
Integrating OpenTitan as a Security Controller for
Cryptographic Tasks in RISC-V SoCs
Alberto Musa1, Emanuele Parisi1, Luca Barbierato2, Edoardo Patti2, Andrea Acquaviva1 and
Francesco Barchi1

1Università di Bologna, Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", Bologna, Italy
2Politecnico di Torino, Department of Control and Computer Engineering, Turin, Italy

Abstract
RISC-V architectures are increasingly utilized in security-critical embedded systems, with OpenTitan standing out
as a prominent open-source silicon Root-of-Trust. OpenTitan delivers essential functionalities, such as secure boot
and execution integrity, but introduces notable area overhead. To mitigate this issue, we propose TitanSSL, a secure
software stack that offloads cryptographic operations to OpenTitan. TitanSSL comprises an OpenSSL backend, a
Linux driver for system communication, and a custom OpenTitan firmware. Communication between components
is facilitated through a custom Application Binary Interface (ABI), ensuring the driver remains independent
of the specific cryptographic operations executed by the OpenSSL engine. This design supports extensibility,
enabling the integration of additional cryptographic primitives and enhancing the system flexibility. We evaluated
TitanSSL on a System-on-Chip (SoC) featuring a CVA6 application core running Linux and OpenTitan, both
clocked at 40 MHz on a Xilinx VCU118 FPGA. Our results reveal that, while there is communication overhead
between system components, it is outweighed by substantial performance gains. Specifically, TitanSSL achieves
speedups of 40x for SHA-256 and 82x for AES-256-CBC compared to a software-only implementation running on
the CVA6 core. In addition, we provide design guidelines for future optimizations to improve system performance.

Keywords
RISC-V, Secure Systems, Software Stack

1. Introduction

The rise of open-hardware System-on-Chip (SoC) technology is reshaping various application domains,
particularly in safety-critical and security-critical Cyber-Physical Systems (CPS). These systems require
real-time responsiveness and dynamic operations to function effectively in demanding environments.
However, these attributes introduce challenges in maintaining safety and resilience against cyber threats.
To address these challenges, modern SoCs integrate specialized hardware components to strengthen
security. For example, [1] presents an architecture in which an application processor and a silicon
Root-of-Trust (RoT) coexist within the same SoC to enable secure boot functionality. More recently, [2]
combines the CVA6 RISC-V application processor [3] with OpenTitan, an open-source silicon RoT [4].

The integration of OpenTitan as a Root-of-Trust offers a secure and isolated execution environment.
However, this design comes at the cost of significant area overhead. For instance, [2] shows that
OpenTitan’s footprint exceeds 75% of the host platform’s area. To justify this overhead, it is essential
to maximize OpenTitan’s capabilities, particularly its hardware support for cryptographic operations,
which can accelerate widely adopted security libraries.

Building on this motivation, our first contribution investigates the following research question:
“Given an OpenTitan-based SoC, can its memory isolation and cryptographic acceleration features be
utilized to provide a secure backend for OpenSSL?” Integrating OpenTitan with OpenSSL removes the
need for additional external security modules and leverages OpenTitan’s private memory to securely
store cryptographic keys and secrets, preventing their exposure in main memory. To achieve this
integration, we develop an end-to-end software stack, comprising: i) an OpenSSL engine that interfaces
with a Linux driver, ii) a Linux driver for managing secure communication between the host system

Joint National Conference on Cybersecurity (ITASEC & SERICS 2025), February 03-8, 2025, Bologna, IT
$ alberto.musa@unibo.it (A. Musa); emanuele.parisi@unibo.it (E. Parisi); luca.barbierato@polito.it (L. Barbierato);
edoardo.patti@polito.it (E. Patti); andrea.acquaviva@unibo.it (A. Acquaviva); francesco.barchi@unibo.it (F. Barchi)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:alberto.musa@unibo.it
mailto:emanuele.parisi@unibo.it
mailto:luca.barbierato@polito.it
mailto:edoardo.patti@polito.it
mailto:andrea.acquaviva@unibo.it
mailto:francesco.barchi@unibo.it
https://creativecommons.org/licenses/by/4.0/deed.en


and OpenTitan, and iii) a custom firmware for OpenTitan’s Security Controller (SC), a RISC-V core
responsible for executing cryptographic operations.

The second contribution of this work is the implementation of the software stack with the following
key functional requirements: i) full utilization of OpenTitan’s cryptographic accelerators, ii) secure
management of secrets and cryptographic key generation, iii) seamless support for application-level
virtual memory by the SC, and iv) communication between the application processors and the SC via a
dedicated interface.

The third contribution is the validation and evaluation of our system. We characterize and analyze
the performance of TitanSSL compared to software-only implementations and theoretical limits of
accelerators.

Our experimental results demonstrate that, for typical cryptographic workloads, the overhead
introduced by our TitanSSL software stack is outweighed by the performance gains provided by
OpenTitan’s accelerators. For example, encrypting a 2048-byte payload with AES-256 in CBC mode
achieves a 16.5x speed-up compared to a pure software implementation. Similarly, SHA-256 processing
of a 2048-byte payload results in a 3.8x speed-up. With a payload of just 16 KiB, the speedup for
SHA increases to approximately 40x, while for AES, it exceeds 80x. Under these conditions, the
accelerator utilization in OpenTitan achieves 50% of its ideal performance, as calculated in the absence
of memory accesses. These results validate OpenTitan’s effectiveness as a Security Controller and
highlight opportunities for hardware and software optimizations in future designs.

The structure of the manuscript is described as follows. Section 3 describes the hardware architecture
used for our experimental setup. Section 4 reports the software framework and the technologies used.
Section 5 defines the analysis conducted on the system to establish and ensure its security measures.
Section 6 explains the characterization methodology adopted to evaluate the solution, and it presents
experimental results comparing the proposed software stack with the default OpenSSL implementation.
Finally, Section 7 reports concluding remarks and future works.

2. Background and Related Works

Our work envisions a scenario where OpenTitan is integrated into the same System-on-Chip (SoC)
alongside a RISC-V application core that lacks built-in cryptographic hardware support or other execu-
tion isolation mechanisms, as highlighted in [3]. In this configuration, OpenTitan acts as a Security
Controller (SC), providing advanced security functionalities through its hardware accelerators and
memory isolation capabilities, as detailed in [4]. Specifically, the OpenTitan core is responsible for
executing cryptographic primitives, leveraging dedicated hardware accelerators, and isolating sensitive
secrets from the application processor.

In the literature, similar implementations are found in solutions like EdgeLock Secure Enclave [5]
and Keystone [6].

The EdgeLock Secure Enclave is a proprietary security subsystem integrated into NXP processors. It
employs hardware-level isolation and cryptographic protections to ensure data integrity and confiden-
tiality while delivering robust security features. However, as a proprietary solution, EdgeLock poses
significant challenges when porting or replicating its functionality for custom architectures, limiting its
applicability in open and flexible SoC designs.

Keystone, on the other hand, is an open-source framework for creating secure software environments
(Enclaves) on RISC-V platforms. It achieves physical memory isolation through RISC-V Physical Memory
Protection (PMP) [7], which restricts access to specific memory regions, even from privileged software.
Keystone’s versatility makes it suitable for diverse architectures and use cases. However, its reliance
on a software-based Secure Monitor introduces overhead, as Enclaves share the same processor with
other system components. This design choice may result in performance degradation, particularly in
security-critical workloads requiring frequent context switches.

Other works in the literature propose and analyze various RISC-V architectures, focusing on their
security constraints and requirements [8]. For instance, the survey by T. Lu [9] highlights the increasing



Figure 1: Outline of the SoC. The NoC buses and the memory hierarchy are highlighted.

adoption of RISC-V in the research community, especially in security applications. The survey discusses
how the openness of RISC-V enables rigorous auditing, thereby enhancing hardware resilience against
cyber threats. Proposed solutions span both software frameworks [10, 11] and hardware approaches
[12]. For example, Schrammel et al. [12] introduce a hardware-based solution that optimizes context
switches while providing effective isolation mechanisms for RISC-V architectures.

Programmable Root-of-Trust (RoT) intellectual properties (IPs), such as OpenTitan, have traditionally
been employed for secure boot and security services. However, their potential as Security Controllers
(SC) remains largely unexplored. A key advantage of this approach is that the isolation mechanisms
are independent of any specific Operating System (OS) or architectural features of the host processor.
This decoupling allows OpenTitan to be integrated alongside various processors, enabling it to act as a
dedicated Security Controller. With hardware cryptographic accelerators, OpenTitan can significantly
improve the performance of cryptographic tasks while maintaining a high degree of security, flexibility,
and portability.

As far as we know, this work represents one of the first attempts to systematically characterize the
trade-offs and microarchitectural implications of using OpenTitan as a Security Controller to support
cryptographic tasks. Furthermore, we provide an OpenSSL-based evaluation demonstrating the practical
benefits of this approach.

3. Hardware Architecture

The reference platform considered in this work is shown in Figure 1. It represents a state-of-the-art
RISC-V based system, such as the one presented in [2] for secure autonomous Micro-Aerial Vehicles.

The considered platform features three main components: i) a RV64GC Application Core, namely
CVA6, ii) a Programmable Multi-Core Accelerator, and iii) OpenTitan, the hardware Root-of-Trust.
CVA6 [3] is a Linux-capable RV64GC core featuring a six-stage, single-issue, in-order pipeline. It is
meant to run general-purpose platform configuration tasks and to manage the system peripherals. The
Programmable Multi-Core Accelerator consists of a cluster of eight CV32E40-based cores [13] with
custom ISA extensions designed to accelerate computationally intensive DSP and machine learning
tasks. OpenTitan is an open-source silicon Root-of-Trust inspired by Titan [14]. It consists of a set
of hardware accelerators to enable efficient computation of common cryptographic primitives, plus
the OpenTitan Big Number core (OTBN), a programmable coprocessor for asymmetric public-key
cryptography. Sensitive data are stored in the OpenTitan internal ROM and scratchpad, two tamper-
proof memories featuring scrambling functionalities.

All Root-of-Trust functions are managed by Ibex [15], an RV32IMC microcontroller optimized for
embedded control applications. Additionally, OpenTitan features a range of protection against physical



Figure 2: Software stack ranging from CVA6 to IBEX using the mailbox as the communication system. Data
structures are highlighted to ensure driver agnosticity.

attacks, including power analysis countermeasures and tamper detection circuits. As mentioned, the
target design integrates OpenTitan within the same silicon as the Application Processor and the Pro-
grammable Multi-Core Accelerator. A MailBox mediates communication between the CVA6 Application
Core and OpenTitan, as detailed in Section 4; it consists of a shared memory region meant for data
sharing, plus two specialized registers, namely Doorbell and Completion, whose LSB is connected to the
interrupt controller of Ibex and CVA6 respectively, to implement an easy asynchronous acknowledging
system between the two cores. The memory Hierarchy employed by the CVA6 Application Processor
and the RoT controller consists of three levels: private cache, Last-Level Cache (LLC), and main memory.
The CVA6 core’s private memory encompasses two L1 set-associative caches, a 16 KiB of L1 I-cache
and a 32 KiB write-through L1 D-cache. The IBEX core lacks a cache memory but can access a 32 KiB
SRAM scratchpad exclusive to the RoT system. Both systems share access to the LLC, an eight-way
set-associative cache with 128 KiB, and 256 lines. Finally, the SoC utilizes a 32 MiB main memory
composed of four HyperRAM chips, each with a 64 Mbit capacity, situated off-chip.

4. TitanSSL Software Architecture

The TitanSSL software stack is shown in Figure 2. As described in section 3, it redirects OpenSSL cryp-
tographic tasks, such as SHA-256, RSA, and AES, required by applications running on the Application
Processor to the Security Controller (the OpenTitan core). As a result, the TitanSSL software stack is
divided into two parts: one that operates on the Application Processor and another that runs on the
Security Controller.

The software stack within the Application Processor is essential for enabling secure communication
between untrusted environments, where applications utilize the OpenSSL library [16], and the Security
Controller. At the core of this stack is the TitanSSL Security Controller Engine (TitanSSL-SCE), which
integrates OpenSSL functionalities with the Global Platform standard [17] through the implementation of
the Global Platform Client API [18] (represented by the TEEC component in the figure). This component
establishes secure communication with the TitanSSL Security Controller Driver (TitanSSL-SCD) and,
ultimately, the TitanSSL Security Controller Firmware (TitanSSL-SCF).

The TitanSSL-SCD is the final component of the software stack residing in the Application Processor.
Its role is to facilitate data exchange between the TitanSSL-SCE and the TitanSSL-SCF, using a commu-
nication mailbox to transfer information in both directions. The software components operating within
the Application Processor are categorized into two spaces: the User Space (depicted in green) and the
Kernel Space (depicted in yellow), as shown in Figure 2.

The components running in the User Space include the two key elements of the TitanSSL-SCE. These
components intercept cryptographic operations such as encryption and digital signature generation,
which are triggered by user-defined applications utilizing the OpenSSL library.

The first component of the TitanSSL Security Controller Engine is the OpenSSL Engine, a library
extension mechanism defined by OpenSSL. Its purpose is to redirect the execution of cryptographic



operations to the Security Controller. This engine interfaces with the Global Platform Client API (TEEC),
a library specification designed to manage security devices [18].

The OpenSSL engine has two main responsibilities: i) Initializing a communication context
(TEEC_Context) and a communication session (TEEC_Session) as specified by the GP Client API;
and ii) Redirecting cryptographic requests (e.g., SHA-256, AES, RSA) to the lower layers of the system.

The second component of the TitanSSL Security Controller Engine is the Global Platform Client
API implementation, which abstracts the underlying Security Controller to the OpenSSL Engine. This
abstraction ensures the secure establishment of a communication channel with the TitanSSL-SCD,
facilitating proper data exchange through TEEC_Context and TEEC_Session. It also manages the
transfer of the necessary data for cryptographic operations to Kernel Space, using the TEEC_Operation
structure.

Contextual information is passed to the next layer through a data structure called ti-
tanssl_parameters_t. To maintain driver agnosticism, the engine encapsulates all operation-specific
information within a meta-information data structure. For instance, AES algorithms require initial-
ization vectors (IVs) or keys, while RSA operations demand exponents and modulus values to handle
asymmetric keys. Each cryptographic algorithm needing such supplementary information is represented
by a dedicated data structure, such as titanssl_meta_<operation>_t.

The TitanSSL-SCD, residing in the Kernel Space, is responsible for managing requests directed to the
Security Controller and enabling communication between the Application Processor and the Security
Controller via the mailbox. This component exposes its functionalities through a character device,
accessible to the TitanSSL-SCE. When a command is issued, the Device Driver processes the data by
translating virtual addresses from User Space to physical addresses, which the Security Controller can
utilize. This translation occurs in two steps: i) Pinning the memory page to prevent data corruption,
and ii) Translating the virtual address to a corresponding physical address.

The TitanSSL-SCD includes a Mailbox Manager responsible for managing data exchange between
the Application Processor and the Security Controller.

The Application Binary Interface (ABI) designed for sending information to the firmware consists of:
i) Three Master Pages, which store the physical addresses of the input, output, and meta-information
memory pages (provided by the application and engine); ii) A Header Page, which contains navigation
information for the physical input, output, and meta-information pages, including the physical address
of the Master Pages, the number of pages, offsets, and page sizes; iii) Data for the mailbox, which
includes the physical address of the Header Page, the requested command, session information, and the
process id (pid) of the application invoking the operation.

Additionally, the mailbox triggers interrupts to the IBEX and CVA6 cores using the Doorbell and
Completion registers.

The TitanSSL Security Controller Firmware (TitanSSL-SCF) is responsible for executing cryptographic
operations within the secure environment provided by OpenTitan. Upon receiving a command from
the Mailbox, the TitanSSL-SCF extracts the requested operation, its parameters, and the Header Page’s
memory address. By accessing physical memory directly, the firmware retrieves the data structure sent
by the Application Processor, which contains all the information to execute the requested cryptographic
operation.

The Mailbox Manager in the Security Controller remains idle until it is signaled by the Doorbell
register. Upon receiving the signal, it fetches the cryptographic task request and the physical memory
address of the structure containing the operation’s inputs and parameters. The Cryptographic Accelera-
tor Manager then processes the requested operation, which may involve tasks such as generating a
hidden ephemeral key, signing or verifying a signature, computing a cryptographic hash, or encrypting
a data sequence.

Once the cryptographic task is completed, the Mailbox Manager activates the Completion register,
signaling the Mailbox Manager on the Application Processor to proceed with subsequent actions.

The system employs a zero-copy approach, where the firmware running on IBEX writes the output
directly to memory without using an intermediate buffer or delegating tasks to the driver. Both the
CVA6 application processor and IBEX access memory through the last-level cache (LLC), though CVA6



features an additional level of cache. To maintain memory consistency, the driver flushes the first-level
cache before initiating the remote procedure call to IBEX. This call is blocking, ensuring that memory
remains unaltered by the application during OpenTitan operations. However, in multithreaded or
shared memory environments, it is the application’s responsibility to prevent concurrent access to
buffers being used by OpenTitan.

5. Security Assumptions and Implications

The security assumptions for our system are based on the threat model outlined in the OpenTitan
analysis for SCRAMBLE-CFI [19]. In this analysis, the authors examine how the OpenTitan chip
can withstand attacks when an adversary gains physical access to the system. They describe how
OpenTitan is inherently equipped with countermeasures designed to thwart such attacks, preventing the
manipulation of stored and transmitted data, as well as the instructions within the chip. Consequently,
the threat model for this section assumes that the attacker does not have physical access to the system
but can manipulate input data to gain unauthorized privileges to execute cryptographic tasks or extract
sensitive information stored within OpenTitan, all without needing direct physical access.

Our analysis combines the STRIDE framework [20], the OWASP Top 10 [21], and CWE [22] classifica-
tions to assess potential software vulnerabilities. We have excluded certain OWASP vulnerabilities that
do not apply to the analyzed system. The remaining vulnerabilities are mapped to STRIDE categories
based on the potential attacks they may enable if exploited. This threat model covers the entire system
architecture, assigning criticality levels to components ranging from 0 (not evaluated) to 9 (involving
sensitive data). Sensitive data categories include secrets and critical physical addresses, essential for
system security.

Our evaluation uses the STRIDE approach to assess both software components and data flows: i)
Software components are analyzed for vulnerabilities related to Spoofing, Repudiation, and Elevation
of Privilege. ii) Data flows are examined for risks of Tampering, Information Disclosure, and Denial of
Service. It is important to note that the Application and its data flows are not included in this analysis.
In this context, the OpenSSL Engine, which is rated with a criticality level of 1, operates with minimal
privileges and does not store sensitive data. Since the OpenSSL Engine is accessible to all users, an
analysis of Spoofing and Repudiation risks is deemed unnecessary. Moreover, Elevation of Privilege
concerns are addressed by subsequent authentication layers.

In contrast, the GP Client API is assigned a criticality level of 2 due to its role as the gateway to
Kernel Space on the Host Processor. This component incorporates authentication mechanisms that help
mitigate Spoofing and Elevation of Privilege threats. Furthermore, the Session feature in the GP standard
tracks access by processes, providing logging and monitoring capabilities to prevent Repudiation.

Within Kernel Space, the Device Driver (criticality level 5) helps mitigate threats related to Broken
Access Control and Broken Authentication, thereby limiting the risk of Spoofing and Elevation of
Privilege attacks. The kernel’s logging system also addresses Repudiation and Logging concerns. Both
the Kernel Space’s Mailbox Drivers and the Secure Space follow a common architectural framework,
although they differ in execution privileges (5 vs. 7) due to their distinct logging and monitoring
capabilities.

The Secure Firmware is isolated by default and remains secure, with its primary vulnerability
stemming from the potential tampering of mailbox data. Our data flow analysis specifically targets the
potential leakage of sensitive information between the Device Driver and the Host Processor’s mailbox,
as such a breach could jeopardize the entire system architecture. It is worth noting that other data flows
are protected against vulnerabilities such as Incorrect Input Validation or Buffer Overflow, effectively
preventing unauthorized access beyond buffer boundaries.



Figure 3: Experimental setup on a Xilinx VCU118. Two Olimex JTAG adapter are used to program the CVA6 and
IBEX core.

6. Experimental Results

To evaluate the effectiveness of the proposed software stack, we analyze the performance of two widely
used cryptographic algorithms: SHA-256 and AES-256-CBC. Specifically, we compare the runtime
performance of cryptographic operations offloaded to OpenTitan against a purely software-based
implementation executed on the host core. TitanSSL was tested on a System-on-Chip (SoC) synthesized
on a Xilinx Virtex UltraScale+ VCU118 FPGA (the experimental setup is shown in Figure 3), running
Linux v5.10.7. The OpenTitan subsystem provides access to the JTAG interface through the FMC
connector and the CVA6 processor via the PMOD slot on the board. Programming of the system is
carried out using GDB in conjunction with OpenOCD, while interactions with the Linux shell are
facilitated through the UART interface available on the FPGA.

The evaluation of the system was conducted directly on the Linux system running on CVA6 using the
openssl speed command, specifying: i) the developed engine, ii) the payload size, and iii) the algorithm to
be tested through the engine and the envelope library (EVP). For example, to evaluate the performance
of SHA-256 and AES-256-CBC with a 1 KiB payload, the following commands can be used:

Table 1
Results obtained with openssl speed on the system running on the FPGA at 50MHz

Payload SHA [KiB/s]
Speedup OT

AES [KiB/s]
Speedup OT

[Byte] OpenSSL TitanSSL Limit OpenSSL TitanSSL Limit

16 43 12 0.29x 0.0 % 216 52 0.24x 0.1 %
32 87 31 0.36x 0.1 % 239 140 0.59x 0.4 %
48 130 36 0.28x 0.1 % 248 177 0.72x 0.5 %
64 118 55 0.46x 0.2 % 250 191 0.76x 0.5 %

112 194 82 0.42x 0.3 % 259 394 1.52x 1.0 %
128 178 116 0.65x 0.4 % 260 350 1.35x 0.9 %
240 257 137 0.53x 0.5 % 264 627 2.38x 1.6 %
256 238 186 0.78x 0.6 % 264 402 1.52x 1.0 %
496 303 169 0.56x 0.6 % 265 386 1.46x 1.0 %
512 288 382 1.33x 1.3 % 265 578 2.18x 1.5 %

1008 330 705 2.13x 2.4 % 267 4233 15.86x 10.8 %
1024 320 537 1.68x 1.8 % 267 3840 14.38x 9.8 %
2032 347 1136 3.27x 3.9 % 268 3501 13.08x 9.0 %
2048 341 1300 3.82x 4.4 % 268 4436 16.57x 11.4 %
4080 355 2049 5.78x 7.0 % 267 4352 16.33x 11.1 %
4096 352 1850 5.25x 6.3 % 266 4338 16.30x 11.1 %

16384 357 14222 39.80x 48.5 % 259 21333 82.45x 54.6 %



Figure 4: SHA2-256 Results

Figure 5: AES-256-CBC Results

openssl speed -engine titanssl -bytes 1024 -mr -evp sha256;
openssl speed -engine titanssl -bytes 1024 -mr -evp aes-256-cbc;

The output of the first command is structured as follows:

+DT:sha256:3:1024
+R:126169:sha256:3.000000
+F:22:sha256:43065685.33

This output can be interpreted as follows:

• +DT:sha256:3:1024: Indicates the start of a new test session for a digest algorithm. Specifically,
this test is for the SHA-256 hashing algorithm. It specifies the test duration in seconds (3 seconds
in this case) and the block size (in bytes) used during the test.

• +R:126169:sha256:3.000000 Represents a result record. Here, 126169 is the total number of data
blocks (each of size 1024 bytes) processed during the 3-second test.

• +F:22:sha256:43065685.33: Provides the calculated throughput at the end of the test. The value 22
denotes a numeric code representing a specific unit or metric (for SHA-256, it refers to throughput
in bytes per second). The value 43065685.33 represents the measured throughput in bytes per
second, indicating the rate at which the SHA-256 algorithm processed data during the test

We also evaluate the performance of our system against the theoretical maximum throughput of the
accelerators. OpenTitan features an SHA accelerator, which processes 64 bytes per 80 clock cycles when
operating in SHA2-256 mode. Similarly, the AES accelerator, configured in unmasked mode, processes
16 bytes per 16 clock cycles. Given that the FPGA system operates at a clock frequency of 40 MHz, the
theoretical maximum performance for the test system is 28.61 MiB/s for SHA2-256 and 38.15 MiB/s for
AES-256. These values represent ideal conditions, excluding overheads such as data movement between
memories or the encryption schemes applied to the algorithms.

Table 1 presents the performance results for SHA2-256 and AES-256-CBC, comparing the software
implementation in OpenSSL with our TitanSSL software stack. For each test, operations were performed



on varying payload sizes. To observe the effects of memory paging, payload sizes slightly smaller
than multiples of 4 KiB were also tested, allowing us to capture the overhead introduced by managing
additional pages.

The table columns display, for both algorithms, the operation speed in KiB/s, the speedup achieved by
TitanSSL relative to OpenSSL, and the percentage of TitanSSL’s performance compared to the theoretical
limits of the corresponding hardware accelerator.

In addition to providing secure in-element processing, our results show that the overhead of the
TitanSSL software stack is compensated at 512 bytes for SHA2-256 and 128 bytes for AES-256. For larger
payloads, TitanSSL achieves significant speedup over the pure software implementation, reaching 3.8x
for SHA2-256 and 16.5x for AES-256 with 2 KiB payloads. For a payload size of 16 KiB, the speedup
rises to 39.8x for SHA2-256 and 82.4x for AES-256, achieving approximately 50% of the theoretical
performance of the hardware accelerators.

Figures 4 and 5 illustrate the performance trends for operations performed using OpenSSL and Ti-
tanSSL. In both figures, the left-hand graph shows the performance of the software-only implementation,
which peaks at a payload size of 211, equivalent to 2 KiB, for both algorithms. The right-hand graph
compares the performance of TitanSSL to the software baseline and the theoretical performance of the
hardware accelerator. Both algorithms demonstrate a performance trend that increases with payload
size, converging toward the ideal performance. Drops in performance are visible due to the overhead of
handling additional memory pages and any padding required by the cryptographic algorithms. The
gray horizontal line in the graphs highlights the point at which the overhead of the software stack is
neutralized, resulting in a speedup greater than 1x. We also tested RSA with 1024-bit keys obtaining a
speedup of 1.4x in signing operations and 1.0x in verification operations.

7. Conclusion

In this paper, we introduced a software stack that utilizes OpenTitan as a Security Controller (SC)
within a RISC-V-based System-on-Chip (SoC). This stack enables applications operating in insecure
environments to securely interact with the OpenTitan SC for cryptographic operations, as well as
the generation and storage of sensitive data. To facilitate this integration, we developed a custom
OpenSSL engine (TitanSSL-SCE), a communication driver (TitanSSL-SCD), and firmware for the Security
Controller (TitanSSL-SCF). As a result, applications can perform cryptographic operations through the
OpenSSL API, leveraging the security and acceleration features provided by OpenTitan.

To evaluate the performance of the TitanSSL-SCE and TitanSSL-SCD components, we conducted
benchmarks on a Linux environment running on a System-on-Chip (SoC) equipped with a CVA6
application core and OpenTitan. The SoC was implemented entirely on an FPGA, operating at a
frequency of 40 MHz. All evaluations were performed directly on the system under test using the
OpenSSL speed application.

Although the TitanSSL software stack introduces some overhead, it achieved significant performance
improvements; for payloads of 16KiB, we obtained speed-ups of 39.8x for SHA-WITH RESP256 and 82.4x
for AES-256-CBC. For payloads of 16KiB, TitanSSL reached approximately 50% of the ideal performance
achievable by the underlying accelerators. Moreover, TitanSSL consistently outperforms OpenSSL, even
with smaller payloads as low as 512 bytes. These performance gains are realized while leveraging key
features of OpenTitan, such as its memory isolation, secure boot, and root-of-trust capabilities.

In future work, we plan to extend TitanSSL’s evaluation by testing it with real-world network
workloads, including those generated by communication protocols such as HTTPS and TLS.

Declaration on Generative AI

During the preparation of this work, the authors used ChatGPT, Grammarly in order to: Grammar and
spelling check, Paraphrase and reword. After using this tool/service, the authors reviewed and edited
the content as needed and takes full responsibility for the publication’s content.



References

[1] B. Parno, J. M. McCune, A. Perrig, Roots of Trust, Springer New York, New York, NY, 2011, pp. 35–40.
URL: https://doi.org/10.1007/978-1-4614-1460-5_6. doi:10.1007/978-1-4614-1460-5_6.

[2] M. Ciani, et al., Cyber security aboard micro aerial vehicles: An opentitan-based visual communi-
cation use case, in: 2023 IEEE International Symposium on Circuits and Systems (ISCAS), 2023,
pp. 1–5. doi:10.1109/ISCAS46773.2023.10181732.

[3] F. Zaruba, L. Benini, The cost of application-class processing: Energy and performance analysis of
a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology, IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27 (2019) 2629–2640. doi:10.1109/TVLSI.2019.2926114.

[4] lowRISC CIC, Opentitan official documentation, 2019. https://opentitan.org/book/doc/introduction.
html.

[5] NXP, Edgelock secure enclave, 2019. https://www.nxp.com/products/nxp-product-information/
nxp-product-programs/edgelock-secure-enclave:EDGELOCK-SECURE-ENCLAVE.

[6] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, D. Song, Keystone: An open framework for
architecting trusted execution environments, in: Proceedings of the Fifteenth European Conference
on Computer Systems, EuroSys ’20, Association for Computing Machinery, New York, NY, USA,
2020. URL: https://doi.org/10.1145/3342195.3387532. doi:10.1145/3342195.3387532.

[7] K. Cheang, C. Rasmussen, D. Lee, D. W. Kohlbrenner, K. Asanović, S. A. Seshia, Verifying risc-v
physical memory protection, 2022. arXiv:2211.02179.

[8] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, W. Kunz, Processor hardware security vulnerabilities
and their detection by unique program execution checking, in: 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2019, pp. 994–999. doi:10.23919/DATE.2019.
8715004.

[9] T. Lu, A survey on risc-v security: Hardware and architecture, 2021. arXiv:2107.04175.
[10] G. Andrade, D. Lee, D. Kohlbrenner, K. Asanovic, D. Song, Software-based off-chip memory

protection for risc-v trusted execution environments, UC Berkeley (2020).
[11] D. Lee, D. Kohlbrenner, S. Shinde, D. Song, K. Asanović, Keystone: An open framework for

architecting tees, 2019. arXiv:1907.10119.
[12] D. Schrammel, S. Weiser, S. Steinegger, M. Schwarzl, M. Schwarz, S. Mangard, D. Gruss, Donky:

Domain keys–efficient in-process isolation for risc-v and x86, in: Proceedings of the 29th USENIX
Conference on Security Symposium, 2020, pp. 1677–1694.

[13] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi, E. Flamand, F. K. Gürkaynak,
L. Benini, Near-threshold risc-v core with dsp extensions for scalable iot endpoint devices, IEEE
Trans. Very Large Scale Integr. Syst. 25 (2017) 2700–2713. URL: https://doi.org/10.1109/TVLSI.2017.
2654506. doi:10.1109/TVLSI.2017.2654506.

[14] S. Johnson, D. Rizzo, P. Ranganathan, J. McCune, R. Ho, Titan: enabling a transparent silicon root
of trust for cloud, in: Hot Chips: A Symposium on High Performance Chips, volume 194, 2018.

[15] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Flamand, L. Benini, Slow
and steady wins the race? a comparison of ultra-low-power risc-v cores for internet-of-things
applications, in: 2017 27th International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), 2017, pp. 1–8. doi:10.1109/PATMOS.2017.8106976.

[16] O. S. Foundation, Source code for the openssl software, 1998. https://github.com/openssl/openssl.
[17] G. P. Group, Global platform official website, 2023. https://globalplatform.org/.
[18] G. P. Group, Global platform client api documentation, 2023. https://optee.readthedocs.io/en/

stable/architecture/globalplatform_api.html#tee-client-api.
[19] P. Nasahl, S. Mangard, Scramble-cfi: Mitigating fault-induced control-flow attacks on opentitan,

2023. arXiv:2303.03711.
[20] B. Potter, Microsoft sdl threat modelling tool, Network Security 2009 (2009) 15–18.
[21] M. Bach-Nutman, Understanding the top 10 owasp vulnerabilities, arXiv preprint arXiv:2012.09960

(2020).
[22] C. W. Enumeration, 2022 cwe top 25 most dangerous software weaknesses, 2022. https://cwe.mitre.

https://doi.org/10.1007/978-1-4614-1460-5_6
http://dx.doi.org/10.1007/978-1-4614-1460-5_6
http://dx.doi.org/10.1109/ISCAS46773.2023.10181732
http://dx.doi.org/10.1109/TVLSI.2019.2926114
https://opentitan.org/book/doc/introduction.html
https://opentitan.org/book/doc/introduction.html
https://www.nxp.com/products/nxp-product-information/nxp-product-programs/edgelock-secure-enclave:EDGELOCK-SECURE-ENCLAVE
https://www.nxp.com/products/nxp-product-information/nxp-product-programs/edgelock-secure-enclave:EDGELOCK-SECURE-ENCLAVE
https://doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
http://arxiv.org/abs/2211.02179
http://dx.doi.org/10.23919/DATE.2019.8715004
http://dx.doi.org/10.23919/DATE.2019.8715004
http://arxiv.org/abs/2107.04175
http://arxiv.org/abs/1907.10119
https://doi.org/10.1109/TVLSI.2017.2654506
https://doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/TVLSI.2017.2654506
http://dx.doi.org/10.1109/PATMOS.2017.8106976
https://github.com/openssl/openssl
https://globalplatform.org/
https://optee.readthedocs.io/en/stable/architecture/globalplatform_api.html#tee-client-api
https://optee.readthedocs.io/en/stable/architecture/globalplatform_api.html#tee-client-api
http://arxiv.org/abs/2303.03711
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html


org/top25/archive/2022/2022_cwe_top25.html.

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html
https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

	1 Introduction
	2 Background and Related Works
	3 Hardware Architecture
	4 TitanSSL Software Architecture
	5 Security Assumptions and Implications
	6 Experimental Results
	7 Conclusion

