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Abstract 
Proposed is a model for detecting computer attacks based on the sonification of network traffic. This work 
examines a “sonification” approach for network traffic to detect attacks (Intrusion Detection System – IDS). 
The proposed model converts feature vectors into a pseudo-audio signal (PCM), which is then processed 
via the Short-Time Fourier Transform (STFT) to obtain a two-dimensional (time × frequency) 
representation. Based on the resulting spectrograms, a 2D-CNN is built to perform binary classification into 
“normal vs. attack.” It is shown that sonification enables the use of advanced audio-analytical methods and 
yields results comparable to traditional 1D-based approaches. The paper also discusses the automated 
“enhancement” of individual attributes in the audio domain to improve detection metrics. Experimental 
studies confirm that combining PCM+STFT with a two-dimensional convolutional neural network (2D-
CNN) can detect attack signatures with accuracy levels close to those of traditional IDS solutions, while 
also offering new possibilities for visualizing and analyzing network traffic. The presented results illustrate 
the feasibility of further research on sonification in information security applications. 
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1. Introduction 

In today’s environment of increasingly heavy network traffic and the constant emergence of new 
threats, the timely detection of attacks (Intrusion Detection System, IDS [1]) becomes especially 
relevant. Traditional security measures such as antivirus software, firewalls, and classic IDS [21, 22, 
23, 24, 25] remain important elements of cybersecurity, yet they often suffer from a significant 
number of false alarms and an insufficient capability to detect unknown or modified attacks. This 
creates a need for more flexible and accurate methods capable of promptly identifying a wide range 
of threats. 

The development of machine learning methods and deep neural networks [2,3,4,5] has opened 
new opportunities for building IDS capable of automatically extracting relevant features from large 
volumes of network traffic. Such deep-learning-based solutions substantially reduce dependence on 
expert security knowledge and demonstrate high detection accuracy even under conditions of rapid 
emergence of new attack types. However, despite successes in this field, challenges remain regarding 
the representation of input data, model regularization, and the processing of extensive information 
in real time. 
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One promising direction for improving IDS is the “sonification” of network traffic, in which the 
original feature vectors are converted into a quasi-audio signal (PCM), subsequently analyzed by 
standard audio technologies such as the Short-Time Fourier Transform (STFT). This “audio-domain” 
representation enables the use of well-established approaches from speech and audio recognition—
particularly 2D-convolutional networks (2D-CNN)—which effectively operate on two-dimensional 
spectrograms (time × frequency). The subsequent sections examine how exactly “sonification” of 
network traffic offers additional opportunities for data visualization and analysis, as well as how it 
impacts the final accuracy of attack detection. 

Hence, the goal of this study is to justify and experimentally investigate the “PCM + STFT + 2D-
CNN” approach for IDS. We compare the results with conventional methods that directly operate on 
feature vectors (1D-CNN or MLP), analyze the strengths and weaknesses of the “audio-based” 
representation, and discuss prospects for its improvement (in particular, enhancement of certain 
“frequency” attributes and the automation of weighting coefficients). 

Thus, this work simultaneously continues the tradition of applying deep learning to attack 
detection and proposes an original approach at the intersection of audio analytics and IDS 
technologies. 

2. Analysis of known solutions and research on machine-learning-
based IDS 

By its nature, machine learning is a data-driven approach that underscores the importance of in-
depth understanding of the underlying data as a first step [26, 27]. In this context, the data source 
type becomes the central link for classification. This section explores various strategies for 
integrating machine learning into the development of intrusion detection systems (IDS) for different 
data types. Since the characteristics of these data types reflect specific attack patterns—ranging from 
host-based activity recorded in system logs to network-level activity captured in traffic—the choice 
of the right data source is critically important. For instance, a Denial of Service (DOS) attack, 
characterized by a massive number of packets sent within a short time, is best detected using flow-
based data, while covert channels relating to data leakage between specific IP addresses require 
session-level analysis. 

2.1. Packet-based attack detection 

Packets, as the fundamental units of network communication, provide detailed information about 
each interaction. They consist of binary data requiring parsing to be understandable. Typically, a 
packet includes a header and application-level payload. The header holds structured fields like IP 
addresses, port numbers, and protocol-specific details, while the payload contains the actual data of 
application-level protocols. Employing packets as a data source for IDS offers three main advantages: 

• The payload may reveal U2R (User-to-Root) or R2L (Remote-to-Local) attacks. 
• IP addresses and timestamps allow precise identification of the attack’s origin. 
• Packets can be processed in real time without the need for caching. 

However, since a single packet does not reflect the complete context or state of the 
communication session, certain attacks (e.g., DDoS) may not be as effectively detected. Packet-based 
detection methods typically break down into packet-parsing and payload-based analysis approaches. 

2.1.1. Parsing-based packet detection 

In parsing-based detection, diverse network protocols (e.g., HTTP, DNS) are examined with a focus 
on their header fields. A common practice is using tools like Wireshark or Bro to extract these fields, 
after which the most relevant header values are transformed into feature vectors for classification. 
For example, Mayhew et al. proposed an SVM-based method combined with K-means clustering for 



packet detection. Their approach involved capturing packets in a corporate network, parsing them 
via Bro, then grouping packets by protocol type. They subsequently used K-means++ to cluster 
similar packets, and the extracted features were used to train SVM models, achieving 99.6% accuracy 
for HTTP, 92.9% for TCP, 99% for Wiki, 96% for Twitter, and 93% for email. Additionally, 
unsupervised learning is often employed to reduce false alarms. For instance, Hu et al. applied fuzzy 
C-means clustering to Snort-processed packets from the DARPA 2000 dataset. Repeated clustering 
reduced false positives by 16.58% and missed detections by 19.23%. 

2.1.2. Payload-based detection 

Alternatively, payload-based detection methods focus on application-layer data contained in packets 
rather than their headers. This approach is less protocol-specific and effective for diverse protocols, 
provided that the payload is not encrypted. Whereas shallow models require manual feature 
engineering (which can be labor-intensive and pose privacy concerns), deep learning methods are 
capable of automatically learning features from raw payload data. For example, Min et al. [6] 
implemented a text-based CNN for attack detection on the ISCX 2012 dataset, merging payloads from 
different packets, encoding them using a skip-gram word-embedding model, then combining 
statistical header features with CNN-extracted content features, and classifying with random forest 
at 99.13% accuracy. Furthermore, combining multiple deep models can enhance feature extraction. 
Zeng et al. [7] employed CNN, LSTM, and stacked autoencoders simultaneously to extract local, 
sequential, and textual features, achieving 99.22% overall accuracy. Unsupervised approaches, such 
as convolutional autoencoders, have also proven effective, with Yu et al. [8] reporting ~98.4% in terms 
of accuracy, recall, and F-measure on the CTU-UNB dataset. 

2.2. Flow-based attack detection 

Flow-based data, aggregating packets over a given time interval, constitutes one of the most common 
data sources for IDS. Flow data offers two main advantages: first, a broad view of the network 
environment—especially useful for detecting DOS and Probe attacks—and second, simpler 
preprocessing steps compared to packet-level or session-level reconstruction. However, flow data 
generally lacks packet-level details, limiting its ability to detect U2R and R2L attacks, and the need 
to buffer packets to generate flow data may introduce delays. Flow-based detection methods typically 
fall under feature-engineering-based or deep-learning-based approaches; due to heterogeneity in 
flow data, traffic is often partitioned into more homogeneous subsets to improve detection accuracy. 

2.2.1. Feature-engineering-based detection 

Traditional machine learning algorithms cannot directly handle raw flow data, hence a pivotal 
preprocessing step is to convert flow data into interpretable feature vectors. Among common 
features are average packet length, variance in packet length, TCP/UDP ratio, and the proportion of 
specific TCP flags. Although such methods can achieve high detection accuracy, they often come 
with a significant rate of false positives. Some researchers therefore combine multiple weak 
classifiers. For instance, Goeschel et al. introduced a hybrid solution combining SVM, decision trees, 
and Naïve Bayes. Their approach first segregated data into normal vs. anomalous with an SVM, 
employed a decision tree to identify known attack types, and applied Naïve Bayes for unknown 
attacks, reaching 99.62% accuracy with a 1.57% false positive rate on KDD99. Other studies improved 
efficiency, e.g., Kuttranont et al. developed an optimized KNN with GPU-based parallel processing, 
achieving 99.30% on KDD99 with ~30× speedup over CPU-only computations. Unsupervised methods 
like improved K-means (enhanced initialization and mini-batch processing, as in Peng et al. [9]) also 
yield gains in both accuracy and computational efficiency. 



2.2.2. Deep-learning-based detection 

Deep learning method enable direct operation on raw flow data, automatically learning features 
“end-to-end,” reducing reliance on manual feature extraction. Potluri et al. proposed a CNN approach 
where feature vectors were converted into images by one-hot encoding nominal features (expanding 
the dimensionality from 41 to 464) and splitting them into 8-byte chunks forming 8×8 pixel images. 
Their three-layer CNN surpassed deeper architectures (ResNet50, GoogLeNet), scoring 91.14% on 
NSL-KDD and 94.9% on UNSW-NB15. A two-stage approach—first extracting features via an 
unsupervised model (e.g., a sparse autoencoder), then classifying with XGBoost—also proved 
effective (Zhang et al.) on NSL-KDD. To address small or imbalanced datasets, adaptive learning (e.g., 
GAN-based data augmentation) has been adopted, significantly improving detection performance 
across various attack classes. 

2.2.3. Traffic grouping for detection 

Because flow data may be highly heterogeneous, training ML models on these data can lead to 
overfitting. One effective strategy is grouping (clustering) traffic to reduce variability. Teng et al. 
[10] split KDD99 into TCP, UDP, and ICMP subsets, choosing distinct features for each protocol 
before training separate SVM models, yielding 89.02% average accuracy. Alternatively, grouping by 
data characteristics via clustering is also effective, e.g., Ma et al. [11] used spectral clustering to split 
the dataset into six homogeneous clusters, after which separate deep neural networks were trained 
per cluster, reaching ~92.1% accuracy on KDD99 and NSL-KDD. 

2.3. Session-based attack detection 

Sessions, reflecting communication between two endpoints, offer high-level semantics and are 
generally defined by a five-tuple (client IP, client port, server IP, server port, protocol). Session-based 
detection has two main advantages: first, it is well-suited to identifying attacks targeting specific IP 
pairs (e.g., covert or Trojan attacks); second, the detailed communication within a session aids in 
pinpointing the attack’s origin. However, because session duration can vary widely, analysis often 
requires caching large numbers of packets, potentially introducing latency. Session-based detection 
methods often focus on statistical vs. sequential features. 

2.3.1. Statistical feature-based detection 

Statistical session-based detection extracts features such as header fields, packet counts, or traffic 
direction ratios to form a feature vector suitable for classic classifiers. While high-level session 
semantics lend themselves well to rule-based or decision-tree methods, they may overlook the 
sequential nature of network sessions. Supervised methods that rely on statistical features can be 
fairly accurate but commonly suffer from higher computational costs. For instance, Ahmim et al. 
presented a hierarchical decision tree approach that uses independent sub-classifiers (decision tree, 
rule-based model) on partial feature sets, then a random forest to analyze the combined set of 
features, demonstrating competitive results for 8 out of 15 classes on the CICIDS 2017 dataset. 

2.3.2. Sequential feature-based detection 

Unlike flow data, sessions inherently maintain the packet order, facilitating the extraction of 
sequential features like packet length sequences and inter-arrival times. However, most conventional 
ML algorithms lack built-in mechanisms for sequential data, so RNN-based solutions are less 
frequent but can be effective. For example, Yuan et al. utilized LSTM for DDoS detection on the UNB 
ISCX 2012 dataset, embedding 20-dimensional packet features via a “bag-of-words” approach, then 
assembling them into variable-sized matrices. A CNN extracted local patterns, while LSTM handled 
the temporal dimension, achieving ~97.6% in accuracy, precision, recall, and F-measure. Similar 
CRNN structures have also emerged, employing hierarchical layers (CNN + RNN) to handle both 
spatial (packet-level) and temporal features. 



2.4. Log-based attack detection 

Logs—generated by operating systems or applications—provide semantically rich data vital for 
detecting attacks like SQL injection, U2R, or R2L. Although logs supply valuable context (user 
actions, timestamps) and aid in tracing attackers, their analysis can be highly dependent on 
specialized knowledge, and differences in log format hamper scalability. Log-based detection 
methods generally split into hybrid rule-based/ML, feature-extraction-based, and text-analysis-based 
approaches. 

2.4.1. Hybrid rule-based + machine learning methods 

Hybrid detection leverages the strengths of rule-based systems (e.g., Snort) which often produce 
large numbers of alerts, most of them benign, and feeds those alerts into ML models for filtering. 
Meng et al. [15], for instance, applied a KNN approach to prioritize alerts in a real network, cutting 
their volume by 89%. Similarly, McElwee et al. [16] developed a deep neural network to filter McAfee-
generated alerts; the most critical alerts were then examined by security experts, thus reducing 
analyst workload while boosting accuracy. 

2.4.2. Feature extraction from logs 

This approach involves using domain knowledge to extract relevant features from logs for standard 
ML classifiers. A common technique is sliding-window analysis to capture contextual event 
sequences with low detection latency. For example, Tran et al. [17] employed CNN on system-call 
logs in NGIDS-DS and ADFA-LD datasets, applying a sliding window to detect local patterns 
indicative of intrusions. Tuor et al. [18] combined a DNN with RNN to classify logs from the CERT 
Insider Threat dataset, cutting analysis load by 93.5% at a detection rate of ~90%, with an added bonus 
of interpretability at the component (behavioral) level. 

2.4.3. Text-based log detection 

Text-based methods treat logs as unstructured text, drawing on established NLP techniques like n-
grams to derive semantic features. For instance, Uwagbole et al. [19] tackled SQL injection for IoT 
by building a dictionary of high-frequency words from logs (including SQL syntax), then applying 
n-gram analysis plus Chi-square-based feature selection; final classification by SVM reached 98.6% 
accuracy, 97.4% precision, 99.7% recall, and 98.5% F-measure. In scenarios where normal activity 
vastly outnumbers anomalies, one-class classification (e.g., isolation forest) is effective. Vartouni et 
al. [20] used an isolation forest on HTTP logs from CSIC 2010—after n-gram feature extraction and 
dimensionality reduction via autoencoder—attaining 88.32% accuracy in detecting anomalous web 
activity. 

3. The main part 

3.1. Problem of attack detection in networks 

Modern computer networks comprise huge amounts of diverse traffic, making analysis highly 
challenging. Traditional methods—heuristics, signature-based rules, or static filters—decline in 
effectiveness under dynamic conditions. Identifying sophisticated or unknown threats is crucial for 
ISPs, corporate segments, and industrial networks. In building IDS, researchers confront not only 
accuracy issues but also a substantial rate of false positives, which can “clutter” the security 
system. In the classic IDS model, we receive a feature vector 𝑥𝑥 ∈ ℝ𝐹𝐹 (where F is the number of 
traffic attributes, e.g., src_bytes, dst_bytes, count). The task is to classify each vector as “normal” or 
“attack.”  



3.2. Sonification of network traffic 

An alternative approach involves the “sonification” of network traffic—converting the feature vector 
into a pseudo-audio signal (PCM). The rationale lies in leveraging the wealth of audio-recognition 
developments (speech, music, etc.), which might be beneficial for network analysis. 

The basic scheme: 

1. Normalize and prepare 𝑥𝑥 ∈ [−1,1]𝐹𝐹. 
2. Form a PCM signal of NNN samples (e.g., 0.4 s at 8000 Hz → 3200 samples). Each attribute 

𝑥𝑥𝑖𝑖 corresponds to a time block Δ𝑡𝑡, producing a sinusoidal fragment with freq𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖 ⋅
(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), and amplitude amp𝑖𝑖 = 𝑥𝑥𝑖𝑖( або |𝑥𝑥𝑖𝑖|).  

3. The resulting PCM is processed by audio-signal methods, especially STFT, to produce a 2D 
“time × frequency” representation. 

3.3. Comparing 1D-CNN and “PCM + STFT” (2D-CNN) 

In a classic deep-learning scenario for feature vectors, a 1D-CNN is used. Given 𝑥𝑥 ∈ ℝ𝐹𝐹: 

• x is interpreted as a 1D sequence of length F. 
• Each step applies convolution with 𝑘𝑘 × 1 filters. 
• After several convolutions/poolings, we move to either a fully connected layer or global 

pooling, then produce the final classification (sigmoid/softmax). 

For a 2D-CNN, a 2D tensor ℝ𝐻𝐻×𝑊𝑊is needed. If we apply sonification, we get a pseudo-audio wave, 
then STFT yields Spec(𝑓𝑓, 𝑡𝑡), where f and t correspond to frequency and time windows. Hence, Spec 
is treated as an image (H,W), and 2D-CNN effectively detects local “patches” in this 2D domain, akin 
to image processing. 

3.4. Mathematical basis of PCM transformation 

Let 𝑥𝑥 ∈ [−1,1]𝐹𝐹. Denote N =  sample rate ×  duration  sec. For each attribute 𝑖𝑖 ,  

Δ𝑛𝑛𝑖𝑖 = �
𝑁𝑁
𝐹𝐹�

. 
(1) 

 

If ∑  𝑖𝑖 Δ𝑛𝑛𝑖𝑖 < 𝑁𝑁, the remainder 𝑅𝑅 = 𝑁𝑁 − ∑  𝑖𝑖 Δ𝑛𝑛𝑖𝑖 may be filled with zeros. Δ𝑛𝑛𝑖𝑖, for 𝑘𝑘 = 0. . (Δ𝑛𝑛𝑖𝑖 − 1): 

wave [ start + 𝑘𝑘] = amp𝑖𝑖 ⋅ sin �2𝜋𝜋 freq 𝑖𝑖𝑡𝑡local �, (2) 

with 

freq𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), amp𝑖𝑖 = 𝑥𝑥𝑖𝑖. (3) 

It is basic formulas. 

3.5. Short-time Fourier transform (STFT) 

Given the PCM signal wave [𝑛𝑛],𝑛𝑛 = 0, … ,𝑁𝑁 − 1} over duration_sec, we split it via a window of 
size 𝐿𝐿 (e.g., 256 samples) with overlap Δ. For the 𝑚𝑚-th window: 

𝑤𝑤�𝑚𝑚[𝑘𝑘] =  window [𝑘𝑘] ⋅  wave [𝑚𝑚(𝐿𝐿 − Δ) + 𝑘𝑘],𝑘𝑘 = 0. . 𝐿𝐿 − 1. (4) 

We compute DFT 



𝑍𝑍𝑥𝑥𝑥𝑥𝑚𝑚(𝜔𝜔) = � 
𝐿𝐿−1

𝑘𝑘=0

𝑤𝑤�𝑚𝑚[𝑘𝑘]𝑒𝑒−
𝑗𝑗2𝜋𝜋𝜋𝜋𝑘𝑘

𝐿𝐿  
(5) 

Taking |𝑍𝑍𝑥𝑥𝑥𝑥𝑚𝑚(𝜔𝜔)| for magnitude, we then apply log(1 + |𝑍𝑍|) for numerical stability and better 
visualization. The final STFT matrix Spec ∈ ℝ(freq_bins × time_frames) serves as the 2D-CNN input. 

3.6. Implementation example 

To illustrate, we developed a code snippet generating waves for two mock samples A and B (Fig. 1). 
Each has 41 attributes in [−1..1]. After forming a PCM signal (~3200 samples, 0.4 s, 8 kHz), STFT with 
nperseg=256 and noverlap=128 yields ~129×25 matrices. Fig. 2 shows color maps for Spec(A) and 
Spec(B). 

 
Figure 1: Performance graph for recording A and B after PCM conversion. 

 
Figure 2: STFT spectrograms of two different recordings. 



3.7. Advantages and disadvantages 

Advantages: 

• Allows using off-the-shelf audio-based techniques (2D-CNN, CRNN, spectral features). 
• Intuitive visualization (spectrogram plots). 
• If a genuine temporal structure exists, it may expose patterns not visible to 1D analysis. 

Disadvantages: 

• Artificial “time” axis: if the input vector’s attributes lack a natural sequence, the “synthetic 
signal” adds limited benefit. 

• Higher computational cost: generating and STFT-transforming 100k+ samples (each 0.4s) is 
expensive. 

• In many cases, a simple 1D-CNN or MLP on raw features can yield comparable accuracy at 
lower overhead. 

3.8. 2D-CNN training stage 

For Spec ∈ ℝ𝐻𝐻×𝑊𝑊, we build a 2D-CNN: 

⎩
⎪
⎨

⎪
⎧

 Conv2D (16,3 × 3),
 MaxPooling2D (2 × 2),
 Conv2D (32,3 × 3)
 GlobalMaxPooling2D (),
 Dense (32, relu )
 Dense(1, sigmoid )

 (6) 

This architecture convolves the 2D “image” (the spectrogram), detects local time–frequency 
patterns, then performs final classification (“attack” vs. “normal”). After 5–10 epochs, accuracy 
typically reaches ~75–80%, contingent on hyperparameters. 

3.9. Discussion: when 2D-CNN is beneficial 

1. If real temporal correlations exist (e.g., each attribute captures a chunk of traffic at different 
time points), STFT may uncover frequency-based patterns. 

2. If attributes do not reflect “adjacent frames,” 2D methods may not surpass 1D. 
3. Nevertheless, sonification is useful for visualization, as system administrators can “play” (or 

at least view) the spectrum to spot anomalies quickly. 

As a result, future improvements might include: 

• Using Mel-spectrograms rather than raw STFT, 
• Enhancing certain “frequency” attributes, 
• Combining 2D-CNN with recurrent blocks (CRNN) for extended time ranges. 

Hence, we have described the process of converting the feature vector into a pseudo-audio 
waveform, applying STFT for a 2D time–frequency representation, and constructing a 2D-CNN. 
Mathematical foundations are provided for PCM signal generation, along with example code for two 
sample records from NSL-KDD. While reasonably straightforward, the approach introduces 
additional computational overhead and does not always significantly surpass traditional methods. 
The following sections analyze its effectiveness and propose directions for refinement. 



4. Experiments 

4.1. Experimental setup 

To evaluate the effectiveness of the “PCM+STFT+2D-CNN” approach, we used the NSL-KDD dataset 
(KDDTrain+ and KDDTest+), a widely recognized benchmark for IDS. As discussed in previous 
sections, each network record is first transformed into a feature vector  
𝐱𝐱 ∈ ℝ𝐹𝐹 (with F=122 after One-Hot Encoding). Our experiment can be broken down into three stages: 

Normalization: Using MinMaxScaler(feature_range=(-1,1)), attributes are mapped into [−1,1]. 
Thus each of the F=122 attributes of x resides in that same range. 

Forming Pseudo-Audio Signals (PCM): 

• We set sample_rate=2000 Hz (to reduce computational overhead) and record_dur=0.4 s, 
producing 800samples_per_record=800. 

• Each of the 122 attributes takes ⌊800/122⌋≈6\lfloor 800/122\rfloor \approx 6⌊800/122⌋≈6 
samples (any remainder is filled with zeros). For the  
𝑖𝑖-th attribute 𝑥𝑥𝑖𝑖,  freq 𝑖𝑖 = 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚 + 𝑥𝑥𝑖𝑖(𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚), and each sample is generated as  
sin �2𝜋𝜋 freq 𝑖𝑖𝑡𝑡� ⋅ 𝑥𝑥𝑖𝑖. 

Computing Spectrograms (STFT): 

• We apply scipy.signal.stft with nperseg=256 and noverlap=128 to each PCM signal (~800 
samples). This produces a 2D matrix of size (freq_bins,time_frames)≈(129,8). 

• A log scaling log (1 + |𝑍𝑍|)is applied for numerical stability and enhanced visibility of low-
amplitude components. 

Figure 1 schematically shows: input vector x → PCM wave → STFT matrix. For each training 
sample in NSL-KDD, we obtain 2D data of shape (129,8) aggregated into a four-dimensional tensor 
(N,129,8,1), where N=125973 is the number of training examples. 

4.2. 2D-CNN configuration and training procedure 

For spectrogram classification, we construct a simple 2D-CNN (Code 2): 

• Conv2D(16, 3×3) + MaxPooling2D(2×2), 
• Conv2D(32, 3×3) + GlobalMaxPooling2D(), 
• Dense(32, relu), then Dense(1, sigmoid) for binary classification. 

We use Adam (learning_rate=0.0005), train for 5 epochs, batch_size=128, and validation_split=0.2 
(20% of the training set). 

4.3. Training results 

From the result logs: 
Train Accuracy ~96% over 5 epochs, Val Accuracy ~96.7%. 
On the test set (N=22544), the model obtains Test Accuracy ≈ 76.54% (Test Loss ~0.65).  

 
 Test Accuracy ≈ 0.7654, Test Loss ≈ 0.6538 

Confusion Matrix: 

�9349 362
4927 7906�, 

where: 

• Class 0 (normal): precision=0.65, recall=0.96, 



• Class 1 (attack): precision=0.96, recall=0.62. 

Hence, the network distinguishes “normal” quite effectively (low false negatives for class 0) but often 
misclassifies “attack” as normal (62% recall for attacks). Overall accuracy is ~76–77%, aligning with 
other studies on this dataset absent additional balancing or deeper tuning.  

 
Figure 3: Test results. 

4.4. Comparison with 1D-CNN 

Comparing ~76.5% accuracy to a baseline 1D-CNN on raw features often yields similar or slightly 
better accuracy (78–80%). Thus, converting to 2D spectrograms does not guarantee an accuracy 
boost. Still, “sonification” offers: 

• More convenient spectrogram-based visualization, 
• Opportunities to utilize audio-based methods (CRNN). 

On the other hand, the computational cost over large datasets increase, and improvements in 
attack detection remain modest without specialized optimizations (e.g., oversampling or attribute 
weighting). 

4.5. Discussion 

• Performance: Generating PCM+STFT for 125k samples is computationally expensive, which 
may pose practical limitations. 

• Class Imbalance: NSL-KDD typically has varying proportions of normal vs. attack, and 62% 
recall for attacks indicates a need for oversampling (SMOTE, GAN). 

• Potential Enhancements: Using Mel-spectrograms, deeper 2D-CNN, or conditional CRNN 
might raise metrics but require additional investigation. 

5. Conclusions 

This study explored a “sonification” approach to network traffic for building an Intrusion Detection 
System (IDS). We proposed a method wherein the input feature vector is transformed into a PCM 
signal, then processed by the Short-Time Fourier Transform (STFT) and subsequently classified via 
a 2D-CNN. Experiments on the NSL-KDD dataset demonstrated that the model achieves ~76.5% test 
accuracy—comparable to classic 1D-CNN on vector features. 

Main findings: 



• Sonification allows leveraging advanced audio-analytics techniques (2D-CNN, CRNN, Mel-
spectrograms) for IDS and provides an intuitive means of visualizing spectrograms. 

• In the absence of actual temporal structure in the data, the advantage over a conventional 1D 
approach may be limited, typically around ~75–80% accuracy. 

• Computational overhead rises due to generating PCM and STFT for large sample sets, 
potentially becoming a bottleneck. 

• Future refinements may involve oversampling (SMOTE/GAN) to address class imbalance, 
deeper architecture tuning (2D-CNN or recurrent modules), or amplifying certain “key” 
attributes in the audio domain. 

Consequently, “PCM + STFT + 2D-CNN” is an intriguing experimental direction for attack 
detection, unifying audio-processing techniques with cybersecurity tasks. Further research might 
focus on speed optimization and improving recall for rare attack types, for instance through 
conditional GAN or automated weighting (“enhancement”) of attributes. 

Declaration on Generative AI 

The author(s) have not employed any Generative AI tools. 
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