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Abstract 
GUI MATLAB application developed offers a robust platform for both graphical and numerical analysis of 
wave numbers and wave velocities within coupled thermoelastic systems. It enables the examination of how 
frequency affects the behavior of P-primary and S-secondary waves across different rock types, utilizing 
physical properties from Kazakhstan's geological deposits. This method yields critical insights into the 
impact of geological conditions on wave propagation, which is essential for evaluating seismic risks and  
designing resilient structures. Furthermore, the application enhances the visualization and interpretation of 
results  by  providing  detailed  graphs  and  tables.  This  feature  facilitates  a  thorough  analysis  of  the 
relationship between wave numbers, velocities, and frequency, thereby deepening the understanding of  
thermoelastic material behavior. The tool's capabilities are valuable for scientific research and practical  
geophysical and engineering applications, aiding in precise geological risk assessment and the development 
of effective risk management strategies.
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1. Introduction

Thermoelasticity problems in solids investigate the interaction between temperature and elastic  
deformations in materials when they are subjected to temperature changes. The basic idea is that a  
change in temperature not only causes thermal expansion or contraction of the material but can also 
create additional mechanical stresses that affect its elastic properties.  This leads to the need to 
consider the relationship between the temperature field and the deformation field in the equations of 
mechanics  and  thermodynamics.  For  example,  sudden  changes  in  temperature  can  cause  the 
development of cracks or other defects in solids, which is important to consider when designing and 
operating materials in various engineering applications.

Coupled  thermoelasticity  problems involve  considering how the  rate  of  change  in  the  first 
invariant of the strain tensor affects the first law of thermodynamics, linking temperature and strain 
fields and thus integrating elastic and thermal fields. This interplay becomes significant when rapid 
changes in thermal boundary conditions or other thermal loads trigger the propagation of thermal  
stress waves [1-7]. 

Mathematically handling coupled thermoelasticity problems analytically is quite complex, and as 
a result, only basic cases have been explored in the literature. Historically, analytical solutions have 
been limited  to  problems in infinite  spaces,  half-spaces,  and layers.  To  address  more  complex 
scenarios, numerical methods such as finite element and boundary element techniques have been 
employed. Additionally, there have been several published analytical solutions for one-dimensional 
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coupled thermoelasticity problems in both rectangular and cylindrical geometries, often utilizing 
Laplace transforms [8,9].

MATLAB provides powerful tools for solving thermoelastic problems in solids with its built-in 
functions and numerical simulation tools. With MATLAB, you can use finite element methods (FEA) 
and  boundary  element  methods  (BEA)  to  analyze  complex  thermoelastic  problems.  MATLAB 
includes specialized packages such as Partial Differential Equation Toolbox and Thermal Analysis 
Toolbox, which allow you to model and analyze the interaction of temperature and mechanical fields. 
Users can create and solve models considering various geometries, boundary conditions, and physical 
properties,  and  visualize  the  results  for  a  deep  understanding  of  the  temperature  and  stress 
distribution in the material.

The purpose of this article was to show the creation and use of a computer GUI MATLAB 
application, which has been developed to address the issue of wave generation and propagation in 
thermoelasticity  problems  for  different  types  of  rocks,  specifically  sourced  from  deposits  in 
Kazakhstan [10].

2. Physical characteristics of rocks

A thermoelastic medium refers to a material that exhibits thermoelastic properties, meaning it can 
return to its original shape after being deformed due to temperature changes. When exposed to 
varying temperatures,  such materials experience thermal expansion or contraction, resulting in 
thermal deformation. However, their inherent elastic properties enable them to recover their shape 
when subjected to thermal stress. This characteristic is crucial in fields such as engineering and 
construction, where thermoelastic materials help mitigate thermal deformation and avert structural 
damage. Examples include specialized alloys, polymers, and composites used in industries such as 
aerospace, construction, and electronics. 

An isotropic body, on the other hand, is characterized by uniform properties in all directions. In  
materials  science and physics,  isotropy refers to consistent  mechanical,  thermal,  electrical,  and 
optical  properties  throughout the material.  For thermal  conductivity,  an isotropic  body has an 
identical capacity to conduct heat in all directions, meaning its thermal conductivity is direction 
independent.

Each  rock  type,  including  those  from  Kazakhstan's  deposits,  possesses  a  unique  set  of 
characteristics that are crucial for understanding and predicting the future behavior of geological 
formations. Knowledge of these properties is essential for accurate calculations and assessments 
related to rock stability, deformation, and overall response to various geological and mechanical 
stresses. Properly accounting for these specific characteristics ensures more reliable predictions and 
effective management of geological resources and challenges [11].

Thus,  an  isotropic  thermoelastic  medium  is  characterized  by  a  finite  number  of  positive 
thermodynamic parameters (Table 1): mass density  ρ, E – Young’s modulus, ν - Poisson's ratio. 

Thermal diffusivity coefficient κ ¿
λ0
bε

, [κ ]=m2/ sec- a physical parameter characterizing the rate of 

temperature equalization in a substance,  λ0- thermal conductivity coefficient,  bε -  specific heat 

capacity at constant deformation. The constant γ ≡(3 λ+2 μ )at, having the dimension [γ]=N/m2*K, 
is associated with the property of expansion of a free element of an isotropic body with increasing 
temperature, at is the coefficient of linear thermal expansion. The quantity η=γ T 0 /γ0 has dimension 

[γ]=K*sec/m², where T 0 is the current absolute temperature of the environment in natural (initial) 
state, measured in degrees Kelvin (K). Key thermoelastic constants include Lamé constants:

λ= νE
(1+ν ) (1−2 ν )

, μ= E
2 (1+ν )                                                     (1)



Lamé constants (also known as Lamé coefficients) are material constants that describe the elastic 
properties of a material in terms of elasticity theory. These constants are used in theory to describe 
the response of a material to mechanical stress and strain. Constant λ is associated with volumetric 
changes in the material under the influence of mechanical pressure. It is often called the "volumetric 
elastic deformation coefficient". Constant μ is called the "transverse modulus of elasticity" or "Lamé 
coefficient" and is associated with the change in shape of a material under the influence of mechanical 
stress [2,3].

Table 1
Thermal and elastic characteristics of rocks. 

Initial temperature . 
In particular, the following rocks from Kazakhstan deposits were considered: cataclastic granite, 

medium- and coarse-grained (Bolshoy Karatau deposit); sandstone (Central Karatau); silicified shales 
(Maly Karatau); limestone between ore layers (Akatuevskoe deposit); siltstone (Karaganda basin).

3. Mathematical statement of the problem of coupled thermoelasticity

Granite Sandstone Limestone Siltstone Shale

, [kg/m³] 2,61 2,69 2,72 2,69 2,77

, [N/m²] 4,02 4,13 5,2 3,87 5,25

 0,26 0,09 0,21 0,29 0.15

, [W/m K] 2,4 1,66 2,4 1,49 2,46

, [J/N K] 946 972 887 880 866

, [1/K] 0,8 0,64 0,53 0,5 0,68

, [m/sec] 5600 3272 3243 2390 4493

, [m/sec] 2750 1293 1808 1204 2879

, [kg/m sec²] 1,974 0,45 0,89 0,39 2,296

, [kg/m sec²] 4,24 1,98 1,08 0,756 1

, [Pa/K] 13,3 2,5 2,65 1,5 5,2

, [K sec/m²] 1,7 0,44 0,32 0,29 0,6

, [m²/sec] 9,27 9,86 11,27 10,28 9,46



Under  certain  assumptions  of  continuity  and  homogeneity  of  the  medium the  dynamics  of  a 
thermoelastic medium (rock) is defined by the system of differential equations of mixed hyperbolic–
parabolic type [12-15]. In Cartesian coordinate system, it has the next form:

( λ+μ )u j , ji+μui , jj−γ θ , i+F i=ρ üi

Δθ− 1
κ
θ̇−η u̇ j , j+

1
κ
Q=0                                                      (2)

Thus,  ui (x , t ) are  the  components  of  a  displacement  vector;  θ( x , t ) is  temperature; 

F ( x , t )=F i ei are surface forces; ei are unit basis vectors; Q ( x , t ) is a heat source; at i,j=1,…, N 
(N=2 by plane deformations and N=3 in the 3D case).

The stress tensor  σ ij (x , t ) is related to displacements  u (x , t ) and temperature  θ (x , t ) by the 
Duhamel–Neumann law:

σ ij=( λuk ,k+γθ )δ ij+μ(ui , j+u j , i )                                                 (3)

Here δ ij is Kronecker symbol. 
Everywhere  the  symbol  ui , j denotes  partial  derivatives  with  respect  to  coordinates: 

ui , j≡∂ui /∂ x j,  the symbol  u̇ denotes  differentiation with respect  to  time t:  u̇=∂u /∂ t .  Tensor 
convolution applies in formulas to repeated indices (summation from 1 to N). 

Thus, governing equations of motion of thermoelastic media (2) will be described taking into 
consideration (3) as follows:

,          i, j= 1,…,N                               (4)

- the dot above the symbol denotes the differentiation with respect to time. 
Now system of equation (4) is reduced to the form:

                                                     (5)

where γ=v/ρ,  ,  c1=√( λ+2 μ )/ ρ – speed propagation of an elastic irrotational wave 

(compression - expansion wave) in corresponding  ( λ , μ , ρ ) elastic medium,  c2=√μ / ρ – speed 
propagation of an elastic wave of distortion (rotations), causing a change in shape without a change 
in volume (the velocities of longitudinal (P wave) and transversal (S wave) waves in the thermoelastic 
media).

4. Thermoelastic waves: P and S waves. Wave numbers

Let  us  consider  the  distribution of  shock thermoelastic  waves  in  the thermoelastic  media  and 
conditions  on  the  fronts.  The  system of  equations  (5)  of  mixed  hyperbolic-parabolic  type.  Its 
characteristic equation has the form [16-18]:

  ,                            (6)



here   is  the  differential  operator  of  the  equations  of  motion  of  the  (λ,µ,ρ)-elastic  body.  

 is the normal vector to the characteristic surface in .  is the 

main part of the differential operator , moreover  contains only the highest derivatives 

of the second order.  It follows from (6) that

either               or              

The first correlation describes the characteristic surface of the classical parabolic equation, which 

does not determine the wave front in R⁴. The second correlation describes the wave fronts  moving 

in R³ with the velocity

                         j=1,2                                 (7)

That is, the wave fronts (thermal shock waves) in a thermoelastic medium move with the velocity 
of elastic waves.

The characteristic  equation can denote the equation derived from solving linear  differential 
equations  with  constant  coefficients.  This  equation  yields  solutions  expressed  as  exponential  
functions, which determine the system's behavior over time. 

For a system of differential equations (5) that models the stress-strain state of a material, the 

characteristic equation typically has six roots (wave numbers): four complex roots ζ 1
2 , ζ 2

2 and two real 

roots ζ 3
2.

ζ 1
2=1
2 [ω2

c1
2 −

i ω (1+ε )
κ

+√(ω2

c1
2 −

iω (1+ε )
κ )

2

+ 4 i ω
3

κ c1
2 ] 

ζ 2
2=1
2 [ω2

c1
2 −

iω (1+ε )
κ

+√(ω2

c1
2 −

iω (1+ε )
κ )

2

+ 4 i ω
3

κ c1
2 ]                                   (8)

ζ 3
2=ω2

c2
2 ε= γηκ

λ+2 μ  

Here ω is the frequency of waves (P and S waves) (Figure 1) [19].
By delving into the details of wave propagation in various rocks, researchers can gain deeper 

insights into their behavior under different conditions, ultimately improving our understanding of  
their physical properties. In the context of linear thermoelasticity, where small deformations and 
temperature changes are assumed, the wave equations can be derived for both mechanical (elastic) 
and thermal waves. The wave numbers, which represent the spatial variation of the waves, are 
related to the frequency of the waves through the dispersion relation (8).

Body waves can be further sub-categorized into:
P waves (Primary waves)
S waves (Secondary waves)



Figure 1: P and S waves distribution.

Wave numbers in the context of thermoelastic waves in rocks refer to the spatial frequency of the 
wave,  essentially  describing  how  the  wave’s  amplitude  varies  with  position.  In  linear 
thermoelasticity, where both small deformations and temperature changes are considered, the wave 
numbers help determine how waves, both mechanical (elastic) and thermal, propagate through the 
rock. The relationship between wave numbers and wave frequency is governed by the dispersion 
relation, which links these parameters and reveals how waves of different frequencies spread in the 
medium.

4.1. P Waves

P waves, or Primary waves (their wave numbers are four complex roots ζ 1
2 , ζ 2

2  from (8)), are the 

earliest seismic waves recorded by seismographs and are distinguished by their high propagation 
speed. These waves can traverse solids, liquids, and gases, generating a sequence of compressions and 
rarefactions in the medium. Consequently, P waves are also known as pressure waves. Certain 
animals, such as dogs, can detect these waves before the surface waves of an earthquake reach the  
area, whereas humans typically perceive the effects only after the waves have interacted with the 
Earth's crust. 

Longitudinal waves, such as P waves, are distributed through the Earth's interior during an 
earthquake, propagating as compressional waves that move parallel to the direction of wave travel.  
These waves travel through various layers of the Earth, including the crust, mantle, and core, and 
their  propagation is  influenced by the material  properties of  these layers,  such as density and 
elasticity.  As P waves encounter different geological  formations,  their  speed and direction can 
change, leading to complex wave patterns. The distribution of these longitudinal waves is crucial for 
understanding the internal structure of the Earth and for interpreting seismic data, as variations in 
wave behavior provide insights into subsurface features and the nature of the seismic event [20,21].

4.2. S Waves

S waves, or secondary waves (their wave numbers are two real roots ζ 3
2  from (8)), , are the second 

type of seismic waves to reach a seismograph during an earthquake. They travel more slowly than P 
waves and are restricted to movement through solid materials only. By analyzing the path of S waves 
as they traverse different layers of the Earth, scientists have determined that the Earth's outer core is 
in a liquid state. This insight was pivotal in understanding the composition and structure of the  
Earth's interior. It is after studying the trajectory of S waves through the layers of earth, scientists  
were able to conclude that the earth’s outer core is liquid.

Transverse waves, such as S waves, exhibit a distinct propagation pattern during an earthquake.  
Unlike longitudinal waves that move in the direction of wave travel, transverse waves oscillate 
perpendicular to the direction of propagation. In the context of seismic activity, S waves create shear 
forces as they travel through the Earth's crust and upper mantle. These waves move more slowly 



compared to P waves and can only propagate through solid materials, not through liquids or gases.  
The  nature  of  transverse  waves  allows  them to  cause  significant  ground  shaking,  which  can 
contribute to the overall impact and damage of an earthquake. Their behavior and propagation are 
crucial for understanding the internal structure of the Earth and assessing seismic hazards.

Here  we have  calculated  the  dependence  of  the  roots  of  the  characteristic  equation  (wave 
numbers) (8) on the frequency ɷ - 1 to 10 Hz for various rocks (GUI MatLab program code snippet is 
shown on Figure 2, dependence of wave numbers on frequency for different rocks - Figure 3-6).

Figure 2: GUI MatLab program code snippet.

Different  rocks  have  varying  material  properties  that  affect  their  wave  propagation 
characteristics,  such as  density  and thermal  conductivity.  These properties  influence the wave 
numbers and,  consequently,  how waves travel  through the rock.  Accurate knowledge of  these 
properties is crucial for predicting wave behavior and understanding the rock's response to thermal 
and mechanical stresses. 

It's important to note that the specific values of these parameters for different rocks would need to 
be known or estimated to analyze the dependence of wave numbers on frequency for those particular 
rocks (Table 1). Additionally, the above equations are simplified for isotropic materials; anisotropic 
materials would involve more complex expressions. The study of coupled thermoelasticity in rocks is 
crucial for understanding their response to thermal and mechanical loading, which is relevant in 
geophysics and geomechanics.

Figure 3: Dependence of wave numbers on frequency for shale.



Figure 4: Dependence of wave numbers on frequency for limestone.

Figure 5: Dependence of wave numbers on frequency for granite.

Figure 6: Dependence of wave numbers on frequency for siltstone.

Wave  numbers,  which  describe  the  spatial  frequency  of  seismic  waves,  are  fundamental  in 
characterizing earthquake behavior, particularly at a frequency of 10 Hz. At this frequency, the wave 



numbers help determine how waves propagate through different geological materials, influencing 
their  speed  and  amplitude.  By  analyzing  wave  numbers,  scientists  can  gain  insights  into  the 
earthquake's  impact  on  various  rock  types  and  the  underlying  structure  of  the  Earth's  crust. 
Understanding these characteristics is crucial for accurate seismic modeling, hazard assessment, and 
designing structures resilient to earthquake-induced stresses.

5. Computer  implementation  of  mathematical  model  of  coupled 
thermoelastodynamics in form of GUI MatLab Application

MATLAB, with its extensive computational capabilities, is widely used in thermoelastodynamics to 
model  and analyze complex interactions between thermal and elastic  phenomena.  Its  powerful 
mathematical toolbox allows for the efficient solving of partial differential equations governing 
thermoelastic  behavior,  enabling researchers to simulate how materials deform and respond to 
thermal  changes.  MATLAB’s  scripting  and  programming  environment  provides  flexibility  for 
customizing simulations and performing in-depth analyses of thermoelastic systems.

The graphical user interface (GUI) in MATLAB further enhances its utility by offering a user-
friendly platform for visualizing and interacting with simulation results. Through GUIs, users can 
create interactive tools to manipulate parameters, visualize thermoelastic wave propagation, and 
interpret data in real-time. This interface simplifies the process of model setup, execution, and 
analysis,  making it  accessible  to  both  experienced  researchers  and  those  new to  the  field.  By 
integrating MATLAB’s computational strength with intuitive GUI features, users can efficiently 
explore and understand complex thermoelastodynamic phenomena.

Here we have created the GUI MatLab application to calculate the problem thermoelastic waves 
distribution in the coupled thermoelastic media. The specific numerical methods is employed here to 
solve the boundary value problems of coupled thermoelasticity - method boundary integral equations 
using generalized functions [12,19].

These numerical methods work together within the MATLAB GUI to provide a robust framework 
for simulating coupled thermoelastic behavior in rocks. By integrating these techniques, users can 
obtain accurate predictions and insights into the thermal and mechanical interactions in geological 
contexts.

5.1. Input data for GUI MatLab application 

In  MATLAB's  GUI  for  coupled  thermoelasticity  in  rocks,  input  data  is  crucial  for  accurately 
simulating and analyzing the interactions between thermal and mechanical stresses. Users must 
provide detailed material properties such as thermal conductivity, elasticity, density, and specific 
heat capacity for the rocks under study.  Additionally,  boundary conditions,  initial  temperature 
distributions, and loading conditions must be specified to reflect real-world scenarios. The GUI 
facilitates the input of these parameters through user-friendly forms and data entry fields, allowing 
for easy customization and adjustment. This structured input process ensures that the simulations 
are based on precise and relevant data, enabling accurate predictions of thermoelastic behavior and 
helping to interpret the impact of thermal and mechanical interactions in geological contexts (Figure 
7).



Figure 7: Input data program code snippet.

Input data for application will be implemented from (1) and (7) and calculated as:
κ=λ0 /bε,                γ ≡ (3 λ+2 μ )α t                                                   (9)

η≡
γ T 0
λ0

, μ>0 ,3 λ+2 μ>0 , γ / η>0 , κ>0.

In MATLAB's GUI for coupled thermoelasticity, inputting data is streamlined to ensure both 
efficiency  and  accuracy  in  simulations.  Users  can  quickly  enter  material  properties,  boundary 
conditions,  and  loading scenarios  using intuitive  data  entry  forms.  Once  the  data  is  inputted,  
MATLAB processes it rapidly, leveraging its computational power to perform complex calculations 
and simulations. The results are then swiftly visualized through dynamically generated graphs and 
numerical  outputs,  providing  immediate  feedback  on  thermoelastic  behavior.  This  seamless 
integration of data input, calculation, and visualization allows for efficient exploration of various 
scenarios and facilitates a deeper understanding of the coupled thermal and mechanical responses in 
geological materials.

5.2. GUI MatLab Application

The creation of a MATLAB GUI application (Figure 8) for calculating wave numbers as a function of 
frequency for various rocks within the framework of coupled thermoelasticity involves several key 
steps. Initially, the GUI is designed to facilitate user input for critical parameters such as material  
properties, including density, thermal conductivity, and elastic moduli of different rocks. Users can 
specify these parameters through intuitive input fields and drop-down menus, allowing for flexible 
and accurate modeling of various geological scenarios. The application is programmed to incorporate 
these  inputs  into  computational  models  that  solve  the  relevant  partial  differential  equations 
governing wave propagation in coupled thermoelastic systems.

Once the input data is provided, the GUI facilitates the rapid computation of wave numbers across 
a range of frequencies. The application uses MATLAB’s robust numerical algorithms to perform 
these calculations, ensuring high precision and efficiency. Results are then displayed in real-time 
through dynamically updated graphs and tables, enabling users to visualize how wave numbers vary 
with frequency for the specified rock types. This interactive and visual approach not only aids in the 
immediate  interpretation  of  results  but  also  supports  iterative  analysis,  making  it  easier  for 
researchers to explore different scenarios and refine their models based on the computed data.



Figure 8: Interface of GUI MatLab Application.

This application focuses on graphical and numerical calculations of wave numbers as a function of 
frequency. The application analyzes wave numbers corresponding to primary (P) and secondary (S) 
waves of thermoelastic waves at frequencies ranging from 0 to 10 Hz. This allows one to study how 
wave behavior changes with frequency, which is key to understanding the interaction of wave 
processes with geological conditions.

The  application  provides  sets  of  physical  properties  for  five  different  rocks  extracted  from 
deposits in Kazakhstan. These data include density, thermal conductivity, and elastic moduli, which 
are used to model the behavior of waves in different types of rocks. Such sets of properties allow one 
to conduct a detailed study that takes into account the specifics of each type of rock and their 
influence on the propagation of thermoelastic waves.

The calculation process in the application includes not only the determination of wave numbers, 
but  also  the  study of  the velocities  of  longitudinal  and transverse  waves.  These velocities  are 
important indicators for assessing the behavior of rocks under earthquakes and other dynamic 
effects.  Wave velocity  analysis  allows identifying the  features  of  wave propagation in various 
geological environments and assessing their impact on the stability and safety of structures. Such 
problems  have  been  discussed  in  various  sources  [22-25];  however,  specific  issues  related  to  
particular rock types have not been addressed, with a primary focus on the theoretical aspects of 
these types of problems.

In addition, the application provides the user with the ability to visualize the calculation results in 
the form of graphs and tables, which simplifies the interpretation of data and allows for comparative 
analysis. Such graphical representations help to better understand the dependence of wave numbers 
and velocities on wave frequency and facilitate a more in-depth analysis of the behavior of rocks 
under various conditions of seismic and thermoelastic effects.

6. Conclusion



In conclusion, the developed application for MATLAB provides an effective tool for graphical and 
numerical analysis of wave numbers and wave velocities in thermoelastic systems. It allows to study 
the influence of frequency on the behavior of primary and secondary waves in various rocks using 
the physical characteristics of rocks from Kazakhstan deposits. This approach provides valuable 
information on how geological conditions affect wave propagation, which is important for seismic 
risk assessment and design of sustainable structures. 

The application also facilitates visualization and interpretation of calculation results, providing 
the user with clear graphs and tables. This allows for a more in-depth analysis of the dependence of 
wave numbers  and velocities  on frequency,  improving the  understanding of  the  thermoelastic 
behavior of materials. Such capabilities make the tool useful for both scientific research and practical 
applications in the field of geophysics and engineering, contributing to a more accurate assessment of 
geological risks and the development of effective solutions for their management.
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