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Abstract 
Nowadays, fake news has become a critical global concern, exacerbated by social media’s ability to 
disseminate misinformation rapidly. In this paper, we address the pressing challenge of fake news detection 
by proposing a novel approach for formulating the feature computation procedure, grounded in large 
language model (LLM) capabilities. The primary objective is to refine the process by which suspicious 
textual attributes are transformed into numerical vectors suitable for classification, thus closing the 
research gap on how to systematically integrate linguistic cues with deep contextual embeddings. 
Experiments were conducted on English (FakeNewsNet) and Ukrainian (Fake vs. True) datasets, where the 
proposed approach outperformed four baselines by achieving up to 88.5 percent accuracy for English and 
86.7 percent for Ukrainian. Key findings show that combining numeric indicators such as paraphrasing or 
sentiment ratios with LLM-based embeddings yields higher recall for detecting deceptive articles, 
improving upon standard techniques by at least two to three percentage points on average. These results 
indicate that the proposed feature computation procedure successfully enhances detection accuracy while 
preserving transparency in model decisions. Conclusively, the study underscores the importance of 
systematically engineered numeric features that complement LLM embeddings, offering a path toward 
more reliable, adaptable, and explainable fake news detection systems. 
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1. Introduction 

Fake news—false or misleading content presented as credible journalism—has grown into a 
formidable global threat in the digital era [1, 2]. With over 3.6 billion individuals accessing social 
media, unverified information can rapidly circulate beyond traditional editorial oversight, 
heightening the spread of false narratives [2]. Notable events, including the 2016 U.S. presidential 
election [3] and the 2019 Indian general election [4], underscore how swiftly misinformation can 
shape public opinion. During the COVID-19 pandemic, for instance, harmful untruths regarding the 
virus and its vaccines proliferated online, undermining public health messaging. Studies have shown 
that fake news often travels faster and farther than factual articles [5], potentially fueling 
polarization, eroding trust in mainstream media [6], and even inciting violence [7, 8]. 

Over the past decade, researchers have concentrated on automated machine learning (ML) and 
natural language processing (NLP) methods to identify disinformation at scale [9]. Early attempts 
typically formalized fake news detection as a binary classification problem—distinguishing real from 
fake news solely through text analysis [2]. Traditional approaches used algorithms such as Naive 
Bayes, Support Vector Machines (SVM), or Random Forest alongside engineered features like n-
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grams or specialized lexicons, sometimes yielding promising performance [10]. Nonetheless, the 
ability of fake news creators to adapt and camouflage deceptive content means that capturing deeper 
semantic cues remains an open challenge [7, 11, 12]. 

Deep neural networks, particularly convolutional neural networks (CNNs) and long short-term 
memory (LSTM) architectures, have been proposed to learn latent text representations automatically. 
Although LSTMs have demonstrated accuracy above 99% in certain benchmark tasks [10], broader 
experiments confirm that highly sophisticated or domain-specific fake news can evade these models 
unless they incorporate richer contextual understanding [7, 8]. Meanwhile, word embeddings such 
as Term Frequency–Inverse Document Frequency (TF-IDF), Word2Vec, and FastText improved on 
bag-of-words models by mapping words into dense vectors [13]. Despite capturing semantic 
relationships, these static embeddings still struggle with polysemy and context variations [1]. 

Transformer-based models introduced a new paradigm for contextual embeddings. Bidirectional 
Encoder Representations from Transformers (BERT) [14] can capture nuanced linguistic cues, 
especially when fine-tuned on domain-specific tasks. Researchers have reported that BERT 
significantly outperforms older baselines across multiple NLP tasks, including misinformation 
detection [15]. However, deploying BERT in practical fake news scenarios—especially in multiple 
languages—can be constrained by limited domain data or resource overhead [16]. 

The rise of large language models (LLMs), such as OpenAI’s GPT-4 [17] and Meta’s LLaMA [18], 
presents an opportunity to exploit massive pretraining on diverse corpora for more advanced text 
representations. Early investigations suggest LLM-based embeddings can capture subtle 
misinformation cues beyond what smaller models recognize [19]. Nevertheless, high computational 
requirements and challenges in explaining LLM-based decisions remain unresolved [20, 21]. In 
response to these concerns, a growing body of research in Explainable AI (XAI) has proposed 
combining deep learning’s predictive power with interpretable mechanisms that clarify classification 
outcomes [22]. Yet many XAI approaches for text classification still struggle to map intrinsic features 
to comprehensible textual cues for end-users. 

Motivated by these challenges, this work introduces a novel approach for formulating the feature 
computation procedure, leveraging insights from an explainable LLM-based pipeline. Specifically, 
we integrate a strategy that decomposes detection into smaller tasks: synthesizing suspicious 
features, computing these features in a numerically interpretable way, building robust machine 
learning models, and generating transparent expert conclusions. 

The goal of this study is to enhance fake news detection by integrating an LLM-driven framework 
for feature extraction and selection with an explainable strategy that clarifies the significance of 
computed features. We aim to show that such a pipeline can improve accuracy and interpretability 
across diverse textual data, including multilingual contexts. Major contributions of this paper are as 
follows: 

• An approach for formulating the feature computation procedure for fake news detection, 
inspired by a decomposition strategy from prior explainable AI research.  

• We extend prior LLM-based comparisons—TF-IDF, Word2Vec, and BERT—by adding explicit 
steps that compute and interpret features using large language models, thus bridging the gap 
between raw embeddings and transparent decisions. 

• A comprehensive evaluation on two datasets, verifying that LLM-driven features yield top 
accuracy (up to 88.5% in English and 86.7% in Ukrainian) and discussing how the proposed 
framework offers insight into why certain texts are flagged as fake. 

The rest of this manuscript is organized as follows. Section 2 refines the related works, clarifying 
how our approach builds on established feature extraction techniques while integrating 
interpretability. Section 3 presents the newly proposed approach in detail, describing the 
decomposition of tasks, the data flow among them, and how they enhance feature computation. 
Section 4 reports experimental findings, including quantitative comparisons with existing 
approaches. Section 5 offers a broader discourse on advantages, drawbacks, limitations, and open 



questions. Section 6 concludes with a forward-looking summary, highlighting numerical results, 
addressing ongoing challenges, and proposing future research directions. 

2. Related works 

Over the years, researchers have used a wide range of methods to detect fake news, from traditional 
feature engineering to cutting-edge deep learning. They initially deployed classical lexical features, 
such as bag-of-words or n-grams, combined with algorithms like logistic regression or SVM. TF-IDF 
weighting stood out as a baseline for capturing key terms that often appear in fake news headlines 
[23]. However, straightforward lexical approaches proved vulnerable to more sophisticated 
misinformation that mimics credible journalism. Subsequent studies adopted static word embeddings 
such as Word2Vec and FastText, which encode semantic similarity between words [24, 25]. Despite 
partial gains, these embeddings were context-agnostic, limiting their utility in nuanced texts where 
the meaning of a word depends heavily on its linguistic environment. 

The breakthrough arrived with transformer-based embeddings, most notably BERT, which yields 
dynamic token-level vectors. BERT-based fake news detectors [15, 16] have demonstrated clear 
improvements over static embeddings, thanks to deeper contextual representation. Yet, domain 
mismatch and computational overhead remain concerns. Meanwhile, LLMs such as GPT-4 [17] and 

LLaMA architecture [18] has emerged, showcasing an ability to capture broader knowledge. 
Preliminary efforts to use LLM embeddings for misinformation detection indicate even stronger 
performance, particularly in recall [9]. The computational demands, however, can be prohibitive, 
and the interpretability of an LLM’s latent features is far from trivial [20]. 

To address explainability, some researchers have introduced local interpretation methods or 
model-agnostic approaches such as LIME or SHAP, yet these are often insufficient to convey the 
essential textual cues underlying predictions [19, 21]. A gap thus remains for a structured 
methodology that not only leverages advanced features but also clarifies how these features are 
derived from text. 

Summarizing the landscape, several tasks must be completed to meet our objective of building a 
robust and transparent fake news detection approach: 

• Task A: Identify novel and evolving fake news characteristics, using both domain expertise 
and LLM insights to maintain relevance. 

• Task B: Define a procedure for computing those features so they become numerically usable 
in a classifier, while retaining enough metadata to justify their role. 

• Task C: Construct or adapt machine learning architectures (e.g., LLM embeddings integrated 
with smaller networks) to discriminate fake from real news. 

• Task D: Provide an expert conclusion template, bridging raw model outputs and user- 
understandable rationale for final predictions. 

The subsequent sections demonstrate how our proposed approach addresses each of these tasks, 
expanding on the approach to ensure interpretability while capitalizing on LLM-based embeddings 

3. Methods and materials 

In this section, we present an approach to formulating the feature computation procedure, a key 
component that enriches our LLM-based fake news detection pipeline with transparency and 
adaptiveness.  

Following the idea firstly introduced in our previous work [26], we decompose the problem into 
four interrelated tasks:  

• synthesizing fake-news characteristics; 
•  computing features; 



• building machine learning models; 
•  generating expert conclusions. 
This decomposition aims to clarify not only which features are computed but also how they are 

derived, thereby facilitating updates as fake news strategies evolve. 

3.1. Overall structure and data flow 

Figure 1 outlines the overall architecture, illustrating how raw text flows through the tasks: 

• Task 1: Synthesizing Characteristic Features – identifies potentially suspicious cues in the 
text. 

• Task 2: Formulating the Feature Computation Procedure – transforms those cues into 
numerical representations by referencing either LLM metadata or NLP-library plugins, 
culminating in a set of numerical features. 

• Task 3: Building a Machine Learning Model – aggregates the numerical features derived into 
a vector, feeding it into a classifier. 

• Task 4: Constructing an Expert Conclusion Template – outputs a verdict (fake or not) along 
with a text-based explanation derived from identified cues. 

 

Figure 1: Overall workflow of the proposed approach, incorporating LLM-based embeddings, 
numerical feature computation, and final expert conclusion templates. This diagram illustrates the 
four key tasks in our approach: (i) synthesizing characteristic features, (ii) formulating the feature 
computation procedure, (iii) building a machine learning model, and (iv) constructing an expert 
conclusion template, showing the flow of raw text and derived features through each stage. 

3.2. Synthesizing characteristic fake-news features 

As described in our previous work [26], suspicious textual elements can be discovered or updated by 
querying LLMs through prompt engineering and chain-of-thought reasoning. By iterating with an 
LLM, researchers or domain experts identify new or evolving attributes that could signify deceptive 
content. 

These characteristic features (e.g., signs of paraphrasing, subjective wording, emotional bias) are 
then documented with preliminary metadata, indicating possible ways to measure them numerically. 

3.3. Formulation of the feature computation procedure 

This task transforms the set of suspicious or “characteristic” elements into a numerically computed 
feature vector while retaining a direct mapping back to textual evidence. We break it into the 
following steps: 

Input data: Identified characteristic features. 



Step 1: Gather Metadata from the Characteristic Features. Each identified characteristic has an 
associated name and descriptive metadata. For instance, a characteristic might be “High 
Paraphrasing Rate,” with metadata describing relevant threshold values or examples. If the metadata 
already provides an approach to convert this characteristic into a number, we store it. Otherwise, we 
rely on NLP plugins or LLM modules. 

Step 2: Define Formula for Each Feature. We represent every feature fi via an algorithm or formula 
ALG/. For example: 

Paraphrase Ratio =
∑ similar_sentences

total_sentences
, (1) 

where similar_sentences might be those whose semantic embeddings (based on Word2Vec or 
LLM) share a high cosine similarity. 

Step 3: Implement the Forward and Inverse Procedures. 

1. Forward Computation (Numerical): Converts the text to a numerical score (e.g., paraphrasing 
ratio, subjectivity ratio). 

2. Inverse Explanation (Textual): Logs which specific words, sentences, or phrases contributed 
most to the computed score.  

This inverse mapping is particularly critical for interpretability. If a user inquires why an article 
scored highly for paraphrasing, the system can point out which sentences were redundant or 
suspiciously similar. 

Step 4: Incorporate Arithmetic or Logical Operations. Some features may be derived from earlier 
ones. For instance, a combined “Manipulative Language Score” might be: 

Manipulative Score = 𝛼𝛼 × Subjectivity Ratio + 𝛽𝛽 × Sentiment Ratio, (2) 

where 𝛼𝛼 and 𝛽𝛽 are weighting factors. 
Our contribution thus supports both direct measurements from a single plugin or metadata and 

composite features synthesized from multiple existing measures. 

Step 5: Produce the Final Feature Set. The procedure yields a set 𝐹𝐹 = �𝑓𝑓1,𝑓𝑓2, … ,𝑓𝑓𝑁𝑁𝑓𝑓�, each item 

specifying: 

• An identifier and descriptive name. 
• The subset of characteristic features �𝐼𝐼𝑑𝑑𝑐𝑐𝑐𝑐� needed to derive it. 

• The set of existing features �𝐼𝐼𝑑𝑑𝑓𝑓𝑓𝑓� that feed into it (if any). 
• The algorithm 𝐴𝐴𝐴𝐴𝐺𝐺𝑓𝑓 for its numerical computation. 
• Metadata capturing the textual cues relevant for interpretability. 

Output data: The obtained feature set. 
Figure 2 demonstrates a high-level schematic of this approach.  
By separating the identification of suspicious attributes (Task 1) from the numeric feature 

computation (Task 2), the system can evolve incrementally: new suspicious features feed into the 
pipeline without overhauling existing ones. 

 



 

Figure 2: Schematic of the proposed approach for formulating the feature computation procedure 
(Task 2), showing both forward (numeric) and inverse (explanatory) paths. In this diagram, we detail 
the process of converting identified suspicious textual elements into numerical features, emphasizing 
the forward computation for numerical scores and the inverse procedure for textual explanations, 
crucial for interpretability. 

3.4. Machine Learning Model Construction 

After assembling the feature set F, the next step is training a classifier to label news as fake or real. 
This study explores both classical algorithms (e.g., logistic regression) and neural architectures (e.g., 
small MLP or a fine-tuned transformer). In parallel, we leverage LLM-based embeddings as additional 
features, hypothesizing that large pre-trained encoders can highlight subtle patterns of deception 
[9, 16].  
The combined feature vector merges: 

1. The numeric results from Task 2. 
2. The textual embeddings from an LLM (or BERT, Word2Vec, TF-IDF, etc.). 

Thus, each news article is represented by both handcrafted or computed scores and a deep latent 
embedding. This synergy aims to yield higher accuracy and interpretability compared to a single 
approach alone. 

A crucial aspect of explainability is generating a comprehensible “expert conclusion.” Once a 
classifier produces a label (fake or real), the system references the metadata from Task 2 to identify 
which textual segments contributed to the numeric values leading to that decision. This final step 
transforms an otherwise abstract classification score into a structured explanation (e.g., paraphrasing 
ratio, suspicious sources, or manipulative tone). The user is then provided both the final verdict and 
a textual rationale. 

Throughout these tasks, the proposed approach highlights explicit formulaic definitions 
(Equations 1 and 2), references to custom or standard NLP modules, and visually annotated flows 
(Figures 1 and 2). Such structured representations facilitate the addition of new steps or adaptation 
to alternative languages. 

3.5. Experimental setup 

Datasets and Splits. All experiments were conducted on two datasets: FakeNewsNet (English) [27] 
and Ukrainian Fake & True News [28]. 

Following standard practices, each dataset was split into training (80%), validation (10%), and 
testing (10%). We ensured stratification to preserve class ratios (fake vs. real).  

The English dataset encompassed over 23,000 labeled articles from PolitiFact and GossipCop, 
while the Ukrainian dataset consisted of about 12,749 news items with a higher imbalance (only 3,375 
fake). Preprocessing included text normalization, but domain-specific terms were retained. 

Baseline Features. We replicated the setup described in our earlier manuscript, extracting: 

• TF-IDF vectors (unigrams). 
• Word2Vec average embeddings (300D). 



• BERT embeddings (768D). 

LLM Embeddings. We employed LLaMA-based “Llama-3.2-3B-Instruct” [29], generating final 
hidden state vectors for each text. Dimensionality was reduced from 4096 to 1024 using t-SNE. 

Newly Computed Numeric Features.  
To illustrate Task 2, we implemented five example procedures, each producing a numeric value 

in [0;1]: 

1. Paraphrase Ratio (Equation 1). 
2. Subjectivity Ratio (counts subjective expressions, normalizes by total words). 
3. Sentiment Ratio (Equation 2 includes sentiment weighting). 
4. Unusual & Inappropriate Language Ratio (counts slang or inflammatory words). 
5. Fact Confirmation Ratio (checks verifiable claims against known sources). 

We combined these into a 5D vector for each article. Each dimension was further normalized, so 
each feature contributed roughly equally. The overall final representation appended these 5 
numerical values to either TF-IDF, Word2Vec, BERT, or LLM embeddings, forming an augmented 
feature vector. 

Classifier and Training. A simple two-layer feed-forward neural network was used across all 
feature sets, paralleling the approach from our earlier study to enable a direct comparison. The input 
dimension matched each augmented feature vector. We trained with binary cross-entropy loss and 
used early stopping to avoid overfitting. Performance metrics were measured on the test split. 

3.6. Performance metrics 

While conducting the experiments, evaluation metrics included: 

• Accuracy: Overall correctness on the test set. 
• Precision: Proportion of labeled “fake” news that were truly fake. 
• Recall: Fraction of actual fake news correctly identified. 
• F1-score: Harmonic mean of precision and recall. 
• ROC-AUC: Threshold-independent measure of the model’s ability to rank positive vs. 

negative examples. 

These metrics collectively offer a balanced view, mitigating potential distortions from class 
imbalance or focusing on only one performance dimension. Detailed formulations of these metrics 
can be found in the recent research survey [30]. 

4. Results 

In this section, we present an expanded set of empirical findings that demonstrate the effectiveness 
of our proposed approach for formulating the feature computation procedure. We first discuss the 
baseline and augmented performance on FakeNewsNet (English), followed by a separate table and 
analysis for the Ukrainian Fake & True News dataset. We then provide additional visualizations—
namely t-SNE embeddings and precision-recall curves to illustrate how the feature space evolves 
when we apply our procedure. 

4.1. FakeNewsNet (English) results 

Table 1 presents a comprehensive comparison of the four baseline methods and the proposed 
augmented approach (incorporating our numeric feature computation procedure). 



In Table 1, each row reports Accuracy, Precision, Recall, F1-score, and AUC-ROC on the test split 
of FakeNewsNet, averaged over five independent runs with different random seeds. Several 
important observations emerge from Table 1: 

• Improvement Across All Baselines: Appending our numeric feature procedure consistently 
boosts performance metrics. For TF-IDF, Accuracy improves from 80.2% to 82.5%; for 
Word2Vec, from 78.1% to 81.0%. Precision and Recall also rise proportionally. 

• Best Overall Gains with LLM: LLM embeddings already performed strongly (88.5% Accuracy), 
yet even here we see an improvement to 89.6% Accuracy, with a +1.3% absolute gain in F1-
score. This suggests that the explicit numerical features (e.g., paraphrasing ratio, subjectivity 
ratio) add complementary signals to the high-level semantic embedding. 

• Recall Versus Precision: In many fake news detection scenarios, Recall is crucial—missing fake 
articles can be highly problematic. Both BERT + Proposed and LLM + Proposed exhibit 
improved Recall (85.7% and 90.2%, respectively), highlighting the method’s effectiveness in 
catching more deceptive items. Meanwhile, Precision remains similarly high, mitigating false 
alarms. 

Table 1 
Classification results on FakeNewsNet (English). Each metric is given in percentage (%). Boldface 
values indicate best performance per column. 

Method Accuracy Precision Recall F1-score AUC 

TF-IDF (Baseline) 80.2 82.1 78.3 80.1 85.0 

TF-IDF + Proposed 82.5 84.0 81.1 82.5 86.3 

Word2Vec (Baseline) 78.1 79.4 76.6 78.0 83.0 

Word2Vec + Proposed 81.0 82.5 79.3 80.8 85.2 

BERT (Baseline) 85.0 86.0 83.1 84.5 90.0 

BERT + Proposed 86.9 87.5 85.7 86.6 91.2 

LLM (Baseline) 88.5 88.2 89.7 88.9 93.0 

LLM + Proposed 89.6 89.5 90.2 89.8 93.5 

4.2. Ukrainian fake & true news results 

Table 2 shows a parallel evaluation for the Ukrainian dataset. Like the English experiments, we tested 
each baseline (TF-IDF, Word2Vec, BERT, LLM) and then augmented them using the feature 
computation procedure. 

Table 2 
Classification results on Ukrainian Fake & True News. Metrics are in percentage (%). Boldface values 
indicate best performance in each column. 

Method Accuracy Precision Recall F1-score AUC 

TF-IDF (Baseline) 78.5 80.0 75.8 77.8 84.0 

TF-IDF + Proposed 80.8 82.1 78.5 80.2 85.5 

Word2Vec (Baseline) 75.6 77.1 74.0 75.5 81.0 

Word2Vec + Proposed 78.2 79.3 77.5 78.4 83.2 

BERT (Baseline) 82.9 83.4 82.1 82.7 88.0 

BERT + Proposed 84.7 85.2 84.1 84.7 89.3 

LLM (Baseline) 86.7 85.2 88.3 86.7 92.0 

LLM + Proposed 88.3 87.7 89.4 88.5 92.6 



Based on Table 2, we can conclude several trends: 

• Performance Gains for All: Even simple TF-IDF or Word2Vec sees noticeable improvements 
(+2–3% in Accuracy) when augmented with the numeric features, reinforcing the importance 
of capturing explicit signals like “unusual words” or “fact-checking ratio.” 

• LLM Dominance Maintained: LLM + Proposed achieves 88.3% Accuracy, surpassing its 
baseline by 1.6% and further distancing itself from BERT (84.7%). The synergy between large-
scale pretrained embeddings and our numeric cues proves particularly valuable in a more 
challenging, shorter-text dataset. 

• Balancing Recall and Precision: The Ukrainian set often poses an imbalance problem, where 
many genuine news items overshadow the smaller fake class. Our proposed procedure 
enhances Recall (89.4%), ensuring more fake items are correctly flagged, while Precision 
remains stable at 87.7%. 

4.3. t-SNE visualizations 

To illustrate how the feature space shifts when using our numeric feature computation procedure, 
we generated t-SNE plots with the obtained embeddings. Figures 3a and 3b depict 2D projections of 
the combined LLM + Proposed embeddings for English FakeNewsNet and Ukrainian Fake & True 
News, respectively. Each point represents a news article, colored by label (Fake vs. Real). 

 
(a) 

 
(b) 

Figure 3: t-SNE visualization of LLM + Proposed embeddings on (a) FakeNewsNet (English) dataset 
and (b) the Ukrainian dataset. Clusters reveal stronger separability when numeric features are added, 
compared to baseline LLM alone. 



Based on Figure 3 we can observe that augmenting the standard LLM representation with numeric 
attributes yields more distinct separation between Fake and Real clusters in the projected 2D space.  

4.4. Precision-recall curves 

Figure 4 shows sample precision-recall (PR) curves for the baseline BERT and BERT + Proposed 
approach on the two datasets. The BERT + Proposed curves lie above the BERT baseline across a 
broad range of recall, indicating fewer false positives at higher recall thresholds. 

 
(a) 

 
(b) 

Figure 4: Precision-Recall curves for BERT vs. BERT + Proposed on (a) FakeNewsNet and (b) 
Ukrainian datasets. These plots compare the performance of BERT and BERT augmented with our 
proposed approach, showing improved precision and recall across different thresholds on both 
datasets when numeric features are included. 



5. Discussion 

Our refined results align with earlier observations that transformer-based methods (e.g., BERT) 
outperform traditional bag-of-words approaches [15]. The introduction of LLM embeddings further 
increases accuracy, as corroborated by [9], indicating that high-capacity pretrained models capture 
subtle linguistic cues relevant to deceptive content. By adding explicit numeric features via the 
proposed “Method for Formulating the Feature Computation Procedure,” we see incremental gains 
even on top of LLM embeddings, echoing the findings from [16], where additional metadata or 
context improved recall rates in multilingual scenarios. 

The evidence from both English (FakeNewsNet) and Ukrainian datasets suggests clear benefits. 
First, numeric indicators such as paraphrase ratio, sentiment score, and fact-checking results 
complement the rich latent embeddings, boosting classification metrics without demanding 
retraining of the entire LLM model. Second, explicit textual metadata facilitate interpretability: for 
each news item flagged as fake, one can backtrack which features (e.g., abnormal paraphrasing or 
negative sentiment spikes) triggered the suspicion. This transparency is crucial for validation by 
journalists, policymakers, or platform moderators who require rationale beyond a black-box score. 
Finally, the approach scales well with newly discovered fake news traits—researchers can 
incorporate new numeric features without discarding existing embeddings. 

Nonetheless, the method carries certain drawbacks. High resource usage remains a concern: LLM 
embeddings can be computationally expensive to generate, especially for large corpora. Integrating 
additional numeric features also introduces overhead for data preprocessing, though significantly 
less than end-to-end LLM fine-tuning. Another challenge is the risk of bias: if the LLM or the external 
fact-checking APIs are biased or incomplete, the numeric features might reflect such biases (as also 
cautioned by [20]). Ensuring consistent coverage of various topical domains in fact-checking sources 
is essential. Additionally, while the numeric features are more interpretable, subjective definitions 
(e.g., “inappropriate language” or “manipulative style”) might vary across cultures or languages. 

Despite these promising outcomes, the study has certain limitations. First, real-time detection 
might be infeasible with large-scale LLM embedding generation on streaming data. Second, our 
approach primarily targets text content, leaving open the question of how to integrate images, 
videos, or social network propagation features, which can further refine fake news detection. Third, 
evolving disinformation campaigns could require dynamic adaptation: features relevant today might 
become obsolete in the future. Incorporating incremental learning or domain adaptation techniques 
would address this gap. Finally, extended cross-language validations (e.g., beyond English and 
Ukrainian) is a important direction for future research. 

Overall, these results confirm that combining LLM-based representations with an explicit 
numeric feature computation procedure provides a robust, interpretable, and extensible framework 
for detecting fake news. As advanced LLMs continue to emerge, we anticipate even stronger synergy 
between fine-grained, computed features and the broad contextual knowledge encapsulated in large-
scale pretrained models, paving the way for highly adaptable and explainable misinformation 
detection systems 

6. Conclusions 

In this work, we presented a novel approach to improving fake news detection by integrating an 
LLM-driven pipeline with a newly proposed approach for formulating the feature computation 
procedure that enhances both explainability and adaptability. Through extensive experiments on 
English (FakeNewsNet) and Ukrainian (Fake/True News) datasets, we found that LLM-based 
embeddings already achieved the strongest performance among four feature extraction methods, 
yielding up to 88.5% accuracy in English and 86.7% in Ukrainian. Notably, our new numeric features—
covering aspects such as paraphrasing, subjectivity, sentiment, unusual language, and fact 
confirmation—provided additional gains, pushing LLM-based accuracy above 89% in English and 88% 
in Ukrainian. These improvements highlight the method’s ability to capture distinct cues that 



augment the deep semantic knowledge embedded in LLMs. Despite these promising numerical 
results, the study faces several challenges and limitations, including the computational intensity of 
relying on LLMs (particularly for real-time or large-scale systems), the risk of biases introduced by 
subjective feature definitions, and potential biases inherited from an LLM’s training corpus. 

Future work might incorporate multimedia or social network signals, extending beyond text-
based analysis. Moreover, investigating partial fine-tuning of LLMs or knowledge-distillation 
strategies could help maintain high accuracy with lower computational overhead 

Declaration on Generative AI 

In the pursuit of enhancing research quality and efficiency, this study utilized the Llama-3.2-3B-
Instruct model for specific, low-risk tasks. These tasks included generating textual embeddings to 
represent semantic information and assisting in the refinement of logical flow within the manuscript. 
The core conceptualization, methodology, experimental design, and analytical interpretations 
remain the original work of the authors, ensuring the integrity and scholarly rigor of this publication. 
After using this tool, the authors reviewed and edited the content as needed and took full 
responsibility for the publication’s content. 
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