
Detection of computer attacks based on sonification of
network traffic⋆

Bohdan Semeniuk1,†, Antonina Kashtalian1,∗,†, Dmytro Martiniuk 1,∗,†, Andriy Drozd1,† and
Abdel-Badeeh M. Salem2,†

1 Khmelnitsky National University, Khmelnitsky, Instytutska street 11, 29016, Ukraine
2 Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo, Egypt

Abstract
Proposed is a model for detecting computer attacks based on the sonification of network traffic. This work
examines a “sonification” approach for network traffic to detect attacks (Intrusion Detection System – IDS).
The proposed model converts feature vectors into a pseudo-audio signal (PCM), which is then processed
via the Short-Time Fourier Transform (STFT) to obtain a two-dimensional (time × frequency)
representation. Based on the resulting spectrograms, a 2D-CNN is built to perform binary classification into
“normal vs. attack.” It is shown that sonification enables the use of advanced audio-analytical methods and
yields results comparable to traditional 1D-based approaches. The paper also discusses the automated
“enhancement” of individual attributes in the audio domain to improve detection metrics. Experimental
studies confirm that combining PCM+STFT with a two-dimensional convolutional neural network (2D-
CNN) can detect attack signatures with accuracy levels close to those of traditional IDS solutions, while
also offering new possibilities for visualizing and analyzing network traffic. The presented results illustrate
the feasibility of further research on sonification in information security applications.

Keywords
intrusion detection system, convolutional neural network, pulse-code modulation, short-time Fourier

transform

1. Introduction

In today’s environment of increasingly heavy network traffic and the constant emergence of new
threats, the timely detection of attacks (Intrusion Detection System, IDS [1]) becomes especially
relevant. Traditional security measures such as antivirus software, firewalls, and classic IDS [21, 22,
23, 24, 25] remain important elements of cybersecurity, yet they often suffer from a significant
number of false alarms and an insufficient capability to detect unknown or modified attacks. This
creates a need for more flexible and accurate methods capable of promptly identifying a wide range
of threats.

The development of machine learning methods and deep neural networks [2,3,4,5] has opened
new opportunities for building IDS capable of automatically extracting relevant features from large
volumes of network traffic. Such deep-learning-based solutions substantially reduce dependence on
expert security knowledge and demonstrate high detection accuracy even under conditions of rapid
emergence of new attack types. However, despite successes in this field, challenges remain regarding
the representation of input data, model regularization, and the processing of extensive information
in real time.

Intelitsis’25: The 6th International Workshop on Intelligent Information Technologies & Systems of Information Security, April
04, 2025, Khmelnytskyi, Ukraine
∗ Corresponding author.
† These authors contributed equally.

 faludore@gmail.com (B. Semenyuk); yantonina@ukr.net (A. Kashtalian); martiniyuk.dim14@gmail.com (D.
Martiniuk); andriydrozdit@gmail.com (A. Drozd); abmsalem@yahoo.com (Abdel-Badeeh M. Salem);

 0009-0001-8831-8835 (B. Semeniuk); 0000-0002-4925-9713 (A. Kashtalian); 0009-0002-3524-872X (D. Martiniuk); 0009-
0008-1049-1911 (A. Drozd); 0000-0003-0268-6539 (Abdel-Badeeh M. Salem);

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:faludore@gmail.com
mailto:yantonina@ukr.net
mailto:martiniyuk.dim14@gmail.com
mailto:andriydrozdit@gmail.com
mailto:abmsalem@yahoo.com
https://orcid.org/0009-0001-8831-8835
https://orcid.org/0000-0002-4925-9713
https://orcid.org/0009-0002-3524-872X
https://orcid.org/0009-0008-1049-1911
https://orcid.org/0009-0008-1049-1911
https://orcid.org/0000-0003-0268-6539

One promising direction for improving IDS is the “sonification” of network traffic, in which the
original feature vectors are converted into a quasi-audio signal (PCM), subsequently analyzed by
standard audio technologies such as the Short-Time Fourier Transform (STFT). This “audio-domain”
representation enables the use of well-established approaches from speech and audio recognition—
particularly 2D-convolutional networks (2D-CNN)—which effectively operate on two-dimensional
spectrograms (time × frequency). The subsequent sections examine how exactly “sonification” of
network traffic offers additional opportunities for data visualization and analysis, as well as how it
impacts the final accuracy of attack detection.

Hence, the goal of this study is to justify and experimentally investigate the “PCM + STFT + 2D-
CNN” approach for IDS. We compare the results with conventional methods that directly operate on
feature vectors (1D-CNN or MLP), analyze the strengths and weaknesses of the “audio-based”
representation, and discuss prospects for its improvement (in particular, enhancement of certain
“frequency” attributes and the automation of weighting coefficients).

Thus, this work simultaneously continues the tradition of applying deep learning to attack
detection and proposes an original approach at the intersection of audio analytics and IDS
technologies.

2. Analysis of known solutions and research on machine-learning-
based IDS

By its nature, machine learning is a data-driven approach that underscores the importance of in-
depth understanding of the underlying data as a first step [26, 27]. In this context, the data source
type becomes the central link for classification. This section explores various strategies for
integrating machine learning into the development of intrusion detection systems (IDS) for different
data types. Since the characteristics of these data types reflect specific attack patterns—ranging from
host-based activity recorded in system logs to network-level activity captured in traffic—the choice
of the right data source is critically important. For instance, a Denial of Service (DOS) attack,
characterized by a massive number of packets sent within a short time, is best detected using flow-
based data, while covert channels relating to data leakage between specific IP addresses require
session-level analysis.

2.1. Packet-based attack detection

Packets, as the fundamental units of network communication, provide detailed information about
each interaction. They consist of binary data requiring parsing to be understandable. Typically, a
packet includes a header and application-level payload. The header holds structured fields like IP
addresses, port numbers, and protocol-specific details, while the payload contains the actual data of
application-level protocols. Employing packets as a data source for IDS offers three main advantages:

• The payload may reveal U2R (User-to-Root) or R2L (Remote-to-Local) attacks.
• IP addresses and timestamps allow precise identification of the attack’s origin.
• Packets can be processed in real time without the need for caching.

However, since a single packet does not reflect the complete context or state of the
communication session, certain attacks (e.g., DDoS) may not be as effectively detected. Packet-based
detection methods typically break down into packet-parsing and payload-based analysis approaches.

2.1.1. Parsing-based packet detection

In parsing-based detection, diverse network protocols (e.g., HTTP, DNS) are examined with a focus
on their header fields. A common practice is using tools like Wireshark or Bro to extract these fields,
after which the most relevant header values are transformed into feature vectors for classification.
For example, Mayhew et al. proposed an SVM-based method combined with K-means clustering for

packet detection. Their approach involved capturing packets in a corporate network, parsing them
via Bro, then grouping packets by protocol type. They subsequently used K-means++ to cluster
similar packets, and the extracted features were used to train SVM models, achieving 99.6% accuracy
for HTTP, 92.9% for TCP, 99% for Wiki, 96% for Twitter, and 93% for email. Additionally,
unsupervised learning is often employed to reduce false alarms. For instance, Hu et al. applied fuzzy
C-means clustering to Snort-processed packets from the DARPA 2000 dataset. Repeated clustering
reduced false positives by 16.58% and missed detections by 19.23%.

2.1.2. Payload-based detection

Alternatively, payload-based detection methods focus on application-layer data contained in packets
rather than their headers. This approach is less protocol-specific and effective for diverse protocols,
provided that the payload is not encrypted. Whereas shallow models require manual feature
engineering (which can be labor-intensive and pose privacy concerns), deep learning methods are
capable of automatically learning features from raw payload data. For example, Min et al. [6]
implemented a text-based CNN for attack detection on the ISCX 2012 dataset, merging payloads from
different packets, encoding them using a skip-gram word-embedding model, then combining
statistical header features with CNN-extracted content features, and classifying with random forest
at 99.13% accuracy. Furthermore, combining multiple deep models can enhance feature extraction.
Zeng et al. [7] employed CNN, LSTM, and stacked autoencoders simultaneously to extract local,
sequential, and textual features, achieving 99.22% overall accuracy. Unsupervised approaches, such
as convolutional autoencoders, have also proven effective, with Yu et al. [8] reporting ~98.4% in terms
of accuracy, recall, and F-measure on the CTU-UNB dataset.

2.2. Flow-based attack detection

Flow-based data, aggregating packets over a given time interval, constitutes one of the most common
data sources for IDS. Flow data offers two main advantages: first, a broad view of the network
environment—especially useful for detecting DOS and Probe attacks—and second, simpler
preprocessing steps compared to packet-level or session-level reconstruction. However, flow data
generally lacks packet-level details, limiting its ability to detect U2R and R2L attacks, and the need
to buffer packets to generate flow data may introduce delays. Flow-based detection methods typically
fall under feature-engineering-based or deep-learning-based approaches; due to heterogeneity in
flow data, traffic is often partitioned into more homogeneous subsets to improve detection accuracy.

2.2.1. Feature-engineering-based detection

Traditional machine learning algorithms cannot directly handle raw flow data, hence a pivotal
preprocessing step is to convert flow data into interpretable feature vectors. Among common
features are average packet length, variance in packet length, TCP/UDP ratio, and the proportion of
specific TCP flags. Although such methods can achieve high detection accuracy, they often come
with a significant rate of false positives. Some researchers therefore combine multiple weak
classifiers. For instance, Goeschel et al. introduced a hybrid solution combining SVM, decision trees,
and Naïve Bayes. Their approach first segregated data into normal vs. anomalous with an SVM,
employed a decision tree to identify known attack types, and applied Naïve Bayes for unknown
attacks, reaching 99.62% accuracy with a 1.57% false positive rate on KDD99. Other studies improved
efficiency, e.g., Kuttranont et al. developed an optimized KNN with GPU-based parallel processing,
achieving 99.30% on KDD99 with ~30× speedup over CPU-only computations. Unsupervised methods
like improved K-means (enhanced initialization and mini-batch processing, as in Peng et al. [9]) also
yield gains in both accuracy and computational efficiency.

2.2.2. Deep-learning-based detection

Deep learning method enable direct operation on raw flow data, automatically learning features
“end-to-end,” reducing reliance on manual feature extraction. Potluri et al. proposed a CNN approach
where feature vectors were converted into images by one-hot encoding nominal features (expanding
the dimensionality from 41 to 464) and splitting them into 8-byte chunks forming 8×8 pixel images.
Their three-layer CNN surpassed deeper architectures (ResNet50, GoogLeNet), scoring 91.14% on
NSL-KDD and 94.9% on UNSW-NB15. A two-stage approach—first extracting features via an
unsupervised model (e.g., a sparse autoencoder), then classifying with XGBoost—also proved
effective (Zhang et al.) on NSL-KDD. To address small or imbalanced datasets, adaptive learning (e.g.,
GAN-based data augmentation) has been adopted, significantly improving detection performance
across various attack classes.

2.2.3. Traffic grouping for detection

Because flow data may be highly heterogeneous, training ML models on these data can lead to
overfitting. One effective strategy is grouping (clustering) traffic to reduce variability. Teng et al.
[10] split KDD99 into TCP, UDP, and ICMP subsets, choosing distinct features for each protocol
before training separate SVM models, yielding 89.02% average accuracy. Alternatively, grouping by
data characteristics via clustering is also effective, e.g., Ma et al. [11] used spectral clustering to split
the dataset into six homogeneous clusters, after which separate deep neural networks were trained
per cluster, reaching ~92.1% accuracy on KDD99 and NSL-KDD.

2.3. Session-based attack detection

Sessions, reflecting communication between two endpoints, offer high-level semantics and are
generally defined by a five-tuple (client IP, client port, server IP, server port, protocol). Session-based
detection has two main advantages: first, it is well-suited to identifying attacks targeting specific IP
pairs (e.g., covert or Trojan attacks); second, the detailed communication within a session aids in
pinpointing the attack’s origin. However, because session duration can vary widely, analysis often
requires caching large numbers of packets, potentially introducing latency. Session-based detection
methods often focus on statistical vs. sequential features.

2.3.1. Statistical feature-based detection

Statistical session-based detection extracts features such as header fields, packet counts, or traffic
direction ratios to form a feature vector suitable for classic classifiers. While high-level session
semantics lend themselves well to rule-based or decision-tree methods, they may overlook the
sequential nature of network sessions. Supervised methods that rely on statistical features can be
fairly accurate but commonly suffer from higher computational costs. For instance, Ahmim et al.
presented a hierarchical decision tree approach that uses independent sub-classifiers (decision tree,
rule-based model) on partial feature sets, then a random forest to analyze the combined set of
features, demonstrating competitive results for 8 out of 15 classes on the CICIDS 2017 dataset.

2.3.2. Sequential feature-based detection

Unlike flow data, sessions inherently maintain the packet order, facilitating the extraction of
sequential features like packet length sequences and inter-arrival times. However, most conventional
ML algorithms lack built-in mechanisms for sequential data, so RNN-based solutions are less
frequent but can be effective. For example, Yuan et al. utilized LSTM for DDoS detection on the UNB
ISCX 2012 dataset, embedding 20-dimensional packet features via a “bag-of-words” approach, then
assembling them into variable-sized matrices. A CNN extracted local patterns, while LSTM handled
the temporal dimension, achieving ~97.6% in accuracy, precision, recall, and F-measure. Similar
CRNN structures have also emerged, employing hierarchical layers (CNN + RNN) to handle both
spatial (packet-level) and temporal features.

2.4. Log-based attack detection

Logs—generated by operating systems or applications—provide semantically rich data vital for
detecting attacks like SQL injection, U2R, or R2L. Although logs supply valuable context (user
actions, timestamps) and aid in tracing attackers, their analysis can be highly dependent on
specialized knowledge, and differences in log format hamper scalability. Log-based detection
methods generally split into hybrid rule-based/ML, feature-extraction-based, and text-analysis-based
approaches.

2.4.1. Hybrid rule-based + machine learning methods

Hybrid detection leverages the strengths of rule-based systems (e.g., Snort) which often produce
large numbers of alerts, most of them benign, and feeds those alerts into ML models for filtering.
Meng et al. [15], for instance, applied a KNN approach to prioritize alerts in a real network, cutting
their volume by 89%. Similarly, McElwee et al. [16] developed a deep neural network to filter McAfee-
generated alerts; the most critical alerts were then examined by security experts, thus reducing
analyst workload while boosting accuracy.

2.4.2. Feature extraction from logs

This approach involves using domain knowledge to extract relevant features from logs for standard
ML classifiers. A common technique is sliding-window analysis to capture contextual event
sequences with low detection latency. For example, Tran et al. [17] employed CNN on system-call
logs in NGIDS-DS and ADFA-LD datasets, applying a sliding window to detect local patterns
indicative of intrusions. Tuor et al. [18] combined a DNN with RNN to classify logs from the CERT
Insider Threat dataset, cutting analysis load by 93.5% at a detection rate of ~90%, with an added bonus
of interpretability at the component (behavioral) level.

2.4.3. Text-based log detection

Text-based methods treat logs as unstructured text, drawing on established NLP techniques like n-
grams to derive semantic features. For instance, Uwagbole et al. [19] tackled SQL injection for IoT
by building a dictionary of high-frequency words from logs (including SQL syntax), then applying
n-gram analysis plus Chi-square-based feature selection; final classification by SVM reached 98.6%
accuracy, 97.4% precision, 99.7% recall, and 98.5% F-measure. In scenarios where normal activity
vastly outnumbers anomalies, one-class classification (e.g., isolation forest) is effective. Vartouni et
al. [20] used an isolation forest on HTTP logs from CSIC 2010—after n-gram feature extraction and
dimensionality reduction via autoencoder—attaining 88.32% accuracy in detecting anomalous web
activity.

3. The main part

3.1. Problem of attack detection in networks

Modern computer networks comprise huge amounts of diverse traffic, making analysis highly
challenging. Traditional methods—heuristics, signature-based rules, or static filters—decline in
effectiveness under dynamic conditions. Identifying sophisticated or unknown threats is crucial for
ISPs, corporate segments, and industrial networks. In building IDS, researchers confront not only
accuracy issues but also a substantial rate of false positives, which can “clutter” the security
system. In the classic IDS model, we receive a feature vector 𝑥𝑥 ∈ ℝ𝐹𝐹 (where F is the number of
traffic attributes, e.g., src_bytes, dst_bytes, count). The task is to classify each vector as “normal” or
“attack.”

3.2. Sonification of network traffic

An alternative approach involves the “sonification” of network traffic—converting the feature vector
into a pseudo-audio signal (PCM). The rationale lies in leveraging the wealth of audio-recognition
developments (speech, music, etc.), which might be beneficial for network analysis.

The basic scheme:

1. Normalize and prepare 𝑥𝑥 ∈ [−1,1]𝐹𝐹.
2. Form a PCM signal of NNN samples (e.g., 0.4 s at 8000 Hz → 3200 samples). Each attribute

𝑥𝑥𝑖𝑖 corresponds to a time block Δ𝑡𝑡, producing a sinusoidal fragment with freq𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖 ⋅
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), and amplitude amp𝑖𝑖 = 𝑥𝑥𝑖𝑖(або |𝑥𝑥𝑖𝑖|).

3. The resulting PCM is processed by audio-signal methods, especially STFT, to produce a 2D
“time × frequency” representation.

3.3. Comparing 1D-CNN and “PCM + STFT” (2D-CNN)

In a classic deep-learning scenario for feature vectors, a 1D-CNN is used. Given 𝑥𝑥 ∈ ℝ𝐹𝐹:

• x is interpreted as a 1D sequence of length F.
• Each step applies convolution with 𝑘𝑘 × 1 filters.
• After several convolutions/poolings, we move to either a fully connected layer or global

pooling, then produce the final classification (sigmoid/softmax).

For a 2D-CNN, a 2D tensor ℝ𝐻𝐻×𝑊𝑊is needed. If we apply sonification, we get a pseudo-audio wave,
then STFT yields Spec(𝑓𝑓, 𝑡𝑡), where f and t correspond to frequency and time windows. Hence, Spec
is treated as an image (H,W), and 2D-CNN effectively detects local “patches” in this 2D domain, akin
to image processing.

3.4. Mathematical basis of PCM transformation

Let 𝑥𝑥 ∈ [−1,1]𝐹𝐹. Denote N = sample rate × duration sec. For each attribute 𝑖𝑖 ,

Δ𝑛𝑛𝑖𝑖 = �
𝑁𝑁
𝐹𝐹�

.
(1)

If ∑  𝑖𝑖 Δ𝑛𝑛𝑖𝑖 < 𝑁𝑁, the remainder 𝑅𝑅 = 𝑁𝑁 − ∑  𝑖𝑖 Δ𝑛𝑛𝑖𝑖 may be filled with zeros. Δ𝑛𝑛𝑖𝑖, for 𝑘𝑘 = 0. . (Δ𝑛𝑛𝑖𝑖 − 1):

wave [start + 𝑘𝑘] = amp𝑖𝑖 ⋅ sin �2𝜋𝜋 freq 𝑖𝑖𝑡𝑡local �, (2)

with

freq𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), amp𝑖𝑖 = 𝑥𝑥𝑖𝑖. (3)

It is basic formulas.

3.5. Short-time Fourier transform (STFT)

Given the PCM signal wave [𝑛𝑛],𝑛𝑛 = 0, … ,𝑁𝑁 − 1} over duration_sec, we split it via a window of
size 𝐿𝐿 (e.g., 256 samples) with overlap Δ. For the 𝑚𝑚-th window:

𝑤𝑤�𝑚𝑚[𝑘𝑘] = window [𝑘𝑘] ⋅ wave [𝑚𝑚(𝐿𝐿 − Δ) + 𝑘𝑘],𝑘𝑘 = 0. . 𝐿𝐿 − 1. (4)

We compute DFT

𝑍𝑍𝑥𝑥𝑥𝑥𝑚𝑚(𝜔𝜔) = � 
𝐿𝐿−1

𝑘𝑘=0

𝑤𝑤�𝑚𝑚[𝑘𝑘]𝑒𝑒−
𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘

𝐿𝐿
(5)

Taking |𝑍𝑍𝑥𝑥𝑥𝑥𝑚𝑚(𝜔𝜔)| for magnitude, we then apply log(1 + |𝑍𝑍|) for numerical stability and better
visualization. The final STFT matrix Spec ∈ ℝ(freq_bins × time_frames) serves as the 2D-CNN input.

3.6. Implementation example

To illustrate, we developed a code snippet generating waves for two mock samples A and B (Fig. 1).
Each has 41 attributes in [−1..1]. After forming a PCM signal (~3200 samples, 0.4 s, 8 kHz), STFT with
nperseg=256 and noverlap=128 yields ~129×25 matrices. Fig. 2 shows color maps for Spec(A) and
Spec(B).

Figure 1: Performance graph for recording A and B after PCM conversion.

Figure 2: STFT spectrograms of two different recordings.

3.7. Advantages and disadvantages

Advantages:

• Allows using off-the-shelf audio-based techniques (2D-CNN, CRNN, spectral features).
• Intuitive visualization (spectrogram plots).
• If a genuine temporal structure exists, it may expose patterns not visible to 1D analysis.

Disadvantages:

• Artificial “time” axis: if the input vector’s attributes lack a natural sequence, the “synthetic
signal” adds limited benefit.

• Higher computational cost: generating and STFT-transforming 100k+ samples (each 0.4s) is
expensive.

• In many cases, a simple 1D-CNN or MLP on raw features can yield comparable accuracy at
lower overhead.

3.8. 2D-CNN training stage

For Spec ∈ ℝ𝐻𝐻×𝑊𝑊, we build a 2D-CNN:

⎩
⎪
⎨

⎪
⎧

 Conv2D (16,3 × 3),
 MaxPooling2D (2 × 2),
 Conv2D (32,3 × 3)
 GlobalMaxPooling2D (),
 Dense (32, relu)
 Dense(1, sigmoid)

 (6)

This architecture convolves the 2D “image” (the spectrogram), detects local time–frequency
patterns, then performs final classification (“attack” vs. “normal”). After 5–10 epochs, accuracy
typically reaches ~75–80%, contingent on hyperparameters.

3.9. Discussion: when 2D-CNN is beneficial

1. If real temporal correlations exist (e.g., each attribute captures a chunk of traffic at different
time points), STFT may uncover frequency-based patterns.

2. If attributes do not reflect “adjacent frames,” 2D methods may not surpass 1D.
3. Nevertheless, sonification is useful for visualization, as system administrators can “play” (or

at least view) the spectrum to spot anomalies quickly.

As a result, future improvements might include:

• Using Mel-spectrograms rather than raw STFT,
• Enhancing certain “frequency” attributes,
• Combining 2D-CNN with recurrent blocks (CRNN) for extended time ranges.

Hence, we have described the process of converting the feature vector into a pseudo-audio
waveform, applying STFT for a 2D time–frequency representation, and constructing a 2D-CNN.
Mathematical foundations are provided for PCM signal generation, along with example code for two
sample records from NSL-KDD. While reasonably straightforward, the approach introduces
additional computational overhead and does not always significantly surpass traditional methods.
The following sections analyze its effectiveness and propose directions for refinement.

4. Experiments

4.1. Experimental setup

To evaluate the effectiveness of the “PCM+STFT+2D-CNN” approach, we used the NSL-KDD dataset
(KDDTrain+ and KDDTest+), a widely recognized benchmark for IDS. As discussed in previous
sections, each network record is first transformed into a feature vector
𝐱𝐱 ∈ ℝ𝐹𝐹 (with F=122 after One-Hot Encoding). Our experiment can be broken down into three stages:

Normalization: Using MinMaxScaler(feature_range=(-1,1)), attributes are mapped into [−1,1].
Thus each of the F=122 attributes of x resides in that same range.

Forming Pseudo-Audio Signals (PCM):

• We set sample_rate=2000 Hz (to reduce computational overhead) and record_dur=0.4 s,
producing 800samples_per_record=800.

• Each of the 122 attributes takes ⌊800/122⌋≈6\lfloor 800/122\rfloor \approx 6⌊800/122⌋≈6
samples (any remainder is filled with zeros). For the
𝑖𝑖-th attribute 𝑥𝑥𝑖𝑖, freq 𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), and each sample is generated as
sin �2𝜋𝜋 freq 𝑖𝑖𝑡𝑡� ⋅ 𝑥𝑥𝑖𝑖.

Computing Spectrograms (STFT):

• We apply scipy.signal.stft with nperseg=256 and noverlap=128 to each PCM signal (~800
samples). This produces a 2D matrix of size (freq_bins,time_frames)≈(129,8).

• A log scaling log (1 + |𝑍𝑍|)is applied for numerical stability and enhanced visibility of low-
amplitude components.

Figure 1 schematically shows: input vector x → PCM wave → STFT matrix. For each training
sample in NSL-KDD, we obtain 2D data of shape (129,8) aggregated into a four-dimensional tensor
(N,129,8,1), where N=125973 is the number of training examples.

4.2. 2D-CNN configuration and training procedure

For spectrogram classification, we construct a simple 2D-CNN (Code 2):

• Conv2D(16, 3×3) + MaxPooling2D(2×2),
• Conv2D(32, 3×3) + GlobalMaxPooling2D(),
• Dense(32, relu), then Dense(1, sigmoid) for binary classification.

We use Adam (learning_rate=0.0005), train for 5 epochs, batch_size=128, and validation_split=0.2
(20% of the training set).

4.3. Training results

From the result logs:
Train Accuracy ~96% over 5 epochs, Val Accuracy ~96.7%.
On the test set (N=22544), the model obtains Test Accuracy ≈ 76.54% (Test Loss ~0.65).

 Test Accuracy ≈ 0.7654, Test Loss ≈ 0.6538

Confusion Matrix:

�9349 362
4927 7906�,

where:

• Class 0 (normal): precision=0.65, recall=0.96,

• Class 1 (attack): precision=0.96, recall=0.62.

Hence, the network distinguishes “normal” quite effectively (low false negatives for class 0) but often
misclassifies “attack” as normal (62% recall for attacks). Overall accuracy is ~76–77%, aligning with
other studies on this dataset absent additional balancing or deeper tuning.

Figure 3: Test results.

4.4. Comparison with 1D-CNN

Comparing ~76.5% accuracy to a baseline 1D-CNN on raw features often yields similar or slightly
better accuracy (78–80%). Thus, converting to 2D spectrograms does not guarantee an accuracy
boost. Still, “sonification” offers:

• More convenient spectrogram-based visualization,
• Opportunities to utilize audio-based methods (CRNN).

On the other hand, the computational cost over large datasets increase, and improvements in
attack detection remain modest without specialized optimizations (e.g., oversampling or attribute
weighting).

4.5. Discussion

• Performance: Generating PCM+STFT for 125k samples is computationally expensive, which
may pose practical limitations.

• Class Imbalance: NSL-KDD typically has varying proportions of normal vs. attack, and 62%
recall for attacks indicates a need for oversampling (SMOTE, GAN).

• Potential Enhancements: Using Mel-spectrograms, deeper 2D-CNN, or conditional CRNN
might raise metrics but require additional investigation.

5. Conclusions

This study explored a “sonification” approach to network traffic for building an Intrusion Detection
System (IDS). We proposed a method wherein the input feature vector is transformed into a PCM
signal, then processed by the Short-Time Fourier Transform (STFT) and subsequently classified via
a 2D-CNN. Experiments on the NSL-KDD dataset demonstrated that the model achieves ~76.5% test
accuracy—comparable to classic 1D-CNN on vector features.

Main findings:

• Sonification allows leveraging advanced audio-analytics techniques (2D-CNN, CRNN, Mel-
spectrograms) for IDS and provides an intuitive means of visualizing spectrograms.

• In the absence of actual temporal structure in the data, the advantage over a conventional 1D
approach may be limited, typically around ~75–80% accuracy.

• Computational overhead rises due to generating PCM and STFT for large sample sets,
potentially becoming a bottleneck.

• Future refinements may involve oversampling (SMOTE/GAN) to address class imbalance,
deeper architecture tuning (2D-CNN or recurrent modules), or amplifying certain “key”
attributes in the audio domain.

Consequently, “PCM + STFT + 2D-CNN” is an intriguing experimental direction for attack
detection, unifying audio-processing techniques with cybersecurity tasks. Further research might
focus on speed optimization and improving recall for rare attack types, for instance through
conditional GAN or automated weighting (“enhancement”) of attributes.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.

References

[1] H. Liu, B. Lang, Machine learning and deep learning methods for intrusion detection systems,
Applied Sciences 9 (2022) 4396. doi:10.3390/app9204396.

[2] I. Mbona, J.H.P. Eloff, Detecting zero-day intrusion attacks using semi-supervised machine
learning approaches, IEEE Access 10 (2022) 3187116. doi:10.1109/ACCESS.2022.3187116.

[3] A.L. Buczak, E. Guven, A survey of data mining and machine learning methods for cyber
security intrusion detection, IEEE Communications Surveys & Tutorials 18 (2016) 1153–1176.
doi:10.1109/COMST.2015.2494502.

[4] P. Mishra, V. Varadharajan, U. Tupakula, E.S. Pilli, A detailed investigation and analysis of using
machine learning techniques for intrusion detection, IEEE Communications Surveys & Tutorials
21 (2019) 686–728. doi:10.1109/COMST.2018.2847722.

[5] A. Aldweesh, A. Derhab, A.Z. Emam, Deep learning approaches for anomaly-based intrusion
detection systems, Knowledge-Based Systems 189 (2020) 105124.
doi:10.1016/j.knosys.2019.105124.

[6] E. Min, J. Long, Q. Liu, J. Cui, W. Chen, TR-IDS: Anomaly-based intrusion detection through
text-convolutional neural network and random forest, Security and Communication Networks
2018 (2018) 4943509. doi:10.1155/2018/4943509.

[7] Y. Zeng, H. Gu, W. Wei, Y. Guo, Deep-Full-Range: A deep learning-based network encrypted
traffic classification and intrusion detection framework, IEEE Access 7 (2019) 2908225.
doi:10.1109/ACCESS.2019.2908225.

[8] Y. Yu, J. Long, Z. Cai, Network intrusion detection through stacking dilated convolutional
autoencoders, Security and Communication Networks 2017 (2017) 4184196.
doi:10.1155/2017/4184196.

[9] K. Peng, V.C. Leung, Q. Huang, Clustering approach based on mini batch k-means for intrusion
detection system over big data, IEEE Access 6 (2018) 2810267.
doi:10.1109/ACCESS.2018.2810267.

[10] S. Teng, N. Wu, H. Zhu, L. Teng, W. Zhang, SVM-DT-based adaptive and collaborative intrusion
detection, IEEE/CAA Journal of Automatica Sinica 4 (2017) 7510730.
doi:10.1109/JAS.2017.7510730.

[11] T. Ma, F. Wang, J. Cheng, Y. Yu, X. Chen, A hybrid spectral clustering and deep neural network
ensemble algorithm for intrusion detection in sensor networks, Sensors 16 (2016) 1701.
doi:10.3390/s16101701.

[12] O.U. Olouhal, T.S. Yange, G.E. Okerekel, F.S. Bakpol, Cutting edge trends in deception-based
intrusion detection systems, Journal of Information Security 12 (2021) 124014.
doi:10.4236/jis.2021.124014.

[13] B. Radford, L. Apolonio, A. Trias, J. Simpson, Network traffic anomaly detection using recurrent
neural networks, 2018. doi:10.48550/arXiv.1803.10769.

[14] Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M. HAST-IDS: Learning
hierarchical spatial-temporal features using deep neural networks to improve intrusion
detection. IEEE Access 2017, 6, 1792–1806. URL: https://doi.org/10.1109/ACCESS.2017.2780250.

[15] Meng, W., Li, W., Kwok, L.F. Design of intelligent KNN-based alarm filter using knowledge-
based alert verification in intrusion detection, Proceedings of 20th International Symposium on
Methodologies for Intelligent Systems (ISMIS 2012), 2012, pp. 115–124.

[16] S. McElwee, J. Heaton, J. Fraley and J. Cannady, Deep learning for prioritizing and responding
to intrusion detection alerts, MILCOM 2017 - 2017 IEEE Military Communications Conference
(MILCOM), Baltimore, MD, USA, 2017, pp. 1-5, doi: 10.1109/MILCOM.2017.8170757.

[17] N.N. Tran, R. Sarker, J. Hu, An approach for host-based intrusion detection system design using
convolutional neural network, Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering 235 (2018) 107–122. doi:10.1007/978-3-319-
90775-8_10.

[18] A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, S. Robinson, Deep learning for unsupervised
insider threat detection in structured cybersecurity data streams, 2017.
doi:10.48550/arXiv.1710.00811.

[19] S. O. Uwagbole, W. J. Buchanan and L. Fan, Applied Machine Learning predictive analytics to
SQL Injection Attack detection and prevention, 2017 IFIP/IEEE Symposium on Integrated
Network and Service Management (IM), Lisbon, Portugal, 2017, pp. 1087-1090, doi:
10.23919/INM.2017.7987433.

[20] A.M. Vartouni, S.S. Kashi, M. Teshnehlab, An anomaly detection method to detect web attacks
using Stacked Auto-Encoder, Proceedings of the 2018 6th Iranian Joint Congress on Fuzzy and
Intelligent Systems (CFIS), Kerman, Iran, 2018, pp. 131–134.

[21] S. Lysenko, O. Savenko, K. Bobrovnikova, DDoS botnet detection technique based on the use of
the semi-supervised fuzzy c-means clustering, in: CEUR Workshop Proceedings, 2104 (2018)
688–695.

[22] S. Lysenko, O. Savenko, K. Bobrovnikova, A. Kryshchuk, B. Savenko, Information technology
for botnets detection based on their behaviour in the corporate area network, Communications
in Computer and Information Science 718 (2017) 166–181. doi:10.1007/978-3-319-67162-8_13.

[23] S O. Savenko, S. Lysenko, A. Kryshchuk, Y. Klots. Botnet detection technique for corporate area
network / / Proceedings of the 7-th IEEE International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications, Berlin
(Germany), September 12–14, 2013. Berlin, pp. 363–368. ISBN 978-1-4799-1426-5.

[24] O. Pomorova, O. Savenko, S. Lysenko, A. Kryshchuk, Multi-Agent Based Approach for Botnet
Detection in a Corporate Area Network Using Fuzzy Logic, in: Communications in Computer
and Information Science 370 (2013) 243-254.

[25] O. Kyrychenko, Information technology for statistical cluster analysis of information in complex
networks, Computer Systems and Information Technologies 4 (2022) 47–51. doi:10.31891/csit-
2022-4-7.

[26] N. Doukas, P. Stavroulakis, N. Bardis, Review of artificial intelligence cyber threat assessment
techniques for increased system survivability, in: Proceedings of the 2021 International
Conference on Cybersecurity and Resilience, Springer, 2021, pp. 207–222. doi:10.1007/978-3-030-
62582-5_7.

[27] I. Obeidat, M. AlZubi, Developing a faster pattern matching algorithm for intrusion detection
system, International Journal of Computing 18 (2019) 278–284. doi:10.47839/ijc.18.3.1520.

https://doi.org/10.1109/ACCESS.2017.2780250

	1. Introduction
	2. Analysis of known solutions and research on machine-learning-based IDS
	2.1. Packet-based attack detection
	2.1.1. Parsing-based packet detection
	2.1.2. Payload-based detection

	2.2. Flow-based attack detection
	2.2.1. Feature-engineering-based detection
	2.2.2. Deep-learning-based detection
	2.2.3. Traffic grouping for detection

	2.3. Session-based attack detection
	2.3.1. Statistical feature-based detection
	2.3.2. Sequential feature-based detection

	2.4. Log-based attack detection
	2.4.1. Hybrid rule-based + machine learning methods
	2.4.2. Feature extraction from logs
	2.4.3. Text-based log detection

	3. The main part
	3.1. Problem of attack detection in networks
	3.2. Sonification of network traffic
	3.3. Comparing 1D-CNN and “PCM + STFT” (2D-CNN)
	3.4. Mathematical basis of PCM transformation
	3.5. Short-time Fourier transform (STFT)
	3.6. Implementation example
	3.7. Advantages and disadvantages
	3.8. 2D-CNN training stage
	3.9. Discussion: when 2D-CNN is beneficial

	4. Experiments
	4.1. Experimental setup
	4.2. 2D-CNN configuration and training procedure
	4.3. Training results
	4.4. Comparison with 1D-CNN
	4.5. Discussion

	5. Conclusions
	Declaration on Generative AI
	References

