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Abstract
Android malware represents an evolving threat within the modern cybersecurity landscape due to the increasing
importance of mobile systems in everyday life. Obfuscation and source code manipulations are systematically
employed to bypass security measures and improve the effectiveness of attacks, especially to prevent detection
or endanger the privacy of users. However, they represent only a portion of the evasive techniques that can
be employed to make malicious software stealthier. In this work, we showcase a prime assessment of the
joint use of steganography and repackaging techniques to hide information within Android APK resources.
Specifically, we assess the capabilities of real-world antivirus aggregated by VirusTotal to identify payloads
cloaked within audio and images of 20 popular Android applications. Our investigation demonstrated that
repackaging steganographically modified assets is not always possible. Besides, our results revealed that common
antivirus are not able to identify applications containing hidden data, thus highlighting the need for new Indicators
of Compromise.
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1. Introduction

The Android Operating System (OS) is the main OS employed for mobile devices (e.g., smartphones,
tablets, and smartwatches), and it supports a wide range of functionalities. Modern devices extend the
basic operations (i.e., messaging and phone calls), to include security-sensitive tasks, such as multi-
factor authentication or home banking. Hence, malicious software that can perform various harmful
activities poses a significant risk to the security and privacy of users. In general, threats are mitigated by
employing antimalware detection systems, which typically rely on static analysis methods, preventing
the need to use an emulator or a real device [1]. Unfortunately, an attacker can leverage the static
analysis limitations of antimalware systems by concealing malware payloads. In this way, it is possible
to deceive the analysis and evade antivirus (AV) detection and security checks. The literature abounds
with works addressing the challenge arising from attackers deploying software manipulation through
code injection [2, 3] or obfuscation [4, 5]. However, an aspect often neglected concerns the impact of
new and advanced cloaking techniques to make Android malware stealthier. Therefore, this work wants
to shed new light on attackers empowering next-generation Android malware with information-hiding
capabilities, especially through the use of digital media steganography. At the same time, it wants to
update the investigation performed in [6], which is now a decade old and focused on earlier forms of
Android malware. In more detail, this work outlines the following research questions:

- RQ1: owing to the increasing complexity of modern mobile applications as well as the presence of
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runtime checks enforced by developers to prevent unauthorized alterations (e.g., rebranding) [7, 8],
is it possible to repack an Android application with malicious steganographic contents?

- RQ2: the increasing degree of effectiveness of security tools could partially fail when facing
cloaked or advanced threats. Hence, does the steganographic embedding scheme have an impact
on the results reported by the most popular antivirus?

To answer such questions, we performed a set of experiments to explore the possibility of repackaging
well-known applications containing steganographic malicious content and to test whether current
AVs are able to spot their presence. To this aim, we performed experiments by selecting the 20 most
downloaded apps on the Google Play Store, and we repacked them to include the payload of Necro,
a well-known trojan that recently infected 11 million Android devices [9]. Among the various apps,
Necro has spread mainly via a modded version of the Spotify audio player distributed across unofficial
channels. To perform experiments, we embedded part of the trojan payload through two variants of
Least Significant Bit (LSB) steganography in the audio and image resources of the target apps. Finally, we
tested the repacked apps with VirusTotal (VT) to assess the ability of its AV engines to detect the various
malicious steganographic payloads. As specified in Section 2.2, according to the Android documentation
assets and resources are two different objects inside an APK due to the compiling (i.e., APK building)
and access mechanism, during application execution. In the following, we will interchange the terms
assets and resources unless doubts arise.

Therefore, the contributions of this work are threefold: i) it investigates whether modern Android
applications should be considered a valuable target for attackers deploying information-hiding capable
schemes; ii) it provides a prime static assessment of real-world security frameworks when facing
malicious information cloaked within digital media; iii) it showcases the main research gaps, focusing
on publicly available detection tools (i.e., VirusTotal), that need to be filled to advance the security
posture of mobile applications.

The rest of the paper is structured as follows. Section 2 provides background information on
steganographic techniques observed in real-world stegomalware and core technical details on Android
applications, whereas Section 3 reviews prior research on the mitigation of mobile threats. Section 4
presents the methodology employed to investigate stegomalware targeting the Android ecosystem, and
Section 5 showcases quantitative results. Finally, Section 6 concludes the paper and hints at possible
future research directions.

2. Background

This section provides details on mechanisms for endowing Android malware with hiding capabilities.
First, it introduces the main steganographic methods observed in real-world malicious software. Then,
it presents technical details and functional constraints of Android applications.

2.1. Malware Using Steganography

Modern malware is increasingly using steganographic techniques to conceal malicious payloads within
seemingly innocuous digital files, such as images, audio files, or documents. This new wave of threats,
often referred to as stegomalware, deploys steganography to avoid signature-based detection, implement
multi-stage load architectures, or covertly extract sensitive information without being blocked by
firewalls or network intrusion detection systems [10, 6]. Among all the possible objects that can be
used, digital images are the most frequently exploited carriers: a recent review of stegomalware cases
covering media, text, and network steganography revealed that images are the preferred choice to
embed malicious data [11].

The hiding process should remain as straightforward as possible to prevent the introduction of
detectable signatures (e.g., inflated loading times or major execution overheads). Consequently, modern
malware often utilizes spatial domain-based image steganography, where the pixels of the images are
directly manipulated to embed the information. One of the most common techniques employed by



attackers is the LSB steganography. It consists of concealing secret data by overwriting the least signifi-
cant bits of the color components of the pixels of the carrier image. The adoption of LSB steganography
to hide information within digital images has been observed in many real-world malware samples, such
as PNGLoader, RDAT, and RegDuke [10, 11]. Moreover, some malicious software introduced alternative
cloaking schemes able to exploit multiple bits of the color space: this allows for better tradeoffs in terms
of detectability versus the volume of cloaked data. For instance, malware like PowLoad and Ursnif
take advantage of the Invoke-PSImage, an LSB technique implemented in PowerShell which embeds
the malicious payload within the 4 least significant bits of the green and the blue channels. Other
variants developed by OceanLotus exploit 2/3 bits according to the targeted color channel [10].

2.2. Android Applications (Apps)

APK

lib res assets META-INF

AndroidManifest.xml classes.dexresources.arsc

Figure 1: Structure of an application with all required resources.

An Android application is a software written in Java or Kotlin designed to run on Android devices
(e.g., smartphones, tablets, and smart TVs). The kernel of the Android OS is based on the Linux core,
and native written in C/C++ is imported to interact with the main native activities and hardware
components (e.g., camera and microphone).

Android applications are packed into a file called APK (Android Package). As depicted in Figure 1,
it consists of different resources required to be installed and executed: i) lib directory, holding
the libraries for each CPU configuration (i.e., ARM and 𝑥86 emulation, both for 32 and 64 bits); ii)
assets and res directories, holding all resources (e.g., images, audio, and XML files) employed by
the graphical interface; iii) META-INF directory, holding manifest information and other signature
metadata; iv) AndroidManifest.xml, containing all permissions (i.e., required rights to use restricted
APIs), and app entry points; v) .dex (Dalvik EXecutable format) files holding the code executed
by the ART (Android Runtime) whose framework extracts and loads the needed resources through
the identifier (e.g., R.drawable.image_id) at runtime; vi) resources.arsc file containing all pre-
compiled resources, such as XML files. All the aforementioned assets are then built by using development
tools such as Android Studio to obtain a compiled APK signed with the developer key.

To better comprehend the focus of this work, it is important to understand how resources are stored
in the APK and used at runtime as well as how they are handled in memory and integrated with
the code. Resources in Android are files and static contents compiled and integrated into the APK,
while assets are uncompiled files stored as-is and programmatically accessed. During compilation,
resources specific to different device configurations are included in the res directory, which contains
different self-explainable subdirectory names according to the content, type and use of the resource,
such as animator, color, font, layout, xml, raw for the raw files usually audio, drawable, mipmap for
the launcher icon densities. At runtime, the system extracts and loads the resource that matches the



current configuration, such as screen size, by using an assigned identifier accessed through the R class
and XML file.

Android applications can be easily reversed by employing decompiling tools, e.g., ApkTool1 or
Jadx2, which allow accessing the original resources and code. The latter is in the form of smali code,
a representation of the Android APK Dalvik code, or Java/Kotlin that is the typical language used to
develop Android applications. Yet, the original app can still be modified by injecting, removing, or
altering resources or code (often embedding malicious payloads) to be then re-built with ApkTool. In
essence, such a process can be summarized in the following four main steps: i) decompile the application
to extract the Java code and all the resources; ii) modify the resource files via the different techniques;
iii) rebuild all the files and obtain the new APK; iv) re-sign the APK with a new certificate, as the
original signing key of the legitimate developer is not accessible. For this reason, the main changes in a
repacked APK are the signature, code, and resource structure according to what we have added/deleted,
as well as the AndroidManifest.xml in case of newly added permissions. As it will be detailed later
in Section 5.2, the repackaging stage can fail due to the presence of anti-tampering techniques, which
account for errors during the compilation of resources or code.

3. Related Work

Over the years, Android malware detection has emerged as a significant challenge due to the critical
security vulnerabilities associated with Android smartphones. The employed approaches differ by
analysis type and, consequently, by features or IoCs considered. Indeed, three main detection techniques
can be outlined: i) static methods, which parse the files of the applications to extract strings (e.g., URLs
and IPs), code patterns (e.g., API calls, smali opcodes), and permissions requested at runtime by the
APK [12, 13]; ii) dynamic methods, which run the applications in a testing environment searching for
API calls and network flows [14]; iii) hybrid methods, combining dynamic and static ones [15]. While
dynamic analysis provides deeper insights into malware behavior, it comes with intrinsic limitations,
such as extended time requirements for a comprehensive analysis or the risk that malware remains
latent when executed in a sandboxed environment [16]. Thus, static analysis remains a core component
of most detection systems.

Furthermore, two additional detection strategies have proven to be effective. The first entails signature-
based methods [17], which rely on identifying known patterns in the extracted features with the limita-
tion of clearly detecting only known malware. The second takes advantage of techniques employing
Machine Learning (ML) [18] and Deep Learning (DL) approaches [19], which can identify both known
and unknown malware by learning patterns from a training set. Learning algorithms are used with
static [20], dynamic [21] or hybrid analysis [22]. Besides, some malware uses adversarial attacks on ML
and DL algorithms to evade malware detection [5, 23].

Recalling that repackaging can be used to modify resources/code and rebuild an application, em-
bedding malicious code into legitimate Android applications can decoy ML algorithms [24]. In fact,
repackaging significantly affects the detection capabilities of ML algorithms, as these techniques can
obscure signatures or static features that many detection systems rely on. For instance, subtle modifica-
tions of the structure of an app can lead ML-based models to misclassify malware as safe, demonstrating
the vulnerability of certain ML algorithms to adversarial manipulation. A new technique based on
analyzing the dynamic user interfaces has been developed to detect repackaged Android apps [25],
while new strategies to protect applications from being repacked have been studied [7]. To this extent,
the app’s integrity is checked at runtime by encrypting bytecode sections, subsequently decrypted with
a key derived during execution.

As shown, the literature dealing with Android malware detection largely neglects threats using
steganography. A notable exception is [6], where authors preliminary investigated whether steganog-
raphy can be used to distribute malicious content via the Google Play store. Another work focusing

1ApkTool: https://apktool.org/
2Jadx: https://github.com/skylot/jadx
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on information-hiding instead of “classical” obfuscation techniques is [26], which proposes to use
high-level indicators to spot the presence of malicious applications bypassing sandboxes via covert
communications. Another recent work focused on Android stegomalware by investigating techniques to
hide malicious dex files in the images of an application [27]. Yet, many works addressing the mitigation
of stegomalware in desktop scenarios are starting to emerge. For instance, the work in [28] tackles the
problem of revealing the presence of data hidden through LSB techniques within the in-line objects of
HTML content. An analysis of the popular Invoke-PSImage mechanism revealed that it introduces
a major statistical signature in targeted pixels, which can be exploited to prepare trivial detection
frameworks [29]. In some malware (e.g., MiniDuke and Stegoloader), data is cloaked without using
steganography but by prepending/appending the malicious contents to an image. In this case, the data
can be revealed (or removed) by searching for inconsistencies in the size of the file or the preamble/trail
sequence of the image format [30].

With the advent of artificial intelligence, more advanced detection solutions have been also proposed.
For instance, [31] introduces a framework that employs machine learning methods, including Linear
Discriminant Analysis, Random Forest, and Back-Propagation Networks, specifically for detecting
malicious PowerShell scripts. In [32], the authors propose an AI-based framework that not only
detects stegomalware attacks but also classifies their specific type.

Lastly, detection can be complemented by sanitization, a countermeasure technique aimed at destroy-
ing the embedded malicious code without compromising the original quality of the carrier. Traditional
sanitization approaches, such as additive noise, lossy compression, and image filtering [33, 34], are
effective at disrupting hidden content but may compromise the quality of the carrier. To overcome this
issue, sophisticated approaches leverage artificial intelligence. For example, in [35, 36], the authors
propose neural architectures for removing the embedded malware payloads while maintaining the
integrity of the carrier, i.e., the image.

4. Methodology

This section deals with the methodology used to assess the impact of stegomalware on the Android
ecosystem. First, it introduces the dataset of steganography resources. Second, it showcases how the
various malicious contents have been repackaged to produce malicious applications. Lastly, it presents
the experimental testbed.

4.1. Dataset Preparation

To create the dataset, we first computed some statistics about the resources contained in real-world
Android applications downloaded from the Google Play Store. Specifically, we wanted to understand
the most common formats for images (i.e., pixel dimension, extension, channel type) and audio (i.e.,
duration, number of channels, and extension) in order to build a dataset of steganographically-modified
assets to be included within repacked applications.

To hide secret information within audio files, we used the AudioStego tool3, which allows to hide
information within both MP3 and WAV audio files. In essence, AudioStego converts the text to be
hidden into its binary ASCII representation. Then, it embeds each bit of the secret message into the
LSB of the audio samples that compose the file. Since the amount of audio samples that can be used
to conceal the payload is limited, we hide a short list of 3 malicious URLs obtained from the URLhaus
repository4. The URLs have been separated through the *d* escape sequence. This “template” has
been observed in various malware campaigns (see, e.g., [11], and the references therein) and allows
an attacker to search for URLs by directly looking at the escape characters sequence, thus making the
“extraction” process simpler.

3AudioStego: https://github.com/danielcardeenas/AudioStego/tree/master
4URLhaus: https://urlhaus.abuse.ch/
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Figure 2: Workflow of the methodology employed to inject strings into APK raw resources and rebuild the
application.

Concerning steganographic techniques used for images, we considered two LSB-based strategies [10].
Specifically, i) LSB plain in which the payload is hidden in the first least significant bit of each color
channel, i.e., red, green, and blue; and ii) LSB variant where the payload is hidden in the three least
significant bits of the red and green channels and in the two least significant bits of the blue channel.
This technique has been extensively observed in the OceanLotus advanced persistent threat [11]. In
general, images allow for hiding larger contents with respect to audio files. Without loss of generality, in
this work, we hide only a portion of the Necro trojan payload. In fact, many modern malware distribute
their functionalities leveraging multi-stage loading paradigms, reducing the likelihood of being detected
by defensive mechanisms [37] and the possible “visual” artifacts generated in the resulting images.
Moreover, to analyze an even more realistic and complex scenario, we used two different hiding patterns:
sequential and square. In the sequential strategy, the payload is hidden by starting from the first pixel of
the image, while in the square pattern, the payload is concealed within equally-sized blocks arranged
diagonally across the image. We point out that it is not always possible to apply both strategies/patterns
to all the images composing our dataset. For example, 8-bit greyscale images have a single color channel,
making it impossible to apply the LSB variant method.

4.2. Repackaging Workflow

The methodology employed to create the dataset of stegomalware samples is outlined in Figure 2.
Specifically, each application is decoded using ApkTool to obtain the original resources, as explained
in Section 2.2. Then, the steganographic assets were placed in the same locations with the original
names, allowing the applications to be correctly repacked.

To avoid burdening the encoding/repack workflow, we limited our injection to a maximum of two
images and two audio files per application, whenever feasible. These assets were selected to meet
the specific requirements of the steganography methods used, such as the number of channels, image
formats (e.g., RGB and greyscale), and audio characteristics like file type (e.g., MP3) and duration (around
2 seconds). By applying the techniques outlined in Section 4.1, we created each asset with multiple
information-hiding techniques, enabling us to generate a wide range of combinations for comprehensive
coverage. However, to create the various apps, we did not consider all the combinations of malicious
resources for two main reasons. First, the resources maintain the name, so it would be overwritten if
we consider the same resources modified with different techniques. Second, even if we renamed the
resource to avoid overwriting, the resource would not have been employed in any file describing the
application layout. Indeed, as described in Section 2.2, all the resources must be declared and called
inside the source code to guarantee a fair assessment of security implications.

After repackaging, each app was signed with different signed keys not to correlate the signing key
with the detection result. This is because VT can associate the detection result to the signing key
instead of the real app analysis. Moreover, the different signing keys have been used to understand



if the applications could be correctly run within an emulator for testing purposes, as done in the real
world where each app is signed by different developers with their own signing key. The source code of
our testing pipeline can be found in the GitHub repository5.

4.3. Experimental Testbed

To quantify how security tools are effective in detecting the steganographic embedding scheme, we
submitted each repacked sample to the VT platform6 using the code available as a module of Obfus-
capk [4], a tool employed to obfuscate Android applications at different levels (e.g., ClassRename, and
CallIndirection) and a enterprise API key. VT aggregates data from 79 antivirus engines and other
cybersecurity services and sandboxes to detect malware or other malicious content, such as URLs and
IP addresses.

After uploading the samples in VT, we retrieved the report listing all the information extracted
from the application analysis. The most relevant data are i) static features gathered from the
AndroidManifest.xml (i.e., permissions, activities and entry points), strings, used IPs and URLs,
and APK meta information (i.e., signature, bundle file, file hashes); ii) the analysis of the various VT
scanning tools to gather the number of detections the application had.

By analysing the reports, we looked at the number of tools that flagged a sample as malicious and
the strings to understand whether the engines could retrieve the payloads that have been embedded
through steganography within images and audio files.

5. Results

This section reports the outcome of our test campaign. First, it presents an analysis of the assets, and
then it elaborates on the effectiveness of repackaging. Lastly, it discusses the performance of VT in
terms of detection.

5.1. Asset Analysis

To generate the steganographic resources reported in Table 1, we first downloaded the top 20 real
Android applications of the Google PlayStore in September 2024.

The images extracted from the applications are in PNG format, use RGBA or greyscale color models,
and have three different resolutions (i.e., 32 × 32, 48 × 48, and 72 × 72 pixels). Instead, the audio
files are in MP3 and WAV format, have an average duration of 2 seconds, and a sample rate of almost
44, 000 Hz. As a result, we obtained a dataset composed of 50 images hiding the portion of the Necro
payload and 17 audio files hiding the list of URLs with the various steganographic methods and patterns
described in Section 4.1. Again, we point out that not all the original resources were modified to hide
content due to the constraints of the tools/techniques used to conduct experiments and model real-world
stegomalware.

5.2. APK Repackaging

As mentioned, including steganography resources requires repackaging, rebuilding, and resigning the
original application with the new images and audio. Therefore, to answer RQ1, we try to repack all
the compromised applications. However, during the repackaging process, some applications could
not be built successfully because of some APK protection mechanisms to avoid software cloning and
cracking as well as to prevent the distribution of a malicious app mimicking its benign counterpart. In
particular, aapt7, a tool used by ApkTool to recompile the resources, raises an error (e.g., for Meta Inc.
applications such as Facebook and Instagram). This also occurs in the case of unmodified applications,

5GitHub repo: https://github.com/Ocram95/AndroidStego/tree/main
6VirusTotal: https://www.virustotal.com/gui/home/upload
7aapt: https://developer.android.com/tools/aapt2
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https://developer.android.com/tools/aapt2


Application LSB Plain LSB Variant AudioStego

Amazon-shopping G# -  
BulletEcho G# - -
CandyCrush G# G# -
Contacts G# - -
Duolingo G# -  
Eurospin G# - -
Facebook G# - -
FlixBus G# - -
Glovo G# G#  

Idealista G#H# -  
Instagram G# -  
JustEat G# - -

McDonalds G#H# G#H#  
Messenger G# - -
Revolut G# -  
Shein G#H# G#H# -

Telegram G# G#  
TikTok G# G#  

WhatsAppMessenger G# - -
YouTube Music G# -  

Table 1
Dataset of steganographic images and audio files hiding a payload. The G# and H# symbols denote images hiding
the Necro payload via the sequential and the squares patterns, respectively. Instead, the  symbol denotes
audio files hiding the malicious URLs.

meaning that the included resources are not responsible for aapt error. In general, even though the
repackaging is not working for some applications, this is good due to the tendency of attackers to apply
the principle of path of least resistance [38]. This concept is based on the idea of exploiting vulnerabilities
or writing malware employing the simplest techniques without necessarily focusing on a specific one.

Table 2 shows only the applications that were correctly repacked by including different combinations
of the steganography resources, obtaining a final dataset of 67 new applications. For example, Amazon-
Shopping has been repacked 3 times with 3 different combinations. After a successful repack, all of them
were signed, with different development keys, and aligned as prescribed by Android documentation [39].
We also installed a random selection of 10 samples in an Android Emulator to check the functionalities
preservation. All tested applications worked as the original version. To check the functionality, a
manual analysis is needed, hence, we used a restricted number of apps. A more extensive investigation
is part of our ongoing research.

5.3. Detection Effectiveness

To answer RQ2, we uploaded all the 67 steganographic apps in VT and automatically parsed the
obtained reports. As reported in Table 2, only 2 applications were correctly detected by one out 79
antivirus. In particular, one sample for CandyCrush8 and one for Duolingo9 are detected by VirIT as
EICAR-Test-File and Trojan.Win32.AutoIt_Heur.L, respectively. However, these results can
be seen as false positives for two main reasons: i) the first is a test sample developed by EICAR [40],
while the second is a Trojan for Windows 32 [41], which is not the target of an Android application; ii)
we should consider the resulting label as a false positive if the detections by VirusTotal AVs are less than
a threshold, typically set to 5 [42]. Additionally, we found that even though the original Duolingo10

is flagged as benign, there is an IoC inside the dex file (classes3.dex). The same IoC is not found

8SHA256: 8efaab7e52c6c7bae6e928d3874bb1e38fa1c2de198f74f0fe71e8939be38f46
9SHA256: a6f3913327061c70a6cfcb602962bf75d901574801803478cd515020024d2a62
10SHA256: 418c7a88ca09dd8e5318c2b590f6f3d02c772ef06fd1976360b7f615f1ff7de1



Application Repacked Detections
Original Repacked

Amazon-Shopping 3 0 0

Bullet Echo 3 0 0

CandyCrush 5 0 1

Duolingo 15 0(*) 1

Eurospin 3 0 0

FlixBus 3 0 0

Telegram 35 0 0

Table 2
Repacked applications and their detection results by 79 VT antivirus. Repacked is the number of successful
repacked applications, while Detections denotes the AV detections for the Original application and the Repacked
one. The (*) symbol denotes that despite VT detection being 0, some malicious IoCs have been detected via
static analysis.

inside the malicious Duolingo app, meaning the application evaluation is negligible.
Analysis of the reports revealed that none of the hidden payloads were detected by VirusTotal

AVs. This limitation arises because VT relies on Androguard11, which focuses on static features
extraction [43]. In our opinion, this is a strong limitation of the tool, which is not able to retrieve
steganography resources. As a possible solution, an additional engine/layer could be implemented
in VT for checking digital media against steganographic content. For example, this could be done by
implementing the AI-based techniques described in [32].

6. Conclusion and Future work

In this paper, we presented an investigation of the “susceptibility” of Android applications against
using steganography for creating advanced stealthy threats. To this aim, we conducted trials with 20
popular applications collected from the Google Play store, which have been repacked to contain image
and audio files cloaking data through different steganographic mechanisms. Our tests indicated the
feasibility of this threat model since none of our 67 repacked applications were flagged as malicious
by antivirus engines interrogated by VirusTotal, with the exception of two detection instances that
we deem as false positives. As a consequence, considering malware endowed with some form of
information-hiding capabilities should be incorporated in the security assessment of future mobile
ecosystems (e.g., applications and distribution stores) since the lack of additional controls may open up
to a wide range of covert threats.

The limit of our investigation is that it is focused on manipulating pre-existent application assets
without producing any alteration in terms of properties (e.g., the size of the file) or functional qualities
(e.g., the perceived visual quality). For this reason, future works aim to broaden the considered research
questions. Specifically, we want to evaluate whether the need to add a loader to unpack/decode the
hidden data produces some signatures that can help to detect stegomalware. We are also working
towards submitting applications to alternative stores to evaluate whether built-in checks may early
prevent the use of information-hiding mechanisms.
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