use of
ensemble while training, as they typically involve higher computational costs and increased complexity,
making them less practical. However, our methodology can still apply to other regression-aware
formulations as well.

6. Conclusions and Future Work

In this work, we propose PCT-replay, the first Regression-aware CL algorithm that combines the focal
distillation in [8] with the replay-based CL method in [10]. We designed this approach to mitigate the
regression problem by preserving consistency with previous predictions while enabling the model to
adapt to new data. Our strategy effectively mitigates the problem of regression, reaching a mean NFR
of 1.18% on the malware class, outperforming all the other strategies even the cumulative baseline. On
the other hand, experiments in backward mode reveal that our PCT-replay is also effective in retaining
past knowledge, offering comparable performances with the other CL strategies.

However, this work presents some limitations that we intend to tackle in future research. First,
the considered training pipeline requires that all training data at each experience is readily labeled.
Unfortunately, this is not the case in many real-world applications, especially in the malware domain,
for which obtaining a single label from manual inspection requires a considerable amount of time.
Second, we might have different outcomes when considering benign and malicious applications coming
from different sources and with a higher level of uncertainty in their label (e.g., also including samples
for which the number of detections in VirusTotal is between 1 and 9). As future research directions,
we aim to extend our methodology to encompass not only new emerging CL-based malware detection
strategies but also novel regression-aware learning algorithms.



This work offers a promising path forward for developing trustworthy and scalable Android malware
detection systems that can incrementally include new knowledge while minimizing the regression that
hinders each model update and, as a consequence, the trust each user relies on such systems.
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