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Abstract
Key management is the Achilles’ heel of cryptography, as the security of any cryptographic mechanism depends
on the protection of its underlying keys. Key management is notoriously challenging because, in many practical
scenarios, keys must be securely encrypted for export and import between different devices and applications. If
these operations are not well-regulated, they can be vulnerable to attacks that expose sensitive keys in plaintext,
as demonstrated in various research studies over the last 15+ years. In this paper, we consider a recently proposed
model for key management and investigate its automated verification using the Tamarin prover. Our results
show that specific instances of key management policies can be successfully verified in Tamarin, but achieving
this requires the careful development of so-called source lemmas. These lemmas disambiguate the origins of
cryptographic terms, a condition that is often essential for ensuring the correct termination of the analysis. We
hint at a general method to derive, from a given policy, a Tamarin specification along with the corresponding
source lemma, enabling automated proof of various secrecy properties of cryptographic keys.
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1. Introduction

Cryptography has become increasingly pervasive with the expansion of IoT, home automation, and
Industry 4.0, which have significantly widened the attack surface. This growth requires the adoption
of cryptographic protocols to safeguard communications and data. However, encryption is inherently
complex, and cryptographic mechanisms do not all offer the same level of security. Bugs in protocols
and their implementations can weaken, or in some cases completely nullify, the guarantees of the
adopted cryptographic methods.

Key management often represents the Achilles heel of cryptographic systems. To ensure their security,
cryptographic keys must be stored in tamper-resistant hardware such as Hardware Security Modules
(HSMs) or in keystores protected by passwords or by additional cryptographic keys. However, keys
must also be shared securely to remain operationally useful. This is clearly true for symmetric keys,
but asymmetric private keys may also need to be shared, such as when using HSMs in the government
and financial sectors. These keys often require replication to ensure resilience against attacks and to
address performance concerns. To handle key sharing properly, it is essential to provide primitives for
securely exporting and importing keys. These mechanisms are known as wrap and unwrap operations,
which involve exporting and importing a key that is encrypted (or wrapped) under another key.

Despite its apparent simplicity, the wrap/unwrap operations have led to various vulnerabilities and
attacks on real devices. These issues sometimes stem from flawed key management practices, while in
other cases, they arise due to overly permissive APIs that fail to enforce strict policies governing the
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intended use of specific key classes. For example, the vulnerabilities in the PKCS#11 standard API have
been extensively documented in research, including [1, 2, 3, 4, 5, 6].

In a recent study, Focardi and Luccio [7] used strand spaces to model a core yet significant subset of
key management APIs. These APIs include operations such as symmetric key encryption, decryption,
wrapping, and unwrapping. Using the CPSA tool [8, 9], they were able to automatically rediscover
several well-known attacks. Building on this, they introduced a generic key management policy
model that leverages dynamic key typing. In this model, each key is assigned a specific type upon
creation, and the policy dictates which cryptographic operations can be performed by a given key type,
specifying how it may interact with other key types or data. The modeled operations are limited to
encryption and decryption, as key wrapping and unwrapping are essentially encryption and decryption
applied to cryptographic keys. Focardi and Luccio used strand spaces to establish a general key secrecy
theorem tailored to a typed version of the API. The proof identified the critical requirements of the
key management policy and some underlying assumptions, and is based on a closure operation, which
provides an over-approximation of the potential types a key can assume at runtime. Examining this
closure allows them to quickly identify critical cases that correspond to vulnerabilities or attacks.

In this work, we explore the automated verification of the model proposed in [7] using the Tamarin
prover. Our findings demonstrate that certain instances of key management policies can be successfully
verified in Tamarin, but this process necessitates the meticulous creation of source lemmas. These
lemmas clarify the origins of cryptographic terms, a critical factor for ensuring the proper termination
of the analysis. We propose a general method to write a Tamarin specification from a given policy,
along with its corresponding source lemma. This approach facilitates the automated proof of various
secrecy properties for cryptographic keys. To validate the proposed method, we conduct the first fully
automated analysis of some of the examples presented in [7], along with a few additional variants.

Paper structure: In Section 2, we present the background and related work. In Section 3, we present
the formalization in Tamarin of the key management policy examples presented in Section 2. We
conclude in Section 4.

2. Background and Related Work

2.1. Attacks on the PKCS#11 API

Public Key Cryptography Standard #11 (PKCS#11) was proposed by RSA in 1995 with the goal of providing
a standardized API called Cryptoki to be used by HSMs, cryptographic tokens, and smart cards for
cryptographic and key management functions. OASIS took over RSA in 2012 and continued the
development of PKCS#11 releasing version 3.1 in 2023. The standard mandates that all the cryptographic
operations must be performed inside the device, thus cryptographic keys are protected and never exposed
in the clear to external applications.

After establishing a session, an application may access objects using their handles. Objects are keys
or certificates equipped with boolean attributes that can be set or unset to specify object’s properties
and roles. Handles are just pointers to the objects, and do not disclose any information about them. As
all the cryptographic functions use key handles to refer to keys their value is never exposed outside the
device. New objects are created using a key generation command or by unwrapping an encrypted blob
(see below). Upon creation, a fresh handle is associated to the new object. Cryptographic operations
include encryption and decryption of data, which require the use of keys with attributes encrypt and
decrypt (respectively). Furthermore, it is possible to export and import keys in the device under so
called wrapping keys with the wrap and unwrap attributes. The wrap attribute is used to encrypt and
export a key. Dually, we use the unwrap attribute to import keys. It takes an encrypted key, decrypts it,
imports it in the device as a new object, and returns a fresh handle for it.

In 2003, Clulow [10] observed the first known API-level attack to PKCS#11. The attack is called
wrap-then-decrypt and goes as follows. Assume the attacker wants to discover a target sensitive key 𝑘1,
and that they know a key 𝑘2 with attributes wrap and decrypt set. The attacker also has two handles:



Wrap(ℎ1,ℎ2) → 𝑐
Decrypt(𝑐,ℎ2) → 𝑘1

Figure 1: wrap-then-decrypt attack.

handle ℎ1 associated to key 𝑘1, and ℎ2 associated to key 𝑘2. The attacker first wraps key 𝑘1 under key
𝑘2 obtaining ciphertext 𝑐 (using the two handles), then decrypts the ciphertext 𝑐 using key 𝑘2 (through
its handle ℎ2), leaking the sensitive key 𝑘1 in the clear (see Fig. 1). The attack is possible since the
device cannot distinguish between keys and plaintexts, and given that the operations wrap and decrypt
are allowed by the wrap and decrypt attributes set on ℎ2.

Other similar attacks exist. For example, in encrypt-then-unwrap the attacker encrypts a known key 𝑘
under ℎ2 and then unwraps it, since ℎ2 has attributes unwrap and encrypt set. Then, it imports it in the
device with a fresh handle ℎ3 and attribute wrap set, and this is possible since once a key is unwrapped,
attributes might be changed. Finally, ℎ1 (that refers to the sensitive key 𝑘1) can be wrapped using the
fresh handle ℎ3 obtaining the encryption of 𝑘1 under the known key 𝑘, thus allowing the attacker to
perform decryption.

These attacks could be in principle prevented by forbidding the use of conflicting roles, e.g., wrap,
decrypt or unwrap, encrypt. However, this solution does not work as attributes can be set and unset
liberally. An extended analysis of different attacks can be found in [11, 12].

2.2. The Tamarin Prover

Tamarin is a protocol verification tool in the symbolic model which has been used to successfully
analyze many modern security protocols (see, e.g., [13]). Attackers and protocols are specified as
multiset rewriting rules, and security properties are written in a temporal first-order logic. Given
a protocol specification and a list of security properties, Tamarin can try to prove such properties
automatically, with the help of some proof-search heuristics, or interactively, with help from the human
analyst. If the process terminates, Tamarin either provides a proof for all the stated properties, or it
returns a trace of the system contradicting one of the properties.

Protocols in Tamarin are specified as multiset rewriting systems, through rules of the form

rule RuleName:
[ 𝑝1, ..., 𝑝𝑚 ] —[ 𝑎1, ..., 𝑎𝑘 ]→ [ 𝑐1, ..., 𝑐𝑛 ]

where RuleName is the name of the rule, 𝑝1, . . . , 𝑝𝑚 are premise facts, 𝑎1, . . . , 𝑎𝑘 are action facts, and
𝑐1, . . . , 𝑐𝑛 are conclusion facts. Each fact is either ordinary or special. Ordinary facts are in the form
F(𝑡1, ..., 𝑡𝑛) with 𝑡1, . . . , 𝑡𝑛 terms that symbolically represent data, messages, and functions, and
are optionally equipped with an equational theory. An example of an ordinary fact is Trusted(k), with
the intuitive meaning that key k is trusted. Special facts have instead a particular semantics. For
instance, In(m) and Out(m) are used to denote the action of receiving and sending a message m, Fr(n) is
used to model the generation of a fresh name n unknown to the attacker.

The execution of a protocol in Tamarin starts from the initial state, i.e., the empty multiset of facts,
and transitions happen as specified by the set of rewriting rules plus some built-in rules modeling
the standard Dolev-Yao attacker. A rule is enabled when all its premise facts 𝑝1, . . . , 𝑝𝑚 belong to the
current state. Variables appearing inside facts are instantiated upon matching with facts from the state.
When an enabled rule is fired the following happens: (𝑖) the premise facts are removed from the state,
unless they are specified as persistent using the symbol !; (𝑖𝑖) action facts become part of the execution
trace and will be used to express properties in lemmas; and (𝑖𝑖𝑖) conclusion facts are added to the state.

Security properties are modeled as first-order temporal formulas on action facts. For example, suppose
to have an action fact Encrypt(m, k) with the intuitive meaning that m has been encrypted with key k,
the following formula

Ex m, k, #i . Encrypt (m, k)@i

states that, for some m and k, there exists a point in time #i where Encrypt(m, k) happened.
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Figure 2: Plain hierarchical policy [7].
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Figure 3: An insecure self-wrapping policy [7].
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Figure 4: Flawed diamond-like hierarchical policy [7].

2.3. A Model for Key Management Policies

A way of defining what can be encrypted or decrypted by a given key is to use key management
policies. Here we consider the model by Focardi and Luccio [7], where they consider 𝑁 key types
𝐾1,𝐾2, . . . ,𝐾𝑁 , and a separate type 𝐷, representing data. From now on, we will assume inputs of cryp-
tographic operations to be always associated to at least one of these types. Let 𝒦 = {𝐾1,𝐾2, . . . ,𝐾𝑁},
𝒦𝒟 = {𝐾1,𝐾2, . . . ,𝐾𝑁 , 𝐷}, and ℒ = {e, d}.

Definition 1 (Key management policy [7]). A key management policy is a relation𝑃 ⊆ 𝒦×ℒ×𝒦𝒟.

We write 𝐾
𝑙−→𝑃 𝐽 when (𝐾, 𝑙, 𝐽) ∈ 𝑃 and 𝐾

e/d−−→𝑃 𝐽 when both 𝐾
e−→𝑃 𝐽 and 𝐾

d−→𝑃 𝐽 . From

now on, if there is no ambiguity, we will omit the policy 𝑃 we are referring to, writing 𝐾
𝑙−→ 𝐽 .

Intuitively, 𝐾 𝑙−→ 𝐽 means that 𝐾 can perform operation 𝑙 over 𝐽 . Possible operations are encryption
and decryption, respectively denoted by e and d. For example, 𝐾1

e−→ 𝐾2 means that keys of type

𝐾1 can encrypt (i.e., wrap) keys of type 𝐾2, while 𝐾3
d−→ 𝐷 means that keys of type 𝐾3 can decrypt

data. Notice that, 𝐷 𝑙−→ 𝐽 is not a valid policy entry, as 𝐷 ̸∈ 𝒦. In fact, data should not be used as
cryptographic keys.

The simplest key management policy considered in [7] is depicted in Fig. 2. In this policy, a key of
type 𝐾𝑖 can wrap (i.e., encrypt) and unwrap (i.e., decrypt) any key of type 𝐾𝑖+1 (for 𝑖 ∈ {1, ..., 𝑁 − 1}),
and a key of type 𝐾𝑁 can encrypt and decrypt data. This seems a safe approach to key management
since there is no confusion or non-determinism about key roles: any decryption/unwrapping has a
unique resulting type for the corresponding plaintext.

Consider now the policy depicted in Fig. 3: keys of type 𝐾2 only encrypt and decrypt data, while
those of type 𝐾1 that can wrap/unwrap keys of types 𝐾1 and 𝐾2. This policy is non-deterministic since
upon unwrap with a key of type 𝐾1 we might import the decrypt key as 𝐾1 or as 𝐾2. This unwrapping
behavior is tricky and allows for changing the type of a key through a wrap-then-unwrap pattern. For
example, a key 𝑘1 of type 𝐾1 could wrap itself and then unwrap with type 𝐾2, producing a copy of itself
in a different type. While this pattern is allowed by the policy it clearly enables a wrap-then-decrypt
attack (see Section 2.1): once 𝑘1 is unwrapped with type 𝐾2 it can be used to decrypt itself as data,
leaking the value in the clear. In [7] it is also considered the flawed policy of Fig. 4 where it might
happen that a key 𝑘2 of type 𝐾2 is wrapped by a key 𝑘1 of type 𝐾1 and then unwrapped as a key of



𝐾1 𝐾2 𝐷
e/d e/d

Figure 5: Minimal hierarchical policy.

type 𝐾4. Then, 𝑘2 can be used to carry out a wrap-then-decrypt attack over keys of type 𝐾3 since it
has both type 𝐾2 and type 𝐾3.

2.4. Related Work

Starting with the wrap-then-decrypt attack by Clulow [10], significant effort went into API attacks on
PKCS#11 and possible fixes (see, e.g., [1, 14, 10, 4, 11, 15, 12, 16]). The first to propose an automated
analysis of PKCS#11 were Delaune et al. [11]. Their analysis either finds attacks or derives security
properties on the device. Afterwards, in [1] the authors proposed an extension and refinement of the
model based on a reverse-engineering tool. Their tool was able to find attacks based on the leakage
of sensitive keys on real devices. On the defense side, Dax et al. [4] proposed a mechanism called
authenticated wrapping to prevent some attacks. Intuitively, authenticated wrapping requires attributes
to be wrapped together with their corresponding key, so they remain unchanged upon imports and
exports. Even though the mechanism was formally proposed to Oasis [17], it was never included in
the standard. Other authors focused on the proof of correctness of some specific key configurations,
like the ones based on the use of the wrap_with_trusted attribute in a controlled way [16] or those
proposed in [1, 14, 5]. A limit of all the mentioned works is that it assumes that the attributes of keys
are immutable, which is not true in practice. A configuration for cloud HSMs that does require any
change in the API has been proposed in a recent work by Focardi and Luccio [15]. There are few works
that propose an analysis of key management policies and that are close to ours. In [18] the authors
propose an analysis of the PKCS#11 in Maude-NPA and consider the attacks indicated by Delaune et al.
[11]. Another work that analyses PKCS#11 in the Tamarin tool is [5]. Finally, recent work studied key
management policies in the context of Strand Spaces [19]. In particular, [7] proposes a sound static
analysis detecting if a key with a given initial type is ever leaked in the clear. Busi et al. [20, 21] provide
a mechanization of Strand Spaces in Coq, and improve the analysis of [7] making it precise enough to
verify the security of secure templates. None of these works propose a fully automated analysis of key
management policies.

3. Tamarin Models

In this section, we present the Tamarin formalization of the key management policy examples introduced
above and taken from [7], along with some of their variants. Key management policies from Section 2.3
can be used to regulate the usage of key management APIs. Each key is assigned to a key type upon
creation, its initial type. When a key is wrapped and exported its typing information is lost, upon
unwrap any of the types consistent with the given policy will be assigned to the newly imported key.
More precisely, let 𝑃 be a key management policy and let 𝐾,𝐾1,𝐾2 be key types. 𝑃 allows encrypting
(encrypt operation) a message 𝑚 with a key 𝑘 of type 𝐾 if 𝐾 e−→𝑃 𝐷. Dually, decryption (decrypt) is

permitted if 𝐾 d−→𝑃 𝐷. A similar reasoning applies to wrapping and unwrapping. The wrap operation
on a key 𝑘1 of type 𝐾1 with 𝑘2 of type 𝐾2 is allowed if 𝐾2

e−→𝑃 𝐾1. Unwrapping (unwrap) of 𝑘1 as a

key of type 𝐾1 is allowed if 𝐾2
d−→𝑃 𝐾1, where 𝐾2 is the type of the key which was previously used to

wrap 𝑘1.
As we will show, the policy is translated into Tamarin rules by mapping each encryption or decryption

edge to a distinct rule. Specifically, encryption and decryption edges from one key type to another are
mapped to wrapping and unwrapping rules, respectively. Encryption and decryption edges from a key
type to 𝐷, on the other hand, are mapped to encryption and decryption rules, respectively. Essentially,
the policy instantiates a specific Tamarin rule that models the corresponding invocation of the related



API. To illustrate this modeling methodology, we consider a minimal instance of Fig. 2 with 𝑁 = 2, as
reported in Fig. 5.

Key creation: We define two rules, CreateKeyK1 and CreateKeyK2, which model the creation of keys
of two distinct types, K1 and K2, respectively.

rule CreateKey_K1:
[ Fr(k) ]
—[ CreateKey_K1(k) ]→
[ !K1(k) ]

rule CreateKey_K2:
[ Fr(k) ]
—[ CreateKey_K2(k) ]→
[ !K2(k) ]

Fr(k) indicates that a fresh key k is generated. Recall that the Fr construct represents a unique, newly
generated term in Tamarin, typically used to model random values like keys or nonces. The creation of
each key type is observable via the corresponding actions CreateKey_K1(k) and CreateKey_K2(k). Once
created, the keys k of their respective types persist as facts (!K1(k) or !K2(k)), allowing other rules to
reference them throughout the protocol.

Key leakage: We explicitly model the leakage of keys as follows:

rule LeakKey_K1:
[ !K1(k) ]
—[ LeakKey_K1(k) ]→
[ Out(k) ]

rule LeakKey_K2:
[ !K2(k) ]
—[ LeakKey_K2(k) ]→
[ Out(k) ]

The leakage is captured by the events LeakKey_K1(k) and LeakKey_K2(k). After the key is leaked, the
Out(k) fact is created, meaning that the key has been exposed to the attacker. This modeling is used to
simulate the exposure of sensitive keys in order to capture the dependency between secrecy guarantees
across the various key types, as we will discuss below.

Key management API: For each of the edges in Fig. 5 we now introduce a corresponding rule.
This particular example covers all the four possible cases: encrypt/decrypt of data under 𝐾2 and
wrap/unwrap of 𝐾2 under 𝐾1.

rule Encrypt_K2:
[ !K2(k), In(m) ]
—[ Encrypt_K2(m,k) ]→
[ Out(senc(m,k)) ]

rule Decrypt_K2:
[ !K2(k), In(senc(m,k)) ]
—[ Decrypt_K2(m,k) ]→
[ Out(m) ]

rule Wrap_K2_K1:
[ !K2(k2), !K1(k1) ]
—[ Wrap_K2_K1(k2,k1) ]→
[ Out(senc(k2,k1)) ]



rule Unwrap_K2_K1:
[ !K1(k1), In(senc(k2,k1)) ]
—[ Unwrap_K2_K1(k2,k1) ]→
[ !K2(k2) ]

These four rules respectively define the following operations: encrypt a message m using a key k of type
K2, resulting in an encrypted message senc(m,k); decrypt an encrypted message senc(m,k) using a key
k of type K2, producing the original message m as output; wrap a key k2 of type K2 under another key
k1 of type K1, resulting in the wrapped key senc(k2,k1); unwrap a wrapped key senc(k2,k1) using
a key k1 of type K1, making the key k2 of type K2 available for future use. These rules model basic
cryptographic operations, enabling the simulation of encryption, decryption, and key management in a
protocol.

Source lemma: The most important challenge that we encountered in the analysis of key management
policy is the establishment of a so-called source lemma. This result is necessary to help Tamarin
resolving the partial deconstructions that prevent it to come up with the precise source for each fact in
the model. When partial deconstructions happen in a given model, it is necessary to provide a lemma
that disambiguates the source of the problematic facts. One difficulty in coming up with a working
source lemma is that Tamarin attempts to prove it using (a limited form of) induction, rather than
relying on its default backward search algorithm. Consequently, it is crucial to cover all the problematic
cases in a single lemma, so that the inductive hypothesis of the source lemma is strong enough for
Tamarin to complete the proof.

In our model, the only problematic facts are decryption and unwrap, since Tamarin cannot infer the
source of the encrypted term. The following lemma holds:

lemma DecryptUnwrap [sources, reuse]:
"
(
All m k #j.
Decrypt_K2(m,k)@j

=⇒
(Ex #i . !KU(m)@i & i < j)
|
(Ex k1 #i #w . CreateKey_K2(m)@i & i < j & LeakKey_K1(k1)@w & w < j)

)
&
( All k1 k2 #j.
Unwrap_K2_K1(k2,k1)@j

=⇒
(Ex #i . CreateKey_K2(k2)@i & i < j)
|
(Ex k3 #i #w . !KU(k2)@i & i < j & LeakKey_K1(k3)@w & w < j)

)
"

Intuitively, the lemma characterizes all the pathways leading to a decrypt or an unwrap operation. For
decryption, either the decrypted message m is already known to the attacker, which is the expected
case, or m is actually a key of type K2 that has been leaked. However, such a leak is only possible if at
least one key k1 of type K1 has been leaked beforehand. For unwrapping, we observe the dual scenario:
either the unwrapped key k2 is a valid key of type K2, as expected, or it is known to the attacker, which
can only occur if at least one key of type K1 has been leaked.

This source lemma provides valuable insights and highlights two significant observations. First,
if no key is explicitly leaked, decryption and unwrapping behave as expected: decryption operates
on data, and unwrapping retrieves keys of type K2. However, when keys of type K1 are leaked, the
situation changes drastically: critical keys can be decrypted, and untrusted keys can be unwrapped
and imported into the device. This corresponds to well-known attacks such as wrap-then-decrypt and



encrypt-then-unwrap described in Section 2.1. Consequently, this lemma offers important insights into
the structure of the secrecy lemmas that will be proven next.

Sanity lemmas: It is typical in Tamarin to come up with a few sanity lemmas that check the
correctness of the model by exhibiting some expected execution traces. In particular, we check that
all the described operations are executable. The following lemma states that there exists at least one
protocol trace containing one key wrapping and one key unwrapping operation.

lemma SanityWrapUnwrap:
exists-trace
"
Ex k1 k2 #i #j .
Wrap_K2_K1(k2,k1) @ #i &
Unwrap_K2_K1(k2,k1) @ #j

"

Secrecy lemmas: We now state the secrecy lemmas for all the key types.

lemma SecrecyK1:
"
All k #i #j.

CreateKey_K1(k)@i &
K(k)@j

=⇒
Ex #w . LeakKey_K1(k)@w & w < j

"

The lemma asserts that if a key of type K1 is created (CreateKey_K1) and subsequently observed being
used (K(k)), then the only way this can happen is if the key was leaked (LeakKey_K1) at some earlier
point in the trace. In other words, if there is no leak (LeakKey_K1), then k remains secret and cannot be
observed or misused. As a consequence, the secrecy of keys of type K1 does not depend on the secrecy
of other key types.

lemma SecrecyK2:
"
All k #i #j.
CreateKey_K2(k)@i &
K(k)@j

=⇒
(Ex #w . LeakKey_K2(k)@w & w < j)
|
(Ex k1 #w . LeakKey_K1(k1)@w & w < j)

"

The lemma asserts that if a K2 key is created (CreateKey_K2) and later used or observed (K(k)), then this
can only happen if either the K2 key was directly leaked (LeakKey_K2), or a K1 key was leaked, enabling
the compromise of the K2 key. This confirms that the secrecy of K2 keys directly depends on the secrecy
of K1 keys. Without modeling key leakage, this lemma could not be expressed in Tamarin.

3.1. Applying the analysis to other policies

We have analyzed some of the policies from [7], plus a secure variant of Fig. 4 with just three types (the
last one in Table 1). In order to do this systematically, we essentially replicated the rules previously
shown for the protocol Fig. 5 to capture all the arcs of the policy to be analyzed. The complex part
was defining the appropriate source lemma because, as seen earlier, this lemma must capture all the
execution-time behaviors, including any secrecy dependencies between different keys. In some cases,
it was sufficient to appropriately replicate the cases from simpler policies, while in other cases, we



Policy Secrecy Time (sec)

𝐾1 𝐾2 𝐷
e/d e/d

𝐾2 if𝐾1 0.3

𝐾1 𝐾2 𝐾3 𝐷
e/d e/d e/d

𝐾2 if𝐾1,
𝐾3 if𝐾1,𝐾2

12.1

𝐾1 𝐾2 𝐷

e/d

e/d e/d
None

(see Appendix A)
6.6

𝐾1

𝐾2

𝐾4

𝐾3

𝐷

e/d

e/d

e/d

e/d

e/d

attack on𝐾3

(see Appendix A)
22.1

𝐾1

𝐾2

𝐾3

𝐷

e/d

e/d

e

d
𝐾2 if𝐾1,
𝐾3 if𝐾1 4.3

Table 1
Summary of all analyzed policies, performed on a MacBook Pro M1 2020.

proceeded somewhat experimentally based on the counterexamples provided by Tamarin when the
source lemma was not strong enough to cover all cases. Table 1 summarizes the results. All the models
are available online [22].

4. Conclusion

We have modeled and analyzed several policies from [7] in Tamarin. Intuitively, each policy edge
corresponding to a particular cryptographic operation is compiled into a distinct Tamarin rule, and
a suitable source lemma is required to ensure termination. As future work, we aim to automate the
generation of Tamarin rules and lemmas from a given policy and to address scalability challenges as
the number of key types increases. The main challenges we foresee involve the inherent difficulty of
identifying the relevant source lemmas in Tamarin and the dependence of these lemmas on the specific
policy and its runtime effects. Our idea is to base the automatic generation of the source lemmas on
the closure operation of [7], which provides an over-approximation of the potential types a key can
assume at runtime. Additionally, we plan to extend our analysis to problematic policies, such as the
secure templates in [1, 7], where root keys can wrap themselves. These cases currently fail to terminate.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT in order to: Improve writing style,
grammar and spelling check, paraphrase and reword. After using this tool/service, the authors reviewed
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A. Attacks found by Tamarin

In the self-wrapping policy Fig. 3, we observe that secrecy lemmas do not hold even in the most liberal
case, where we only require that, if the attacker discovers a key, at least one (possibly different) key has
been leaked. Tamarin automatically identifies an attack for each secrecy lemma that does not require
any key leakage. For K1, the attack found by Tamarin is reported in Fig. 6. For K2, the attack found by
Tamarin is identical, except that the victim key is of type K2 instead of type K1.

In the diamond-like hierarchical policy of Fig. 4, Tamarin found the attack reported in Fig. 7.

Figure 6: The attack on K1 keys in the self-wrapping policy of Fig. 3: K2 key n.1 is wrapped then unwrapped as
K1. Then a wrap-then-decrypt attack is performed on the K1 key n. In fact, key n.1 can now be used both for
wrapping and decrypting.



Figure 7: The attack on K3 keys the insecure policy of Fig. 4: K4 key n.1 is wrapped then unwrapped as K2. Then
a wrap-then-decrypt attack is performed on the K3 key n. In fact, key n.1 can now be used both for wrapping
and decrypting.
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