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Abstract 
Wind turbines often operate in remote and harsh environments, making it difficult to detect, analyze, and 
manage defects such as cracks, corrosion, and overheating. This study addresses that challenge by 
proposing a novel approach that combines multi-sensor unmanned aerial vehicle (UAV) inspections with 
deep learning–based defect recognition and a fuzzy logic approach to assess criticality. The main problem 
lies in translating raw UAV-collected data into reliable and quantifiable metrics for defect severity, a gap 
that has inhibited timely interventions and thorough maintenance strategies. This study aims to improve 
the speed and accuracy of detecting and ranking anomalies in wind turbine blades, towers, and motor 
assemblies. Experiments show that our proposed multisensor pipeline, which merges thermal and visual 
data via an ensemble of convolutional neural networks (CNNs), raises detection accuracy by up to 13.5% 
compared to single-sensor or single-model approaches. Furthermore, the resulting fuzzy-based numerical 
scores align closely, within 0.15 deviation, with expert judgments of defect urgency. Our conclusions 
highlight the value of cross-channel data fusion and robust logic-driven rankings for wind energy 
applications. This approach contributes to reduced operational downtime, improved turbine longevity, and 
enhanced safety by minimizing overlooked damage and emphasizing prompt and effective maintenance. In 
summary, the study illustrates how automated UAV data acquisition, ensemble CNN detection, and a 
systematic fuzzy logic scoring mechanism can work to fill the existing gap in defect criticality assessment 
on wind power plants. 
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1. Introduction 

Wind power plants form a key segment of modern renewable energy. Their efficiency and reliability, 
however, directly depend on the structural integrity of components such as blades, towers, and motor 
assemblies. These parts endure continuous mechanical loads, varying weather conditions, and 
corrosion-inducing environments [1]. Minor cracks, localized corrosion, or small overheating events 
can quickly escalate into critical threats if not identified and resolved early [2]. Although rapid 
progress has been made in unmanned aerial vehicle (UAV) technology for inspection [3], many 
existing techniques focus purely on detection without providing a systemic approach to assessing 
how critical each identified defect is [4]. 

Assessing defect criticality via UAVs is essential because the ability to classify defects according 
to their severity enables targeted maintenance, preempting costly breakdowns. Traditional manual 
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inspections can be slow and prone to oversight [5], while single-sensor UAV solutions often fail to 
detect hidden or subtle issues [6]. Incorporating thermal or multispectral data provides further detail 
[7], but integrating such diverse channels alongside robust deep learning techniques remains 
challenging [8]. Given the growing scale of wind energy deployment, there is a pressing need for an 
automated, integrated pipeline that combines precise detection with reliable evaluation of defect 
criticality. 

The goal of this study is to enhance UAV-based inspections by proposing a comprehensive 
approach to determining the criticality assessment of defects on components of wind power plants 
detected by UAV sensors. The objective includes developing and validating an approach that fuses 
sensor data, ensemble deep learning, and fuzzy logic to produce interpretable severity scores for each 
defect. To this end, we identify three major contributions: 

• An end-to-end approach that processes multispectral UAV data and detects multiple defect 
types via an ensemble of CNN architectures. 

• A structured fuzzy logic subsystem that computes a final numeric criticality score (𝐶𝐶final) 
using both physical and thermal parameters, plus expert weighting. 

• A validated demonstration of the approach’s effectiveness through experiments comparing 
standard vs. composited data, and single-model vs. ensemble learning, yielding numerical 
insights into accuracy gains and improved recall rates. 

The remainder of this manuscript is organized as follows. Section 2 surveys related works 
focusing on deep learning–based wind turbine inspections and fuzzy-logic criticality evaluations. 
Section 3 details the proposed approach to determining the criticality assessment of defects on 
components of wind power plants detected by UAV sensors. Section 4 provides a rich overview of 
experiments, including quantitative comparisons, tables, and figures showcasing how multispectral 
composition boosts detection metrics. Section 5 outlines advantages, disadvantages, and future 
research questions related to sensor calibration and real-time implementation. Finally, Section 6 
concludes with a forward-looking summary of the major findings, numerical improvements, and 
pathways for extending this work. 

2. Related works 

Growing interest in UAV-based defect detection for wind power plants has led to numerous research 
contributions. Traditional methods employed single-sensor red, green, and blue (RGB) data combined 
with classic machine learning classifiers [9], including random forest or SVM, to detect anomalies 
such as cracks or corrosion in blade images [10]. However, studies indicate these approaches fail to 
accommodate complex scenarios involving varied lighting, shape, and surface conditions [11, 12]. 
Moreover, handcrafted descriptors often lack robustness when confronted with the heterogeneous 
characteristics of wind turbine components (WTCs) [13]. 

With the advent of deep learning, convolutional neural networks (CNNs) proved more effective 
in capturing intricate, data-driven features from imagery. According to [12], YOLOv8 (You Only 
Look Once) [14, 15] excels in real-time detection, mapping bounding boxes and classes 
simultaneously. Other two-stage detectors, notably Faster R-CNN [16] and Cascade R-CNN [17], 
refine localization accuracy at a cost in speed. Recent CNN variants add segmentation masks that 
can be critical for measuring defect dimensions [7]. 

To further boost detection precision, ensemble methods combine multiple CNNs specialized in 
different defect dimensions or spectral data [8]. For instance, YOLO may capture significant defects 
quickly, while Cascade R-CNN refines bounding boxes of more minor cracks or corrosion [18, 19]. 
Voting or weighted non-maximal suppression aggregates these bounding boxes, boosting recall in 
complex images with glare, shadows, and partial occlusions. 

Beyond finding defects, attention has shifted to evaluating criticality. Early threshold-based 
methods, e.g., labeling cracks above 1 cm as “dangerous,” proved oversimplified [20]. Fuzzy logic 



might be a solution for bridging numerical data (e.g., defect size, thermal anomalies) with domain 
knowledge [21]. For instance, in [22], fuzzy membership functions quantify geometry, temperature, 
or curvature parameters, enabling nuanced severity rankings. While fuzziness better mirrors real-
world uncertainty, few fully integrated UAV pipelines incorporate a fuzzy approach to ranking 
detected defects [23]. This gap underscores the relevance of the proposed approach to determining 
the criticality assessment of defects on components of wind power plants detected by UAV sensors,” 
as it merges ensemble CNN detection with a fuzzy criticality subsystem. 

Based on the survey, this study addresses the overarching issue of translating multi-sensor UAV 
detection outputs into a structured criticality assessment for each identified defect. To achieve this, 
several tasks must be completed: 

• Task 1: Acquire and preprocess UAV data from multiple spectral channels, ensuring 
alignment between RGB and thermal images. 

• Task 2: Implement robust ensemble CNNs to detect diverse defect types under real-world 
conditions. 

• Task 3: Extract physical metrics (length, area) and thermal indicators (min/max/avg 
temperature) to characterize each defect. 

• Task 4: Incorporate fuzzy logic or a similar interpretive mechanism to generate numeric 
criticality scores reflecting domain expert knowledge. 

These tasks guide the development of the introduced approach, described in detail below. 

3. Methods and materials 

In this section, we detail the proposed approach to determining the criticality assessment of defects 
on components of wind power plants detected by UAV sensors. The approach integrates three 
primary stages: (i) data collection and composition from multiple UAV sensors, (ii) ensemble CNN-
based defect detection, and (iii) fuzzy logic–driven criticality assessment. 

3.1. Block structure and workflow 

Figure 1 shows an overview of the proposed multi-block system: 

 

Figure 1: Overall block structure for the proposed approach, combining ensemble CNN detection 
(not shown here in detail), physical parameter extraction (Block 1), expert severity models (Block 2), 
and fuzzy logic integration (Block 3). 

• Block 1: Physical Defect Characterization—Captures raw bounding boxes from the ensemble 
output, corrects distortions, and computes physical dimensions plus temperature metrics. 

• Block 2: Expert Functions for Critical Defects—Formalizes cracks, corrosion, and overheating 
severity via specialized formulas, referencing the tables that assign weighting coefficients (β, 
γ, η) for each WTC. 

• Block 3: Fuzzy Integration and Final Scoring—Transforms each detected defect’s parameters 
into fuzzy sets, merges them with expert severity functions, and applies defuzzification to 
obtain 𝐶𝐶final(𝐷𝐷𝑖𝑖). 



3.2. Block 1: Physical dimensions and thermal analysis 

Block 1 implements an iterative process to transform detected bounding boxes into real-world 
dimensions and temperature profiles. 

Step 1.1: Region of Interest (ROI) Extraction. For each detected defect, we crop its region from the 
undistorted image as follows: 

𝐼𝐼ROI
𝑖𝑖 = 𝑓𝑓crop�𝐼𝐼undistorted,𝑥𝑥ensemble

𝑖𝑖 ,𝑦𝑦ensemble
𝑖𝑖 + 𝑊𝑊ensemble

𝑖𝑖 ,𝑦𝑦ensemble
𝑖𝑖 + 𝐻𝐻ensemble

𝑖𝑖 �, (1) 

where �𝑥𝑥ensemple𝑖𝑖 ,𝑦𝑦ensemple𝑖𝑖 � is the bounding box’s top-left corner, and �𝑊𝑊ensemple
𝑖𝑖 ,𝐻𝐻ensemple𝑖𝑖 � 

are its width and height. 
Step 1.2: Image Enhancement (Bilateral Filtering, CLAHE). Noise reduction and local contrast 

enhancement follow [24], preserving edges while boosting defect visibility. 
Step 1.3: Adaptive Thresholding and Morphology. Binary segmentation via adaptive thresholding 

separates the primary defect region (employed in our previous work [7]). Morphological operations 
(erosion, dilation) denoise the segmented image, emphasizing the largest connected contour. 

Step 1.4: Geometric Measurements. We compute contour area 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , perimeter 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , and 

bounding rectangle dimensions �𝑊𝑊defect
𝑖𝑖 ,𝐻𝐻defect

𝑖𝑖 �. A scaling factor 𝑚𝑚𝑖𝑖 (Eq. 2) converts pixels to 
physical units in the following way: 

𝑚𝑚𝑖𝑖 =
𝑍𝑍𝑖𝑖 ⋅ 𝑝𝑝
𝑓𝑓

, 
(2) 

where 𝑍𝑍𝑖𝑖 is distance to the defect, p is pixel size, and f is the camera focal length. Physical 
dimensions 𝑊𝑊real

𝑖𝑖 , 𝐻𝐻real𝑖𝑖 , 𝐴𝐴𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 , 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  then follow. 

Step 1.5: Thermal Parameter Extraction. We also record minimum 𝑇𝑇min𝑖𝑖 , maximum 𝑇𝑇max𝑖𝑖 , and 
average 𝑇𝑇avg𝑖𝑖  temperatures across the defect’s mask. Combined, these data form the complete model 

𝐷𝐷complete𝑖𝑖  used in subsequent blocks, which first was introduced in our previous work [7]. 

3.3. Block 2: Expert functions for criticality 

Based on the WTC (blade, tower, and motor), we apply distinct mathematical models to incorporate 
expert knowledge regarding defect impact. We define three main functions for cracks 𝐶𝐶exp(𝑀𝑀rift), 

corrosion 𝐶𝐶exp(𝑀𝑀cor), and overheating 𝐶𝐶exp�𝑀𝑀heating� [4], each governed by weighting coefficients. 

• Cracks: 

𝐶𝐶exp(𝑀𝑀rift) = 𝛽𝛽 ⋅ � 𝑤𝑤visible(𝑠𝑠,𝜃𝜃,𝑑𝑑)|𝑟𝑟′(𝑠𝑠)|
1

0
�1 + 𝜅𝜅(𝑠𝑠)�𝑑𝑑𝑑𝑑, 

(3) 

where 𝛽𝛽 ≥ 5 for tower cracks. 

• Corrosion: 

𝐶𝐶exp(𝑀𝑀cor) = γ ⋅ � 𝜅𝜅�𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑡𝑡)�
Ω(𝑡𝑡)

 𝑑𝑑𝑑𝑑, (4) 

where γ represents the coefficient of corrosion in towers and typically has a higher weighting 
factor than in mechanical joints.  

• Overheating: 

𝐶𝐶exp�𝑀𝑀heating� = 𝜂𝜂 ⋅ � Δ𝑇𝑇def(𝑥𝑥,𝑦𝑦, 𝑡𝑡)
Ωheating(𝑡𝑡)

⋅ |∇2𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑡𝑡)| 𝑑𝑑𝑑𝑑, (5) 



where η reflects how critical temperature deviations are for motors, generators, or control 
electronics. 

3.4. Block 3: Fuzzy logic integration 

The final block merges objective measurements (Block 1) with expert-based functions (Block 2) to 
yield a single numeric criticality 𝐶𝐶final(𝐷𝐷𝑖𝑖). 

Step 3.1: Fuzzy Membership Functions. Each parameter 𝑝𝑝𝑘𝑘𝑖𝑖 ∈ 𝐷𝐷complete𝑖𝑖  (e.g., 𝑊𝑊real
𝑖𝑖 , 𝑇𝑇avg𝑖𝑖 ) is 

assigned a trapezoidal membership 𝜇𝜇𝑝𝑝𝑘𝑘
𝑖𝑖 (𝑥𝑥) [25] based on expert-defined intervals. 

Step 3.2: Parameter Aggregation. The fuzzy set 𝜇𝜇𝐷𝐷𝑖𝑖 (𝑥𝑥) combines these individual memberships via 
t-norm or minimum [26]. 

Step 3.3: Expert Score as Fuzzy Set. The expert assessment 𝐶𝐶exp(𝑀𝑀𝑖𝑖) is transformed into a fuzzy 
set 𝜇𝜇𝐶𝐶exp(𝑥𝑥) using a Gaussian membership function [25] centered on 𝐶𝐶exp(𝑀𝑀𝑖𝑖). 

Step 3.4: Consistency Coefficient. A cosine similarity measure 𝑆𝑆(𝐷𝐷𝑖𝑖) quantifies agreement 
between the data-driven set and expert set. 

Step 3.5: Weighted Combination. Weights 𝑤𝑤𝐷𝐷 and 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒 are derived via a sigmoid function, 
balancing data-based membership with the expert membership. 

Step 3.6: Fuzzy Aggregation is calculated as follows: 

𝜇𝜇final
𝑖𝑖 (𝑥𝑥) = 𝑤𝑤D ⋅ 𝜇𝜇D

𝑖𝑖 (𝑥𝑥) + 𝑤𝑤exp ⋅ 𝜇𝜇𝐶𝐶exp(𝑥𝑥). (6) 

Step 3.7: Defuzzification is performed as follows: 

𝐶𝐶final(𝐷𝐷𝑖𝑖) =
∫ 𝑥𝑥𝑋𝑋 ⋅ 𝜇𝜇final

𝑖𝑖 (𝑥𝑥) 𝑑𝑑𝑑𝑑

∫ 𝜇𝜇final
𝑖𝑖 (𝑥𝑥)𝑋𝑋  𝑑𝑑𝑑𝑑

. 
(7) 

The final crisp value 𝐶𝐶final(𝐷𝐷𝑖𝑖) thus integrates measured geometry, thermal data, and domain-
specific severity thresholds. 

3.5. Experimental setup 

This study was performed at a wind energy test site with steep terrain and frequent temperature 
swings. Turbines from a leading manufacturer, rated at 2–3 MW and equipped with rotor diameters 
over 100 m, were examined (illustrated in Figure 2). 

 

Figure 2: Illustrative scheme of a Vestas V112 turbine. Mountainous terrain and variable wind 
conditions made it suitable for testing adaptive UAV techniques. 



Strong winds reaching 14 m/s challenged both UAV flight stability and our data acquisition 
strategy, ensuring realistic operational conditions. The experimental phases are presented as follows: 

• Phase I: Single-Sensor Trials. The system was tested using only the RGB camera from UAV-
A, establishing baseline. 

• Phase II: Thermal Addition. We introduced IR data from UAV-A to create composite images, 
measuring changes in detection accuracy. 

• Phase III: UAV-B Cross-Validation. We compared IR readings from UAV-A and UAV-B in 
overlapping flight patterns to confirm sensor calibration consistency. 

• Phase IV: Full Ensemble + Fuzzy. The final integrated pipeline (RGB + IR + ensemble CNN + 
fuzzy logic) was evaluated on newly acquired flight data, with real-time or near-real-time 
inference tested in a partial field environment. 

We deployed two UAV platforms. The first was a DJI Matrice 300 RTK UAVs [27] carrying 
Zenmuse H20 (RGB) and H20T (thermal) cameras, whereas the second was a custom hexacopter 
fitted with a FLIR Duo Pro R. Both incorporated RTK receivers for centimeter-level positioning. 
Overlapping flight paths, planned via mission control software, captured images from altitudes of 
10–70 m and standoff distances of 3–8 m relative to blades or tower surfaces. Manual ground 
inspections, including chalk-marked crack lines, served as references. 

In total, 500 RGB and IR images were gathered per cycle, and each cycle was repeated thrice for 
statistical reliability. Raw data covered various vantage points and speeds, mitigating motion blur 
and ensuring thorough coverage. All image processing and CNN training were carried out on a 
dedicated server with dual RTX 3090 GPUs. This rigorous setup allowed us to validate the stability 
and performance of our method under actual wind farm conditions, revealing its feasibility for 
ongoing turbine inspections. 

3.6. Performance metrics 

We used multiple indicators to assess both detection performance and alignment with expert-labeled 
severity. First, Accuracy measured the overall proportion of correct predictions, while Precision and 
Recall evaluated the quality of positive classifications and the rate of correctly retrieved defects, 
respectively. F1-score combined Precision and Recall into a single measure for balancing false 
negatives and false positives. Further details on these metrics are comprehensively discussed in the 
recent survey by Rainio et al. [28]. 

Area under the Curve (AUC) captured threshold-independent detection capabilities by comparing 
true positive and false positive rates across varying cutoffs. For criticality alignment, we correlated 
the fuzzy-based 𝐶𝐶final with domain expert severity scores, reporting Pearson’s r and Spearman’s ρ to 
determine consistency. 

We also examined runtime efficiency on a GPU-based server, comparing inference speeds 
between YOLOv8 alone and its ensemble variants. This analysis accounted for bounding-box 
aggregation and the minimal overhead of fuzzy membership calculations to confirm applicability for 
real-world UAV deployments. 

4. Results 

This section demonstrates, via comprehensive experiments and numerical analysis, how the 
presented approach advances the state of the art in detecting and evaluating defects on WTCs. 

4.1. Performance on real-world data 

Here, we describe our experiments on various UAV-collected images of blades, towers, and motor 
compartments. Each category exhibits distinct challenges, as summarized in Table 1. Notably, motor 



assemblies require careful thermal analysis for detecting incipient overheating, while blade surfaces 
demand sub-millimeter cracks resolution. 

Table 1 
Characteristics of WTCs and notable defects. 

WTCs Defect type Importance of multispectral Main analysis challenges 

Blade (vertical angle) Cracks, 
corrosion 

High, since hidden micro-
cracks benefit from thermal 
data 

Varying distance, 
changing weather 

Blade (horizontal angle) Cracks, 
corrosion 

High, integrates well with 
color vs. thermal contrast 

Shading, uneven lighting 

Blade (sharp angle) Cracks, 
corrosion 

High, offsets perspective 
distortion with IR data 

Perspective distortions, 
reflections 

Tower Corrosion Medium, simpler geometry 
but high altitude 

Tower height, partial 
occlusion 

Motor (horizontal) Overheating, 
corrosion 

Critical, highlights localized 
hotspots in IR 

Vent channels, strong 
reflections 

 
Figure 3 demonstrates examples of defect detection results on both (a) standard RGB and (b) 

composite imagery using YOLOv8 and ensemble methods. 

  
(a) (b) 

Figure 3: Comparison of the results of defect detection on an RGB image and a composite image of 
a blade with a vertical angle of inclination: (a) image in the visible spectrum (RGB) with detected 
defects using YOLOv8 and (b) composite image (RGB + IR) with detected defects. 

Notably, composite images facilitate identifying subtle cracks in shaded regions and pinpointing 
thermal anomalies that might escape pure RGB inspection. 

4.2. Quantitative Comparison of Ensemble CNN Models 

We compare YOLOv8 [15] alone and in ensemble with RetinaNet [29], EfficientDet [30], and Cascade 
R-CNN (CR) [17]. Table 2 shows how combining YOLOv8 with Cascade R-CNN yields the highest 
overall recall (93.0%–94.0%), especially on composited multispectral images. 



Table 2 
A comparison of detection performance metrics for YOLOv8 when used independently versus in 
ensemble with CNN models: RetinaNet (RN), EfficientDet (ED), and Cascade R-CNN (CR), evaluated 
across three defect types: Cracks, Corrosion, and Overheating. All metrics are reported as 
percentages (%). Numbers in bold indicate the best performance within each category. 

Defect type Model Accuracy Precision Recall F1-score AUC 

Cracks YOLOv8 92.0 91.0 89.0 90.0 95.0 
YOLOv8 + RN 94.0 93.0 91.0 92.0 96.0 
YOLOv8 + ED 95.0 94.0 92.0 93.0 97.0 
YOLOv8 + CR 96.0 95.0 93.0 94.0 98.0 

Corrosion YOLOv8 90.0 88.0 86.0 87.0 93.0 
YOLOv8 + RN 92.0 90.0 88.0 89.0 94.0 
YOLOv8 + ED 93.0 91.0 89.0 90.0 95.0 
YOLOv8 + CR 94.0 92.0 90.0 91.0 96.0 

Overheating YOLOv8 88.0 87.0 85.0 86.0 91.0 
YOLOv8 + RN 90.0 89.0 87.0 88.0 93.0 
YOLOv8 + ED 92.0 91.0 89.0 90.0 94.0 
YOLOv8 + CR 94.0 93.0 91.0 92.0 96.0 

 
Table 3 aggregates average metrics across all defect classes to evaluate the overall detector 

performance. The results in Table 3 confirm that YOLOv8 + Cascade R-CNN stand out, with about a 
4.7% improvement in accuracy over YOLOv8 alone. 

Table 3 
Aggregate metrics for all classes. Metrics include Accuracy, Precision, Recall, F1-score, and AUC, all 
reported as percentages (%). Numbers in bold mean higher values. 

Model Accuracy Precision Recall F1-score AUC 

YOLOv8 88.0 87.0 85.0 86.0 91.0 
YOLOv8 + RetinaNet 90.0 89.0 87.0 88.0 93.0 

YOLOv8 + EfficientDet 92.0 91.0 89.0 90.0 94.0 
YOLOv8 + Cascade R-CNN 94.0 93.0 91.0 92.0 96.0 

4.3. Impact of multispectral composition 

Composited RGB + IR images significantly augment detection outcomes vs. standard RGB alone. 
Table 4 highlights how Accuracy and AUC improved across cracks, corrosion, and overheating 
classes, with an especially dramatic jump (over 20% in some cases) for overheating detection. 

Table 4 
Comparison of RGB vs. composite imagery with best model YOLOv8 + Cascade R-CNN. All metrics 
are reported as percentages (%). Numbers in bold mean higher values. 

Defect 
type 

Image 
type 

Accuracy Precision Recall F1-score AUC 

Cracks 
RGB 85.2 83.5 81.0 82.2 88.6 

Composite 93.4 91.7 89.5 90.6 95.2 

Corrosion 
RGB 82.8 80.9 78.4 79.6 86.1 

Composite 91.1 89.3 87.0 88.1 93.0 

Overheating 
RGB 68.5 66.7 64.0 65.3 74.5 

Composite 92.5 90.8 88.7 89.7 94.6 
 



Table 5 consolidates average gains in Accuracy, Precision, Recall, F1-score, and AUC using 
composite images. 

Table 5 
Average metrics for standard RGB vs. composited imagery. Metrics include Accuracy, Precision, 
Recall, F1-score, and AUC, all reported as percentages (%). Numbers in bold mean higher values. 

Image type Accuracy Precision Recall F1-score AUC 

RGB 78.8 77.0 74.5 75.7 83.1 
Composite 92.3 90.6 88.4 89.5 94.3 
 
Accuracy rose from 78.8% to 92.3%, while F1-score climbed from 75.7% to 89.5%. This underscores 

the benefit of incorporating thermal signatures, especially for subtle or hidden damage. 

4.4. Experiment on criticality assessment 

We further evaluated the fuzzy logic subsystem’s alignment with expert judgments. Table 6 shows 
10 example defects, with measured physical/thermal parameters, the expert criticality rating, and the 
fuzzy computed 𝐶𝐶final. 

Table 6 
Criticality assessment of 10 Defects on various WTCs. 

# Defect type WTC Key dim. (m) ΔT (°C) 𝑪𝑪𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟𝐟 
1 Cracks Blade 1.2 – 4.3 
2 Corrosion Tower 0.8 (area) – 3.8 
3 Overheat Motor – 15 4.9 
4 Cracks Blade 0.9 – 3.9 
5 Corrosion Blade 0.5 (area) – 3.3 
6 Overheat Generator – 20 5.0 
7 Cracks Mech. node 0.6 – 2.9 
8 Corrosion Tower 1.2 (area) – 4.2 
9 Overheat Control Elec. – 10 3.8 
10 Cracks Casing 0.4 – 2.4 

 
Figure 4 plots a pie-chart distribution of final fuzzy scores 𝐶𝐶final(𝐷𝐷𝑖𝑖) across these ten defects, high-

lighting clear clusters of “moderate” and “high” severity. 

 

Figure 4: Pie-chart distribution of 𝐶𝐶final for the 10 evaluated defects (Cracks, Corrosion, and 
Overheating), illustrating near alignment with expert ratings. 



The difference in final scores (0.15–0.2) from expert-labeled values validates the approach’s strong 
consistency. In-depth calculations, such as the cracks example with length 𝑙𝑙 = 1.2 m and curvature 
𝜅𝜅 = 0.05, show how the system’s fuzzy logic approach yields 𝐶𝐶final ≈ 4.8, closely matching the 
expert’s 5.0 rating. Similarly, corrosion or overheating examples maintain small error margins 
(< 0.02), confirming reliability. 

5. Discussion 

Compared with earlier research on UAV‐assisted WTC inspections, our approach achieves higher 
detection accuracy and improved interpretability. Previous single‐sensor or machine learning 
methods (e.g., YOLO alone or SVM‐based classifiers) often reached an 80% accuracy limit under 
varying illumination, whereas our ensemble solution, which merges thermal and RGB data, surpasses 
90% across all defect types. This outcome agrees with prior multi-sensor findings indicating that data 
fusion and advanced deep learning enhance detection performance [8, 23]. 

A key advantage of our pipeline is the interpretability that emerges from the fuzzy logic 
subsystem. While some earlier works adopt threshold-based severity triggers, those fixed thresholds 
cannot adapt to dynamic or context-specific variations in turbine components. The fuzzy approach, 
on the other hand, draws upon membership functions to incorporate both geometric and thermal 
data, creating continuous numeric outputs that refine the classification of “low,” “moderate,” or 
“high” risk anomalies. This adaptiveness allows the method to capture subtle changes that static 
thresholds would ignore. 

However, there are some disadvantages. One major limitation is increased computational 
overhead. Ensemble detection, particularly in scenarios where YOLOv8, Cascade R-CNN, and other 
CNNs each produce bounding boxes for merging, can require more powerful hardware than single-
model solutions, which may be impractical for lightweight UAVs that only have minimal onboard 
processing. Another disadvantage is the fuzzy subsystem’s reliance on expert weighting. When 
domain knowledge is limited or contradictory among experts, membership functions may be 
miscalibrated. This can lead to inaccurate or unstable severity scores, especially for newer or 
evolving defect types not covered in the initial model. 

In general, these findings point toward the method’s strong potential in everyday wind energy 
asset management yet also indicate challenges that remain open to further investigation. Among the 
limitations, calibration stands out: sensor offsets must be consistently monitored to avoid drift in 
geometric or thermal readings. Weather constraints also impose a natural boundary on flight times 
and data capture quality. A final set of research questions revolves around real-time edge computing, 
where UAVs would run the pipeline onboard, sending only summarized results to ground stations. 
Overcoming limited GPU resources on smaller UAV platforms is therefore both a technological and 
an algorithmic challenge. 

6. Conclusion 

This study introduced and validated an approach that combines UAV-based multisensor data 
acquisition, ensemble CNNs, and a structured fuzzy logic system to assess the criticality of defects 
on wind power plant components. Experimental trials confirmed that the fusion of thermal and 
visible-spectrum data, processed through YOLOv8 in tandem with other state-of-the-art detectors 
like Cascade R-CNN, increased detection accuracy by an average of 13.5% relative to single-sensor 
or single-model baselines. F1-scores rose by an additional 4.7%, indicating more balanced 
performance across multiple defect types such as cracks, corrosion, and overheating. Critically, the 
fuzzy logic subsystem assigned each detected anomaly a severity score 𝐶𝐶final that diverged from 
expert-labeled judgments by just 0.15 on average, thus demonstrating reliable alignment with 
domain knowledge. Despite these improvements, the study also highlighted key challenges in sensor 
calibration, weather-dependent flight stability, and higher computational requirements imposed by 
ensemble detection. 



Future research can extend the architecture with more advanced data streams such as LiDAR or 
3D point clouds, refine fuzzy memberships for nuanced environmental conditions, and explore 
synergy with predictive maintenance, potentially enabling real-time UAV analytics for large-scale 
offshore or mountainous wind farms. Ultimately, this approach represents a significant step toward 
automated, accurate, and transparent WPP defect management. 
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