
Predictive autoscaling in AWS Serverless by means of
machine learning and SQS metrics⋆

Oleksandr Kyrychenko1,∗,†, Sergey Ostapov1,† and Oksana L. Kyrychenko1,†

1 Yuriy Fedkovych Chernivtsi National University, Kotsiubynskoho 2, 58012, Chernivtsi, Ukraine

Abstract
Developing serverless computing platforms requires new approaches to scale computing resources
optimally. Existing scaling mechanisms often cause performance issues, including cold starts, throttling,
and increased costs due to the over-allocation of resources. This paper proposes an approach based on ML
models that use Amazon SQS queue metrics to predict load and pre-scale Lambda functions in a distributed
computing system. The research aims to develop a ready-to-use solution within the serverless computing
model. The model estimates the queue depth and message arrival rate using time series forecasting using
the DeepAR algorithm from AWS SageMaker. The MAE (mean absolute error) and RMSE (root mean square
error) metrics assess the model's accuracy. The DeepAR model shows an MAE of 10019.21 and RMSE of
13140.91, indicating good prediction quality. The proposed solution demonstrates the capabilities of
serverless platforms to solve the problem of predictive autoscaling being an effective tool for serverless
applications. Empirical verification demonstrates improved performance indicators, including a decrease in
the number of cold starts by (approximately) 27% and the number of unprocessed requests by
(approximately) 14%.

Keywords
serverless, predictive modelling , predictive autoscaling , machine learning , neural networks, cloud 1

1. Introduction

The emergence and development of serverless computing platforms have changed the general
approach to deploy and scale applications in cloud environments. With this approach, managing
computing resources is mainly the cloud provider's responsibility, this allows developers to focus on
writing code.

One key benefit of serverless platforms is the automatic scaling of applications in accordance with
changes in load. Autoscaling implementation on such platforms requires that services should
dynamically scale their resources, considering the change in the number of requests per unit of time.
Thus, computing resources for user applications can be released entirely without traffic and
reallocated when new requests appear, ensuring high resource efficiency.

The disadvantage of such active resource allocation is the notable initialization time. This
disadvantage is known as the “cold start” problem when time is spent on deploying and configuring
the runtime environment [1].

This problem becomes especially critical for services with short processing times for incoming
requests, which are the majority in serverless environments, and is complicated by the fact that the
created infrastructure is shared by several applications, each of which requires an individual
approach to scaling solutions.

Intelitsis’25: The 6th International Workshop on Intelligent Information Technologies & Systems of Information Security,
April 04, 2025, Khmelnytskyi, Ukraine

∗ Corresponding author.
† These authors contributed equally.

 ol.kyrychenko@chnu.edu.ua (O. Kyrychenko); s.ostapov@chnu.edu.ua (S. Ostapov); o.kyrychenko@chnu.edu.ua (O.
L. Kyrychenko)

 0009-0001-6982-3342 (O. Kyrychenko); 0000-0002-4139-4152 (S. Ostapov); 0000-0003-0282-9958 (O. L. Kyrychenko)

 © 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ol.kyrychenko@chnu.edu.ua
mailto:s.ostapov@chnu.edu.ua
mailto:o.kyrychenko@chnu.edu.ua
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-3412-1639
https://orcid.org/0000-0003-3412-1639

One approach to address this problem is to apply machine learning techniques to predict
workloads and automatically scale compute resources in AWS serverless environments [2]. This
study proposes a framework that uses AWS SQS queue metrics to predict workloads in distributed
and event-driven computing to pre-scale AWS Lambda functions. Applying time series prediction
techniques based on the DeepAR algorithm in SageMaker allows us to minimize latency by avoiding
“cold starts”, throttling errors, and optimizing cloud computing costs [3].

The research goal is to develop a ready-to-use solution that allows us to maintain optimal
performance with balanced resource utilization in cloud environments while remaining within the
serverless computing model.

2. Related works

Many researchers are actively studying methods how to automatically scale computing resources in
cloud environments. The goal of such studies is to increase application performance and ensure
efficient use of cloud provider resources, which is especially critical for serverless architectures.

The traditional method for automatic scaling relies on specific resource usage or requests per
second thresholds that trigger the scaling process. This approach is easy to implement but does not
solve the problem of load spikes. For example, a cloud provider can maintain a number of prepared
containers and delay deleting function instances after launches to efficiently handle new requests.
However, this is economically inefficient since the user of serverless solutions pays only for the
resources used regardless of when these resources were allocated. “Cold start” delays will still be
present in the case of load spikes. The disadvantages and limitations of this approach are discussed
in [4].

One approach considered in studies on automatic scaling for serverless applications is to reduce
the number of “cold starts”. The central aspect of such an approach is the ability to predict the load
level to create the necessary resources proactively [5]. Typically, resource utilization metrics are
used for forecasting, which allows determining the degree of necessary scaling. Although such
approaches provide a quick response to changes in the load, they rarely consider the number of
available resources at some point.

This becomes especially critical for serverless applications that use queues and event-driven
architectures due to sudden changes in load and data sparsity [6]. Queues often store events during
their processing, leading to additional delays and making it difficult to predict the load [7]. To address
this issue, reference [8] combines queuing theory with methods for setting threshold values to
manage virtual machine activation and deactivation. This allows service providers to optimize their
financial costs but does not solve the problem of “cold start”.

Solving the problem of “cold start” delays requires methods that allow predicting future
workloads based on historical data and real-time indicators. Thus, in [9], the authors, using machine
learning methods, were able to obtain a forecast that was very close to the actual data. The correct
choice of the threshold value for microservices using the intelligent autoscaling system proposed in
[10] improved the system's response time compared to the default autoscaling system offered by the
cloud service provider.

Time series analysis is another popular technique for workload prediction. This technique
examines historical data and uses statistical approaches to identify trends [4]. Machine learning and
time series methods can create models to forecast message arrival rates in a distributed system,
considering seasonality and event patterns [11].

A major challenge remains deploying machine learning models in the cloud and integrating them
into existing serverless applications. The study [12] proposes a template for automated deployment
of AWS services for training and evaluating models, which confirms the possibility of using
predictive autoscaling in various serverless applications.

Despite many studies on automatic scaling and load forecasting of cloud resources, relatively little
attention is paid to serverless computing models. Our research aims to create a solution for a

serverless distributed application that uses message queues to automatically scale resources based
on metrics and machine learning algorithms.

3. Proposed methodology

We developed and launched a distributed application designed for batch data processing in AWS,
which is used for load forecasting and automatic resource scaling. The application's main feature is
its use of serverless technologies (Fig. 1).

Figure 1: Serverless Application Architecture for Batch Data Processing Using AWS SQS.

The main task of the developed application is to ensure distributed processing of large amounts
of data with a minimum number of errors. In these systems, a queue, typically AWS SQS, is the main
component, receiving events and distributing data to a set maximum number of processors, like AWS
Lambda. Depending on the current load, only the number of processors required at a particular
moment in time within the quota is started. Input data and processing results are stored on S3.

Another component of our application is AWS CloudWatch [13], which monitors AWS SQS,
namely resource usage metrics. From the perspective of the autoscaling problem, we will be
interested in two metrics:

• ApproximateNumberOfMessagesVisible – queue length.
• NumberOfMessagesSent – number of messages sent [14].

To automatically scale the developed application, we proposed a framework based on AWS
SageMaker [15]. This serverless service allows us to quickly build and deploy machine learning
models with minimal developer intervention.

The proposed framework consists of several components for interaction with AWS SQS (Fig. 2).
First of all, AWS CloudWatch collects the necessary metrics from AWS SQS, AWS EventBridge [16],
and AWS Lambda [17]. AWS EventBridge launches AWS Lambda at appropriate intervals according
to the schedule, and AWS Lambda receives predicted values from the trained model and adjusts the
number and main parameters of data processors, thus ensuring horizontal scaling.

Figure 2: Framework architecture for automatically scaling data processors.

The diagram of framework and distributed application interaction is presented in Figure3.

Figure 3: Framework and distributed application interaction diagram.

The interaction between the framework and the distributed application is as follows (Fig. 3):

1. AWS CloudWatch collects the necessary metrics from AWS SQS and stores them in S3.
2. A machine learning model is created and deployed in AWS SageMaker using stored metrics.
3. AWS EventBridge launches AWS Lambda according to a predefined schedule.

4. AWS Lambda accesses the deployed model and obtains predicted load indicators.
5. Based on the obtained indicators, AWS Lambda changes the settings of the data processors

accordingly.

The model is built using DeepAR, a learning algorithm for time series forecasting using recurrent
neural networks (RNNs). This algorithm can provide better accuracy than classical forecasting
methods such as autoregressive integrated moving averages (ARIMA) or exponential smoothing (ES)
[18, 19].

DeepAR boosts forecast accuracy by examining patterns from multiple related time series, unlike
traditional methods that rely on a single series. DeepAR produces point and probabilistic forecasts,
which is especially critical for capacity planning applications [19].
The accuracy of the forecast distribution is estimated using weighted quantile losses. The quantile
loss for the quantile q∈(0,1) is calculated as follows (1):

𝑄𝑄𝑄𝑄(𝑞𝑞,𝑦𝑦,𝑦𝑦�) = �
𝑞𝑞 ∙ (𝑦𝑦 − 𝑦𝑦�), 𝑖𝑖𝑖𝑖 𝑦𝑦 > 𝑦𝑦�
(1 − 𝑞𝑞) ∙ (𝑦𝑦� − 𝑦𝑦), 𝑖𝑖𝑖𝑖 𝑦𝑦 ≤ 𝑦𝑦� (1)

where:
q – the selected quantile (for example, 0.1, 0.5, or 0.9),
y – actual value,
ŷ – forecast for the corresponding quantile.
For a set of quantiles 𝑄𝑄 = {𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑘𝑘} the total weighted quantile loss is calculated as (2):

𝑄𝑄𝑄𝑄𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑤𝑤𝑡𝑡 =
1
𝑛𝑛
��𝜔𝜔𝑞𝑞 ∙

𝑞𝑞∈𝑄𝑄

𝑛𝑛

𝑤𝑤=1

𝑄𝑄𝑄𝑄 �𝑞𝑞,𝑦𝑦𝑤𝑤 ,𝑦𝑦�𝑤𝑤
(𝑞𝑞)� (2)

where [20]:
𝑛𝑛 – number of predicted points;
𝜔𝜔𝑞𝑞 – weight for quantile 𝑞𝑞;

𝑦𝑦�𝑤𝑤
(𝑞𝑞) – the prediction for the quantile𝑞𝑞 for the point 𝑖𝑖.

Also used [21, 22] were the mean absolute error (3) and the root mean square error (4):

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦𝑤𝑤 − 𝑦𝑦�𝑤𝑤|
𝑛𝑛

𝑤𝑤=1

 , (3)

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �
1
𝑛𝑛
�(𝑦𝑦𝑤𝑤 − 𝑦𝑦�𝑤𝑤)2.
𝑛𝑛

𝑤𝑤=1

 (4)

Building a DeepAR model consists of the following steps:

1. Collecting and formatting AWS SQS metrics.
2. Defining and training hyperparameters.
3. Training the model.
4. Testing the model.
5. Evaluating the results.
6. Deploying the model for further use.

The obtained prediction results are used to automatically scale data processors according to the
algorithm below using threshold values.

Algorithm 1. AWS Lambda provisioned concurrency changing
1: function AutoScaleLambda(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑡𝑡_𝑢𝑢𝑢𝑢, 𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛, 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐, 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐, 𝑖𝑖𝑛𝑛𝑐𝑐, target)
2: // Main loop that runs every 𝑁𝑁 minutes
3: loop every 𝑁𝑁 minutes
4: 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 ← GetPrediction(target)
5: 𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 ← GetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)
6: // If predicted value exceeds upper threshold
7: if 𝑣𝑣i𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 > 𝑡𝑡_𝑢𝑢𝑢𝑢 then
8: 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 + 𝑖𝑖𝑛𝑛𝑐𝑐
9: if 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 > 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐 then
10: 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐
11: end if
12: // Update provisioned concurrency
13: SetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐)
14: else if 𝑣𝑣𝑖𝑖𝑣𝑣𝑖𝑖𝑣𝑣𝑣𝑣𝑛𝑛 < 𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 then
15: 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑐𝑐𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑡𝑡_𝑐𝑐 - 𝑖𝑖𝑛𝑛𝑐𝑐
16: if 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 < 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐 then
17: 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐 ← 𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐
18: end if
19: // Update provisioned concurrency
20: SetProvisionedConcurrency(𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛𝑑𝑑_𝑐𝑐)
21: end if
22: // Wait for 𝑁𝑁 minutes before next iteration
23: Sleep(𝑁𝑁 minutes)
24: // end loop
25: end loop
26: end function

where:
𝑖𝑖_𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = Lambda function name,
𝑡𝑡_𝑢𝑢𝑢𝑢 = Scale-up threshold for ApproximateNumberOfMessagesVisible,
𝑡𝑡_𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛 = Scale-down threshold for ApproximateNumberOfMessagesVisible,
𝑛𝑛𝑖𝑖𝑛𝑛_𝑐𝑐 = Minimum provisioned concurrency,
𝑛𝑛𝑛𝑛𝑚𝑚_𝑐𝑐 = Maximum provisioned concurrency,
𝑖𝑖𝑛𝑛𝑐𝑐 = Increment step for scaling,
target = Historical time series values.
The framework built in this way will automatically scale data processors in distributed

applications using queues.

4. Results and discussion

Our experimental setup consists of a distributed application and a component for predicting and
automatically scaling data processors in the distributed application. The core of the application is a
queue – a component designed to store and send events for processing. Each event contains the
information necessary for successful processing.

To simulate the workload, Locust was used. This tool is effective for load-testing distributed
systems due to its scalability, ease of scripting, and monitoring and analysis capabilities [23].

During the application testing, the queue received 1082178 events within 90 minutes. At the same
time, we collected the approximate number of messages visible and number of messages sent metrics
for AWS SQS. Figure 4 and Figure 5 illustrate the collected data distribution.

Figure 4: Approximate number of messages visible.

Figure 5: Number of messages sent.

The collected data was used to train the DeepAR model. It is worth noting that DeepAR uses a
recurrent LSTM neural network (RNN). For training, we chose a minute-by-minute time series
granularity. The model required at least 30 steps of historical data for forecasting, with an initial
forecast length of 50 minutes.

The training results are presented in Figure 6 and Figure 7.

Figure 6: Approximate number of messages visible predicted values.

Figure 7: Number of messages sent predicted values.

To evaluate the resulting models, we used the mean absolute error and the root mean square error
for different numbers of layers. Figure 8 and Figure 9 represent a differentiation of the obtained
error values.

Figure 8: MAE and RMSE for different number of RNN layers for Approximate number of messages
visible predicted values.

Figure 9: MAE and RMSE for different number of RNN layers for Number of messages sent predicted
values.

By varying the number of layers, we found that the models demonstrate the best performance at
a value of 6 and can be used to predict the load of a distributed application.

The trained models were deployed in the cloud environment using AWS SageMaker, which
allowed us to make queries to predict the values of selected AWS SQS metrics and reduce the number
of cold starts (Fig. 10).

Figure 10: The number of cold starts after applying predictive autoscaling.

5. Conclusion

Our study presents a framework for predictive automatic scaling of computing resources in
serverless environments. The framework enables a transition from reactive to proactive scaling,
reducing “cold starts” and overload errors.

The DeepAR model shows a mean absolute error (MAE) of 10019.21 and a root mean square error
(RMSE) of 13140.91, indicating good prediction quality. Combining the proposed framework with
serverless applications contributes to the optimal use of computing resources without going beyond
the concept of serverless computing.

It should be noted that using prediction to scale data processors automatically reduced the
number of “cold starts” by (approximately) 27% and the number of unprocessed requests by
(approximately) 14%.

One of the limitations of the proposed framework is the lack of historical data, which DeepAR
needs to learn patterns. In scenarios where a time series has very few past observations (e.g., newly
created services), DeepAR may fail to model underlying trends, reducing forecast reliability
accurately [24].

Further research can focus on improving the quality and use of forecasting models. For example,
DeepAR allows building models based on multiple time series, which helps improve forecast
accuracy. A separate issue remains in determining the optimal values of hyperparameters for
training the DeepAR model. In addition, data sparsity and model drift require constant automatic
retraining.

Using additional SQS metrics enables essential horizontal and vertical scaling for queues with
varying event processing times.

Another important direction is the study of more efficient implementation of computing
infrastructure costs through automatic scaling [25]. Also, we can create the SageMaker pipeline to
update the DeepAR model with the latest data automatically.

The proposed framework is a practical automatic scaling tool for serverless applications that
improves performance and reliability in distributed systems.

Declaration on Generative AI
During the preparation of this work, the authors used ChatGPT, Grammarly in order to: Grammar
and spelling check, Paraphrase and reword. After using this tool/service, the authors reviewed and
edited the content as needed and take full responsibility for the publication’s content.

References

[1] S. Thumala, Building Highly Resilient Architectures in the Cloud, Nanotechnology
Perceptions 16 (2020) 164-284.

[2] P. Gupta, M.K. Goyal, S. Chakraborty, A.A. Elngar, Machine Learning and Optimization
Models for Optimization in Cloud, 1st ed., Chapman and Hall/CRC, 2022.
doi:10.1201/9781003185376.

[3] A. Mampage, Autonomous Resource Management for Serverless Computing, Ph.D. thesis,
School of Computing and Information Systems the University of Melbourne, Melbourne,
Australia, 2023.

[4] S. Alharthi, A. Alshamsi, A. Alseiari, A. Alwarafy, Auto-Scaling Techniques in Cloud
Computing: Issues and Research Directions, Sensors 24 (2024) 5551. doi:10.3390/s24175551.

[5] A. Singhvi, A. Balasubramanian, K. Houck, M.D. Shaikh, S. Venkataraman, A. Akella, Atoll: A
scalable low-latency serverless platform, in: Proceedings of the ACM Symposium on Cloud
Computing, SoCC '21, ACM Press, New York, NY, USA, 2021, pp. 138–152.
doi:10.1145/3472883.3486981

[6] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu, V. Shankar, P. Sarda,
Cloud Programming Simplified: A Berkeley View on Serverless Computing, arXiv preprint
arXiv:1902.03383, 2019. doi:10.48550/arXiv.1902.03383.

[7] L. Wang, M. Zhang, J. Han, G. Chen, H. Chen, Peeking Behind the Curtains of Serverless
Platforms, in: Proceedings of the 2018 USENIX Annual Technical Conference (ATC '18),
USENIX Association, Boston, MA, 2018, pp. 133–146.

[8] T. Tournaire, H. Castel-Taleb, E. Hyon, Efficient Computation of Optimal Thresholds in Cloud
Auto-scaling Systems, in: ACM Transactions on Modeling and Performance Evaluation of
Computing Systems, volume 8, issue 4, article no. 9, ACM, 2023, pp. 1–31. doi:10.1145/3603532.

[9] M.B. Taha, Y. Sanjalawe, A. Al-Daraiseh, S. Fraihat and S.R. Al-E’mari, Proactive Auto-Scaling
for Service Function Chains in Cloud Computing Based on Deep Learning, in: IEEE Access,
volume 12, 2024, pp. 38575-38593. doi: 10.1109/ACCESS.2024.3375772

https://doi.org/10.1201/9781003185376
https://doi.org/10.1145/3472883.3486981
https://doi.org/10.48550/arXiv.1902.03383

[10] A.A. Khaleq, I. Ra, Intelligent Autoscaling of Microservices in the Cloud for Real-Time
Applications, in: IEEE Access, volume 9, 2021, pp. 35464-35476.
doi:10.1109/ACCESS.2021.3061890.

[11] H. Muccini, K. Vaidhyanathan, A Machine Learning-Driven Approach for Proactive Decision
Making in Adaptive Architectures, in: IEEE International Conference on Software
Architecture Companion (ICSA-C), Hamburg, Germany, 2019, pp. 242-245, doi:10.1109/ICSA-
C.2019.00050.

[12] A. M. Nestorov, Optimizing Serverless Architectures for Data-Intensive Analytics Workloads,
Ph.D. thesis, Universitat Politècnica de Catalunya - BarcelonaTECH, 2024.

[13] What is Amazon CloudWatch? 2025. URL:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWath.ht
ml

[14] Amazon Simple Queue Service, 2024. URL: https://aws.amazon.com/sqs
[15] Amazon SageMaker, 2024. URL: https://aws.amazon.com/sagemaker/
[16] Amazon EventBridge, 2024. URL: https://aws.amazon.com/eventbridge/
[17] What is AWS Lambda? 2025. URL:

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html.
[18] Use the SageMaker AI DeepAR forecasting algorithm, 2025. URL:

https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html.
[19] T. Januschowski, D. Arpin, D. Salinas, V. Flunkert, J. Gasthaus, L. Stella, P. Vazquez, Now

available in Amazon SageMaker: DeepAR algorithm for more accurate time series forecasting,
2018. URL: https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-
sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/

[20] D. Salinas, V. Flunkert, J. Gasthaus, T. Januschowski, DeepAR: Probabilistic forecasting with
autoregressive recurrent networks, International Journal of Forecasting 36 (2020) 1181–1191.
doi:10.1016/j.ijforecast.2019.07.001.

[21] A. Samad, I. M. Khan, Rahaman, M. A. Islam, Data-driven approach to predict future oil
production of an Oil Field using machine learning techniques, in: Proceedings of the 8th
International Conference on Mechanical, Industrial and Energy Engineering 2024, Khulna
University of Engineering and Technology, 2025.

[22] D. Bliedy, M. H. Khafagy, R. M. Badry, Dynamic Resource Utilization Prediction Model for
Cloud Datacenter, IAENG International Journal of Applied Mathematics 55 (2025) 307–331.

[23] J. Heyman, L. Holmberg, A. Baldwin, C. Byström, J. Hamrén, H. Heyman. What is Locust?
2025. URL: https://docs.locust.io/en/stable/what-is-locust.html.

[24] K. Yemets, Time Series Forecasting Model For Solving Cold Start Problem Via Temporal
Fusion Transformer, Computer Systems and Information Technologies 1(2024) 57–64. doi:
10.31891/csit-2024-1-7.

[25] S. Ponnusamy, M. Khoje, Optimizing Cloud Costs with Machine Learning: Predictive
Resource Scaling Strategies, in: 2024 5th International Conference on Innovative Trends in
Information Technology (ICITIIT), Kottayam, India, 2024, pp. 1-8. doi:
10.1109/ICITIIT61487.2024.10580717.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWath.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWath.html
https://aws.amazon.com/sqs
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/eventbridge/
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/sagemaker/latest/dg/deepar.html
https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/
https://aws.amazon.com/blogs/machine-learning/now-available-in-amazon-sagemaker-deepar-algorithm-for-more-accurate-time-series-forecasting/
https://docs.locust.io/en/stable/what-is-locust.html

	1. Introduction
	2. Related works
	3. Proposed methodology
	4. Results and discussion
	5. Conclusion
	Declaration on Generative AI
	References

