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Abstract 
Developing serverless computing platforms requires new approaches to scale computing resources 
optimally. Existing scaling mechanisms often cause performance issues, including cold starts, throttling, 
and increased costs due to the over-allocation of resources. This paper proposes an approach based on ML 
models that use Amazon SQS queue metrics to predict load and pre-scale Lambda functions in a distributed 
computing system. The research aims to develop a ready-to-use solution within the serverless computing 
model. The model estimates the queue depth and message arrival rate using time series forecasting using 
the DeepAR algorithm from AWS SageMaker. The MAE (mean absolute error) and RMSE (root mean square 
error) metrics assess the model's accuracy. The DeepAR model shows an MAE of 10019.21 and RMSE of 
13140.91, indicating good prediction quality. The proposed solution demonstrates the capabilities of 
serverless platforms to solve the problem of predictive autoscaling being an effective tool for serverless 
applications. Empirical verification demonstrates improved performance indicators, including a decrease in 
the number of cold starts by (approximately) 27% and the number of unprocessed requests by 
(approximately) 14%. 
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1. Introduction 

The emergence and development of serverless computing platforms have changed the general 
approach to deploy and scale applications in cloud environments. With this approach, managing 
computing resources is mainly the cloud provider's responsibility, this allows developers to focus on 
writing code. 

One key benefit of serverless platforms is the automatic scaling of applications in accordance with 
changes in load. Autoscaling implementation on such platforms requires that services should 
dynamically scale their resources, considering the change in the number of requests per unit of time. 
Thus, computing resources for user applications can be released entirely without traffic and 
reallocated when new requests appear, ensuring high resource efficiency. 

The disadvantage of such active resource allocation is the notable initialization time. This 
disadvantage is known as the “cold start” problem when time is spent on deploying and configuring 
the runtime environment [1].  

This problem becomes especially critical for services with short processing times for incoming 
requests, which are the majority in serverless environments, and is complicated by the fact that the 
created infrastructure is shared by several applications, each of which requires an individual 
approach to scaling solutions. 
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One approach to address this problem is to apply machine learning techniques to predict 
workloads and automatically scale compute resources in AWS serverless environments [2]. This 
study proposes a framework that uses AWS SQS queue metrics to predict workloads in distributed 
and event-driven computing to pre-scale AWS Lambda functions. Applying time series prediction 
techniques based on the DeepAR algorithm in SageMaker allows us to minimize latency by avoiding 
“cold starts”, throttling errors, and optimizing cloud computing costs [3]. 

The research goal is to develop a ready-to-use solution that allows us to maintain optimal 
performance with balanced resource utilization in cloud environments while remaining within the 
serverless computing model.  

2. Related works 

Many researchers are actively studying methods how to automatically scale computing resources in 
cloud environments. The goal of such studies is to increase application performance and ensure 
efficient use of cloud provider resources, which is especially critical for serverless architectures. 

The traditional method for automatic scaling relies on specific resource usage or requests per 
second thresholds that trigger the scaling process. This approach is easy to implement but does not 
solve the problem of load spikes. For example, a cloud provider can maintain a number of prepared 
containers and delay deleting function instances after launches to efficiently handle new requests. 
However, this is economically inefficient since the user of serverless solutions pays only for the 
resources used regardless of when these resources were allocated. “Cold start” delays will still be 
present in the case of load spikes. The disadvantages and limitations of this approach are discussed 
in [4]. 

One approach considered in studies on automatic scaling for serverless applications is to reduce 
the number of “cold starts”. The central aspect of such an approach is the ability to predict the load 
level to create the necessary resources proactively [5]. Typically, resource utilization metrics are 
used for forecasting, which allows determining the degree of necessary scaling. Although such 
approaches provide a quick response to changes in the load, they rarely consider the number of 
available resources at some point.  

This becomes especially critical for serverless applications that use queues and event-driven 
architectures due to sudden changes in load and data sparsity [6]. Queues often store events during 
their processing, leading to additional delays and making it difficult to predict the load [7]. To address 
this issue, reference [8] combines queuing theory with methods for setting threshold values to 
manage virtual machine activation and deactivation. This allows service providers to optimize their 
financial costs but does not solve the problem of “cold start”. 

Solving the problem of “cold start” delays requires methods that allow predicting future 
workloads based on historical data and real-time indicators. Thus, in [9], the authors, using machine 
learning methods, were able to obtain a forecast that was very close to the actual data. The correct 
choice of the threshold value for microservices using the intelligent autoscaling system proposed in 
[10] improved the system's response time compared to the default autoscaling system offered by the 
cloud service provider. 

Time series analysis is another popular technique for workload prediction. This technique 
examines historical data and uses statistical approaches to identify trends [4]. Machine learning and 
time series methods can create models to forecast message arrival rates in a distributed system, 
considering seasonality and event patterns [11]. 

A major challenge remains deploying machine learning models in the cloud and integrating them 
into existing serverless applications. The study [12] proposes a template for automated deployment 
of AWS services for training and evaluating models, which confirms the possibility of using 
predictive autoscaling in various serverless applications. 

Despite many studies on automatic scaling and load forecasting of cloud resources, relatively little 
attention is paid to serverless computing models. Our research aims to create a solution for a 



serverless distributed application that uses message queues to automatically scale resources based 
on metrics and machine learning algorithms. 

3. Proposed methodology 

We developed and launched a distributed application designed for batch data processing in AWS, 
which is used for load forecasting and automatic resource scaling. The application's main feature is 
its use of serverless technologies (Fig. 1).  

 

Figure 1: Serverless Application Architecture for Batch Data Processing Using AWS SQS. 

The main task of the developed application is to ensure distributed processing of large amounts 
of data with a minimum number of errors. In these systems, a queue, typically AWS SQS, is the main 
component, receiving events and distributing data to a set maximum number of processors, like AWS 
Lambda. Depending on the current load, only the number of processors required at a particular 
moment in time within the quota is started. Input data and processing results are stored on S3. 

Another component of our application is AWS CloudWatch [13], which monitors AWS SQS, 
namely resource usage metrics. From the perspective of the autoscaling problem, we will be 
interested in two metrics: 

• ApproximateNumberOfMessagesVisible – queue length. 
• NumberOfMessagesSent – number of messages sent [14].  

To automatically scale the developed application, we proposed a framework based on AWS 
SageMaker [15]. This serverless service allows us to quickly build and deploy machine learning 
models with minimal developer intervention.  

The proposed framework consists of several components for interaction with AWS SQS (Fig. 2). 
First of all, AWS CloudWatch collects the necessary metrics from AWS SQS, AWS EventBridge [16], 
and AWS Lambda [17]. AWS EventBridge launches AWS Lambda at appropriate intervals according 
to the schedule, and AWS Lambda receives predicted values from the trained model and adjusts the 
number and main parameters of data processors, thus ensuring horizontal scaling. 



 

Figure 2: Framework architecture for automatically scaling data processors.  

The diagram of framework and distributed application interaction is presented in Figure3.  

 

Figure 3: Framework and distributed application interaction diagram.  

The interaction between the framework and the distributed application is as follows (Fig. 3): 

1.  AWS CloudWatch collects the necessary metrics from AWS SQS and stores them in S3. 
2. A machine learning model is created and deployed in AWS SageMaker using stored metrics. 
3. AWS EventBridge launches AWS Lambda according to a predefined schedule. 



4. AWS Lambda accesses the deployed model and obtains predicted load indicators. 
5. Based on the obtained indicators, AWS Lambda changes the settings of the data processors 

accordingly. 

The model is built using DeepAR, a learning algorithm for time series forecasting using recurrent 
neural networks (RNNs). This algorithm can provide better accuracy than classical forecasting 
methods such as autoregressive integrated moving averages (ARIMA) or exponential smoothing (ES) 
[18, 19]. 

DeepAR boosts forecast accuracy by examining patterns from multiple related time series, unlike 
traditional methods that rely on a single series. DeepAR produces point and probabilistic forecasts, 
which is especially critical for capacity planning applications [19]. 
The accuracy of the forecast distribution is estimated using weighted quantile losses. The quantile 
loss for the quantile q∈(0,1) is calculated as follows (1):  
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where:  
q – the selected quantile (for example, 0.1, 0.5, or 0.9), 
y – actual value, 
ŷ – forecast for the corresponding quantile. 
For a set of quantiles 𝑄𝑄 = {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑘𝑘} the total weighted quantile loss is calculated as (2):  
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where [20]:  
𝑛𝑛 – number of predicted points; 
𝜔𝜔𝑞𝑞 – weight for quantile 𝑞𝑞; 

𝑦𝑦�𝑤𝑤
(𝑞𝑞) – the prediction for the quantile𝑞𝑞 for the point 𝑖𝑖. 

Also used [21, 22] were the mean absolute error (3) and the root mean square error (4): 
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Building a DeepAR model consists of the following steps:  

1. Collecting and formatting AWS SQS metrics. 
2. Defining and training hyperparameters. 
3. Training the model. 
4. Testing the model.  
5. Evaluating the results. 
6. Deploying the model for further use. 

The obtained prediction results are used to automatically scale data processors according to the 
algorithm below using threshold values. 

  



Algorithm 1. AWS Lambda provisioned concurrency changing 
1: function AutoScaleLambda(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑡𝑡_𝑢𝑢𝑢𝑢, 𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐, 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐, 𝑖𝑖𝑛𝑛𝑐𝑐, target) 
2:    // Main loop that runs every 𝑁𝑁 minutes 
3:     loop every 𝑁𝑁 minutes 
4:         𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 ← GetPrediction(target) 
5:         𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 ← GetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
6:         // If predicted value exceeds upper threshold 
7:         if 𝑣𝑣i𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 > 𝑡𝑡_𝑢𝑢𝑢𝑢 then 
8:             𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 + 𝑖𝑖𝑛𝑛𝑐𝑐 
9:             if 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 > 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐 then 
10:                 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐 
11:             end if 
12:             // Update provisioned concurrency 
13:             SetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐) 
14:         else if 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 < 𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 then 
15:             𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 - 𝑖𝑖𝑛𝑛𝑐𝑐 
16:             if 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 < 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐 then 
17:                 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐 
18:             end if 
19:            // Update provisioned concurrency 
20:             SetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐) 
21:         end if 
22:        // Wait for 𝑁𝑁 minutes before next iteration 
23:         Sleep(𝑁𝑁 minutes) 
24:     // end loop 
25:     end loop 
26: end function 

 
where:  
𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = Lambda function name, 
𝑡𝑡_𝑢𝑢𝑢𝑢 = Scale-up threshold for ApproximateNumberOfMessagesVisible, 
𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 = Scale-down threshold for ApproximateNumberOfMessagesVisible, 
𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐 = Minimum provisioned concurrency, 
𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐 = Maximum provisioned concurrency, 
𝑖𝑖𝑛𝑛𝑐𝑐 = Increment step for scaling, 
target = Historical time series values. 
The framework built in this way will automatically scale data processors in distributed 

applications using queues. 

4. Results and discussion  

Our experimental setup consists of a distributed application and a component for predicting and 
automatically scaling data processors in the distributed application. The core of the application is a 
queue – a component designed to store and send events for processing. Each event contains the 
information necessary for successful processing. 

To simulate the workload, Locust was used. This tool is effective for load-testing distributed 
systems due to its scalability, ease of scripting, and monitoring and analysis capabilities [23]. 

During the application testing, the queue received 1082178 events within 90 minutes. At the same 
time, we collected the approximate number of messages visible and number of messages sent metrics 
for AWS SQS. Figure 4 and Figure 5 illustrate the collected data distribution. 



 

Figure 4: Approximate number of messages visible. 

 

Figure 5: Number of messages sent. 

The collected data was used to train the DeepAR model. It is worth noting that DeepAR uses a 
recurrent LSTM neural network (RNN). For training, we chose a minute-by-minute time series 
granularity. The model required at least 30 steps of historical data for forecasting, with an initial 
forecast length of 50 minutes. 

The training results are presented in Figure 6 and Figure 7.  



 

Figure 6: Approximate number of messages visible predicted values.  

 

Figure 7: Number of messages sent predicted values. 

To evaluate the resulting models, we used the mean absolute error and the root mean square error 
for different numbers of layers. Figure 8 and Figure 9 represent a differentiation of the obtained 
error values.  

 

Figure 8: MAE and RMSE for different number of RNN layers for Approximate number of messages 
visible predicted values. 



 

Figure 9: MAE and RMSE for different number of RNN layers for Number of messages sent predicted 
values. 

By varying the number of layers, we found that the models demonstrate the best performance at 
a value of 6 and can be used to predict the load of a distributed application. 

The trained models were deployed in the cloud environment using AWS SageMaker, which 
allowed us to make queries to predict the values of selected AWS SQS metrics and reduce the number 
of cold starts (Fig. 10).  

 

Figure 10: The number of cold starts after applying predictive autoscaling. 

5. Conclusion  

Our study presents a framework for predictive automatic scaling of computing resources in 
serverless environments. The framework enables a transition from reactive to proactive scaling, 
reducing “cold starts” and overload errors. 

The DeepAR model shows a mean absolute error (MAE) of 10019.21 and a root mean square error 
(RMSE) of 13140.91, indicating good prediction quality. Combining the proposed framework with 
serverless applications contributes to the optimal use of computing resources without going beyond 
the concept of serverless computing. 

It should be noted that using prediction to scale data processors automatically reduced the 
number of “cold starts” by (approximately) 27% and the number of unprocessed requests by 
(approximately) 14%. 



One of the limitations of the proposed framework is the lack of historical data, which DeepAR 
needs to learn patterns. In scenarios where a time series has very few past observations (e.g., newly 
created services), DeepAR may fail to model underlying trends, reducing forecast reliability 
accurately [24]. 

Further research can focus on improving the quality and use of forecasting models. For example, 
DeepAR allows building models based on multiple time series, which helps improve forecast 
accuracy. A separate issue remains in determining the optimal values of hyperparameters for 
training the DeepAR model. In addition, data sparsity and model drift require constant automatic 
retraining. 

Using additional SQS metrics enables essential horizontal and vertical scaling for queues with 
varying event processing times. 

Another important direction is the study of more efficient implementation of computing 
infrastructure costs through automatic scaling [25]. Also, we can create the SageMaker pipeline to 
update the DeepAR model with the latest data automatically. 

The proposed framework is a practical automatic scaling tool for serverless applications that 
improves performance and reliability in distributed systems.  
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