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Abstract
In the evaluation of heart conditions, the Electrocardiogram (ECG) is a tool cannot be done without by the 
physicians.  It  is  also vital  to achieve excellent signal  quality free from noise for greater accuracy in  
diagnostics. This paper also proposes a new ANN infrastructure for implementing the ECG signal denoising 
by designing a multilayer ANN that has not been developed earlier in the literature. In contrast,  our  
approach hereby detailed does not require extreme measures of minimizing noise because the ANNs are 
inherently suited for detecting signal patterns from noise. We train our ANN using a noisy ECG signal as 
input and using a reference to the denoised signal as the desired output. The performance and evaluation of 
our presented model is calculated through (RMSE), with gradient descent method (GDM) used to optimize  
the  network  weights  to  achieve  the  minimum  RMSE.  This  process  determines  the  precise  MMSE 
configuration  that  can  minimize  the  mean-squared  error  in  noise  elimination.  Therefore,  from  our 
experiments, it can be concluded that presented model provides more reliable approach, as compared to  
conventional technique like genetic optimize wavelet thresholding (GOWT), for preserving the integrity of 
the signal. Our proposed method outshines the existing methods in performance terms, as indicated by the 
key performance metrics which includes, (RMSE) of 0.0031, smoothness index (R) of 0.6070, and (SNR) of 
35.8188. When compared and validated against the MIT-BIH ECG dataset, it is clear that our presented 
model offers better denoising capabilities and is easily implementable for real-world ECG signal analysis.  
This novel approach creates new opportunities for furthering the diagnostic capacity of ECGs and has the  
potential to become a groundbreaking tool in the biomedical signal processing field, providing a quantum 
leap in healthcare technology in the future.
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1. Introduction

The ECG signal recording is produced every time the heart beats and is associated with the electrical 
activity in cardiac muscles. This electrical action is measured by electrodes that are attached to the 
skin and which pick up the changes in electrical potential of skin with each beat [1]. The abnormal 
ECG waveform is actual voltage manifestation of depolarization and repolarization of atrial and 
ventricular musculature linking the electrodes sited on the left and right chest. These signals similar 
in  type  are  dissimilar  in  nature  in  the  case  of  different  patients  and therefore  require  unique 
comparison signals for precise medical diagnosis [2], [3].  However, the presence of noise – usually 
caused by interference from a number of electrical devices- makes the diagnostic process difficult. 
ECG signal and muscle noise, which often occupies nearby frequency range, makes the task even 
more challenging, as simple digital filtering may have an impact, for instance, on the ST-segment. To 
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address  this  challenge,  two  primary  approaches  have  emerged:  It  is  specifically  based  on  the 
structural feature-based methods and template matching techniques. The former is heuristic and 
specific to some components such as the QRS complex while the later implies reconstructing a signal 
from other known part by part or by correlation-matched filter or some other methods of pattern 
recognition. These approaches have gone further each to advance diagnostic for many forms of heart 
disease [4], [5]. The most used techniques for noise elimination involve using filters and wavelet 
transforms, the later being however challenged with problems such as slow convergence rate and 
higher  mean  square  error.  For  noise  reduction  other  techniques  such  as  the  Empirical  Mode 
Decomposition (EMD) have been used and are also flawed [6]. But the weakness of the convergence 
rate and the mean square error often discourages the use of wavelet transforms. As discussed above, 
there are several techniques, including Empirical Mode Decomposition (EMD) methods, which try to 
reduce the level of ECG noise but which have some drawbacks.  The aim of this paper lies in  
presenting the new method to filtering the signals of ECG Poincare plot using ANN trained with GD. 
In contrast to most filters out there, our approach maintains the diagnostic quality of ECG signal 
while at the same time getting rid of most of the noise. Examples also indicate that signal quality  
increases when using our proposed technique by a factor that could benefit medical analysis.

Table 1
Literature review of ECG denoised techniques

Literature Purpose Method Key Findings Challenges

[7]
To investigate the use of 
Transformer models in 

ECG denoising

Transformer-based 
Neural Networks

Demonstrated significant 
improvement in noise 
reduction and feature 

preservation, especially in 
highly noisy environments

High computational cost, 
potential model 

complexity increases 
overfitting risks

[8]

To examine the use of 
hybrid deep learning 

and traditional filtering 
techniques for ECG 

denoising

Hybrid CNN + 
Kalman Filter

Achieved superior 
performance by combining 

deep learning accuracy with 
traditional filtering reliability

Increased computational 
load and complexity

[9]

To implement attention 
mechanisms in deep 

learning models for ECG 
denoising

Attention 
Mechanisms in 

CNNs

Improved the model’s focus 
on critical signal components, 

enhancing noise reduction 
accuracy

Computationally 
intensive, risk of 

overfitting in small 
datasets

[6]

To enhance ECG signal 
denoising using 
empirical mode 

decomposition (EMD)

Empirical Mode 
Decomposition

Improved noise reduction 
compared to traditional 

filtering techniques

Computationally 
intensive, limited 

performance in highly 
noisy conditions

[10]

To apply template 
matching techniques for 

accurate ECG signal 
denoising

Template 
Matching, 

Correlation, 
Matched Filtering

Increased accuracy in 
identifying and denoising 
specific ECG components

Requires precise template 
creation, may not 

generalize well to varied 
noise types

[11]

To utilize heuristic 
methods for targeted 

noise reduction in ECG 
signals

Structural Feature-
Based Heuristic 

Methods

Effective in denoising specific 
components like QRS complex

Selective to specific 
components, less effective 

for overall signal 
denoising

[12]
To explore the use of 

deep learning for ECG 
signal denoising

Convolutional 
Neural Networks 

(CNNs)

High accuracy in noise 
reduction, preserved critical 

ECG features

Requires extensive 
computational resources, 
potential overfitting to 

training data

[13]

To combine wavelet 
transform and machine 
learning for robust ECG 

denoising

Wavelet Transform 
+ Support Vector 
Machines (SVM)

Enhanced noise reduction and 
signal preservation compared 

to individual methods

Complex implementation, 
increased computational 

requirements



Table 1 reveals that a variety of techniques have been used as methods to filter out noises in the 
ECG signal. The wavelet transform method used for the noise reduction yielded some improvement 
in attenuation of noise and retention of signal details but some problems such as low convergence 
rate  and  high  mean  square  errors  were  realized.  The  empirical  mode  decomposition  method 
improved the noise reduction more than the simple filtering methods,  but it  was slow and its  
efficiency was low only in high noise conditions. Feature-based methods for dealing with noise 
improved the accuracy of identifying and noise reduction of certain ECG parts, which depended on 
the creation of a template and did not allow for variability in the noise. As for the heuristic methods 
based on structural features, they are with a high capability of denoising specific components such as 
the QRS complex, but they only have this capability for specific components and cannot offer a good 
signal denoising solution in overall. CNNs received high mean accuracies for noise reduction and 
well-maintained features of ECG signals but it consumed more time, computational power and was 
prone to overfitting. Application of wavelet transform in combination with support vector machines 
(SVM) proved to be superior to solely applying wavelet transform or SVM at the same time, but the 
application was more complicated as well as required more computational power.

2. Materials and methods

Figure 1: Proposed methodology for ECG signal denoising using ANN.

Artificial Neural Network (ANN) – an artificial system, which emulates the function of biological 
neural networks, that is a network of Artificial Neurons, interconnected with one another [14]. This 
research applies a neural network to filter ECG signals to remove the noise that is present in the 
signal. In this approach the input unit is the noisy ECG signal while the output unit represents the 
clean noise free signal. The first layer performs an input layer taking all the input vectors, and for  
each of them, the calculation is performed in the hidden layer taking a dot product of elements of the 
input vector in question and weights assigned to concrete nodes of the hidden level [15]. The model 
presented uses three random inputs which are produced from the initial ECG signals through shifting 
and forms a matrix with several samples from these three independent inputs [16]. The weights that 
are incorporated to the network are tuned in the Gradient Descent Method. To update the weights of 
the neural network, the back propagation algorithm is used which computes the first order derivative 
of the quadratic non-linear error function with respect to each of the network weights with the help 



of Chain rule  [17]. This process is very time consuming and requires the use of tangent sigmoid 
functions at each node to carry out the number of different computations. In order to combine 
experiences from the field of solution of the problem related to the determination of the number of  
hidden layer nodes and the computational complexity of the Multilayer Perceptron (MLP), the article 
presents the dynamic neural network in which the number of nodes in the hidden layer and the 
network weights are optimized [18]. After several iterations the proposed system adds more nodes to 
the hidden layer while the weights adjusting the connection between the input and the hidden layers 
remain estimated at initiation [19]. 

2.1. MIT-BIH ECG dataset

In this research, the employed dataset is obtained from the MIT-BIH Arrhythmia Database, which is a 
detailed and well-known database for studying ECG signals. There are 48 half-hour long recordings 
of two-channel ambulatory ECG samples used in this database which consists of important cases for 
investigation of  the efficiency of  the applied noise reduction procedures.  In total,  the database 
contains  about  230  different  ECG samples,  which  have  been  recorded  at  the  highest  possible 
resolution of 360 samples per second per channel [20]. The recordings are digitized with 11 bits at a 
range of 10 mV, making it possible to be accurately rendered. In this regard, for the purpose of this  
study, only the first 60 seconds segment of the ECG signal was selected out of each 30 minutes record 
[21]. This segmentation was made in order to draw a representative sample of the data for the offline 
denoising evaluation, while not to burden the method with too much data. In this way, we confine 
sampled data for analysis to the first one minute of every recording so as to include a variety of heart 
rhythms and noise patterns that might exist in the whole recording. It enables us to have a consistent 
assessment of the noise removal process while at the same time generalizing our results to the rest of 
the set [22]. Hence, the structure of the choice of a segment of 60 seconds makes it possible to carry 
out a detailed analysis while keeping the computational complexity reasonably low – this testifies to 
the fact that the choice of the, indeed, allows carrying out quite a rigorous testing and validation of 
our proposed methodology.

2.2. Data preprocessing

The ECG signals used in the present work are taken from the MIT-BIH Arrhythmia Database and 
they go through the following preprocessing steps before the denoising process is implemented. One 
of the steps into this preprocessing phase is to partition the raw ECG data into 60-second portions. 
This segmentation is useful to isolate reasonable portions of the data, record different types of heart 
rhythm and most importantly different noise pattern that exist within the recording, patterns that are 
fundamental in a comprehensive and impartial assessment.

Next phase after segmentation is amplification normalization of the ECG signals to a standard 
amplitude. This normalization process ensures that all  signals have the same magnitude which 
eradicates the problem of variable strength of  signals  at  certain times hence variable levels  of  
interference [23]. The normalization is performed using the equation:

Normalized Signal= ECGSignal−Mean
Standard Deviation

where the mean, standard deviation are computed within the signal segment.
As a result of high frequency noise and baseline wander, preliminary filtering is conducted to the 

above signals. A low pass filter negates high frequency noise for example muscle noise and a high 
pass filter deals with Baseline wander [24]. The filtering is performed using:

Filtered Signal=ECGSignal ∙ H ( f )

where H ( f )is frequency response of filter.



This is followed by removal where certain artifacts such as motion or electrical interference ones 
are  noted  and then eliminated  [13].  This  step employs  artifact  correction algorithms to  either 
completely eliminate or minimize those artifacts so that signal quality enhances. The artifact removal 
process can be modeled as:

Clean Signal=ECGSignal−Artifact Component

Last of all, through resampling there is a preservation of sampling rates, which is crucial in training of 
the neural network and assessments. Originally recorded at non-integers such as 360 samples per  
second, resampling normalizes the data to a constant value if required. The resampling process 
involves:

Resampled Signal=ECGSignalOriginal↓Resampling Rate

All these steps of preprocessing help in improving the quality of the ECG signals so that it is more 
appropriate for denoising. Normalizing the data, filtering, artifact removing and resampling make the 
data suitable for the artificial neural network to perform noise removal in a perfect manner.

2.3. Model design and description

The model that is primarily to propose is the Artificial Neural Network (ANN) that will eliminate 
noise on the ECG signals. The architecture of the network allows the receiving, processing, and 
denoising of the ECG data through of layers of the multilayer structure and specific weights and 
update systems.

Inputs: These inputs consist of three noisy input signals designated as  X1 , X 2 ,⋯ , X n and are 
simply shifted versions of the three ECGs as previously discussed. Each of the input signals is  
matrices containing numerous samples, thus offering the network a range of noisy data to work on.

Weights: First, the model employs weights at three levels, that is W ji ,U kj ,∧V lk. Specifically:

 W ji denote the input weights connecting the input layer with hidden layer pixels.
 U kj is the weights inside hidden layer of the artificial neural network.
 V lk stands for the weights that interconnect the hidden as well as the output layer.

Neuron Nodes: For the aggregation function in the network, a simple perceptron is used while an 

activation function used is  the tangent sigmoid function  ( tanh (x )).  These domains collectively 

enable abrupt change and learning within the network of the system.

Weight Update Mechanism: Weights of the network are modified by using the techniques of 
Gradient Descent Method. As it has been said this adjustment is performed by delta rule under which 
it is necessary to compute the derivative of the error with relation to each weight in the network. This 
tends to be rather processing demanding since there is a need to calculate tangent sigmoid functions 
and use the chain rule when computing for gradients. The weight update rules for different layers are 
as follows:

 Input Layer Weight Update: The weight update rule for the input layer is given by:

dE
d w ji

= dE

d ( y pd− y p
a )
×
d ( y pd− y p

a )
d y p

a ×
d y p

a

d (net Y )
×
d (net Y )
d t p

a ×
d t p

a

d (net T )
×
d (net T )
dz

×
d za

d (net Z )
×
d (net Z )
dw

which simplifies to:



∆w ji=η×
1
P∑

p=1

P

[( y pd− y p
a )×(1− y p

a2)×(1−z p
a2)×V lk×(1−t pa

2)×U kj×xi]

 Hidden Layer Weight Update: The weight update rule for hidden layer is:

dE
d ukj

= dE

d ( y pd− y p
a )
×
d ( y pd− y p

a )
d y p

a ×
d y p

a

d (net Y )
×
d (net Y )
d t p

a ×
d t p

a

d (ukj)
which simplifies to:

∆ukj=η×
1
P
∑
p=1

P

[( y pd− y p
a )×(1− y p

a2)×(1−z p
a2)×V lk× z j]

 Output Layer Weight Update: The weight update rule for the output layer is:

dE
d v lk

= dE

d ( y pd− y p
a )
×
d ( y pd− y p

a )
d y p

a ×
d y p

a

d (net Y )
×
d (net Y )
d v lk

which simplifies to:

∆ v lk=η×
1
P∑

p=1

P

[( y pd− y p
a )×(1− y p

a2)×t k ]

Weight Update Equations: The change in weights after each iteration is given by:

 ∆w ji=η×
dE
d w ji

 ∆ukj=η×
dE
d ukj

 ∆ v lk=η×
dE
d v lk

where η is the learning rate. The updated weights are calculated as follows:

 w ji
new=w ji

old+∆w ji

 ukj
new=ukj

old+∆ukj

 v lk
new=v lk

old+∆ v lk

Training persists to the level of MMSE. At this stage, the weights of the network are fixed and 
these parameters are employed for the purpose of removing noise from ECG signals. 



Algorithm 1: ECG Denoising with Multilayer Neural Network 
1: Input: D=X i ,Y i , η ,T ,B , N
2: Initialize: 

3:       NetworkWeights {W ji ,U kj ,V lk }
4: For epoch=1¿T do :

5:         For epoch=1¿ N
B
do :

6:         Extract Batch:

7:         Dbatch=(X batch ,Y batch)
8:         Forward Pass:

 Input Layer: Compute activations using X batch and weights W ji

 Hidden Layer: Compute activations using X batch , W ji and weights U kj

 Output Layer:  Compute denoised signal using activations using activations from hidden 
layer and weights V lk

9:         Compute Loss:

10:        E= 1
P
∑
p=1

P

( y pd− y p
a )2

11:        Backpropagation:

 Update weights for input layer: ∆w ji=η×
dE
d w ji

 Update weights: w ji
new=w ji

old+∆w ji

 Update weights for hidden layer: ∆ukj=η×
dE
d ukj

 Update weights: ukj
new=ukj

old+∆ukj

 Update weights for output layer: ∆ v lk=η×
dE
d v lk

 Update weights: v lk
new=v lk

old+∆ v lk
12:        End for
13: End for
14: Output: Trained neural network model with updated weights {W ji ,U kj ,V lk }

Table 2 
Notations and its description used in the algorithm

Symbols Description

X i
Noisy input ECG signals

Y i
Ground truth (noise-free) ECG

η Learning rate

T Number of epochs

B Batch size

W ji
Weights among input layer, hidden layer

U kj
Weights among hidden layer, output layer

V lk
Weights among hidden layer, output layer

N Number of hidden nodes

P Total samples in the dataset

y p
d Desired output (noise-free ECG signal)



y p
a Actual output (denoised ECG signal)

E Mean Squared Error (MSE)

∆w ji
Change in weights for input layer

∆ukj Change in weights for hidden layer

∆ v lk Change in weights for output layer

Dbatch
Batch of data extracted for training

net Net activation (weighted sum of inputs)

tanh (x ) Activation function (tanh sigmoid function)

MMSE Minimum Mean Square Error

{w ji
new ,ukj

new , v lk
new} Updated weights after each iteration

The algorithm describes a flowchart for utilization of a neural network for denoising of ECG 
signals. It begins by setting essential parameters, such as the learning rate, number of epochs, batch 
size, and initializing the network weights across three levels: and an input layer, one or more hidden 
layers and an output layer. In each epoch, the algorithm takes batches of noisy ECG signals as input 
and input into the layer of the neural network. The hidden nodes provide net activations of the given 
inputs which are summations of weighted inputs, and then put it through the tanh sigmoid activation 
function  because  the  hidden  layer  is  supposed  to  respond  to  non-linear  inputs.  However,  an 
important aspect of the algorithm is with the weights managed by the Gradient Descent Method. This 
optimization is done in order to minimize the (Mean Squared Error) between the output of the 
network and the clean ECG signal. The changes in weights for each layer are calculated by back  
propagation wherein the chain rule is used so as to incorporate the contributions of each layer. The 
process goes on until the network reach the (MMSE) which means that the network has optimized its 
performance. The last output is an Enhanced Neural Network Model with well-tuned weights for the 
actual work of removing noise from ECGs for diagnosis.

2.4. Evaluation metrics

For the evaluation of the performance of the presented denoising model, several metrics have been 
used for evaluation such (SNR), (RMSE) and the smoothness index (r).
Signal-to-Noise Ratio (SNR): The SNR is a very important indicator of the signal strength after 
denoising, but with reference to the background noise. It determines the amount of enhancement that 
has been provided to the signal, that is, amount of noise rejection [25]. The SNR is calculated using 
the following formula:

SNR=10 log10
∑
i=1

N

Ŝ ²( i )

∑
i=1

N

⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓ Ŝ (i )−Ŝ ( i ) ⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓⃓ ²

RMSE: RMSE is one of the measures of variability that tell about the deviations of actual values from 
the model predicted values. It gives a measure in terms of the quantitative extent of the error that  
exists in the denoised signal [26]. The RMSE is computed as follows:

RMSE=√ 1N ∑
i=1

n−1

[S (i )−Ŝ ( i )] ²

Smoothness Indes (r): The smoothness index (r) is a measure that is used to compare the smoothness 
of the signal that has been denoised with the original signal. It is a useful measure to check that the 



denoising process does distort the useful signal in undesirable ways, with regard to fluctuations [27]. 
The smoothness index is defined as:

 r = 
∑
i=1

n−1

[Ŝ (i+1)−Ŝ ( i )] ²

∑
i=1

n−1

[S (i+1)−S ( i )] ²

By examining these measures, one can assess comprehensively how our suggested denoising 
model works out on ECG signal quality enhancement task with least possible distortions to the 
integrity and purity of the ECG signal.

3. Experimental result

Our study findings show that the developed neural network, which applies gradient descent for 
signal conditioning, affords better signal denoising in ECG signals than conventional methods like 
hard and soft thresholding or Genetic Optimize Wavelet Thresholding (GOWT). The RMSE is a 
measure of the amount of filtering distortion which is a very important factor. A lower RMSE will 
mean that the processed signal, denoised signal will be nearer to the original signal and therefore  
minimizing  deformation.  From  the  present  scenario  of  RMSE  0.0031  proposed  method  is 
comparatively better than the hard thresholding 14.5143, soft thresholding 25.0662, GOWT 19.9805 
hence it is clear that there is less distortion is introduced in the signal by the proposed method. 
Another important measure is known as the smoothness index (r). The parameter r gives the size of 
the matrix and smaller r value gives the signal that is denoised to a greater extent, however, if the r 
value is too small then too much of the signal is distorted. In the proposed method, 0.6070 is the value 
of r that provides smoothness in spectra without losing the signal structure proposed in the method. 
This value is also similar to that of GOWT 0.6422 and soft thresholding 0.5166 and far superior to hard 
thresholding 0.8681. Last but not the least, the (SNR) calculate strength of the signal when compared 
with the noise level. SNR is reported as the result and a higher value of this result implies improved 
noise reduction. From the obtained results in terms of SNR the proposed method obtains 35.8188, 
which is  higher compared to hard thresholding 28.2976,  soft thresholding 25.0662,  and GOWT 
27.1066, and hence showing the proposed method in improving on the signal clearness. Therefore, 
the gradient descent neural network-based method records a better RMSE and r and higher SNR than 
the other denoising styles recorded in Table 2. This points to the possibility of high efficiency of the 
algorithm with the aim of ECG signal denoising.

Figure 2: Comparison of methods based on different evaluation metrics.



Table 3
Performance metrics comparison of various denoising techniques

Methods RMSE Smoothness Index (r) SNR

Hard Thresholding 14.5143 0.8681 28.2976

Soft Thresholding 25.0662 0.5166 25.0662

GOWT 19.9805 0.6422 27.1066

Proposed Method 0.0031 0.6070 35.8188

From Figure 2, we can see that indeed through the usage of various denoising techniques it is 
possible to extract the ECG signal from the overall signal. For easier comparison, the original ECG 
signal and all the outcomes of hard- and soft-thresholding, GOWT, as well as the results of the 
proposed method are reviewed. From the denoised signals, one is able to compare the different 
techniques, depending on how much noise was filtered out at the same time as filtering out relevant 
features of ECG signal.

 
Figure 3: Comparison of denoised ECG signals.

4. Discussion

This study further shows that the use of neural network-based gradient descent method for denoising 
ECG signals yields improved results compared to conventional methods. The used criteria of RMSE, 
the smoothness index (r), and SNR also show the qualitative enhancement of the signal and the 
reduction of noise, confirming the effectiveness of the proposed approach. The RMSE is a measure of 



the amount of filtering distortion which is a very important factor. A lower RMSE will mean that the 
processed signal, denoised signal will be nearer to the original signal and therefore minimizing 
deformation. From the present scenario of RMSE 0.0031 proposed method is comparatively better 
than the hard thresholding 14.5143, soft thresholding 25.0662, GOWT 19.9805 hence it is clear that 
there is less distortion is introduced in the signal by the proposed method. Another important 
measure is known as the smoothness index (r). The parameter r gives the size of the matrix and 
smaller r value gives the signal that is denoised to a greater extent, however, if the r value is too small 
then too much of the signal is distorted. In the proposed method, 0.6070 is the value of r that provides 
smoothness in spectra without losing the signal structure proposed in the method. This value is also 
similar to that of GOWT 0.6422 and soft thresholding 0.5166 and far superior to hard thresholding 
0.8681. Last but not the least, (SNR) calculate the strength of the signal which compared with the  
noise level. SNR is reported as the result and a higher value of this result implies improved noise 
reduction. From the obtained results in terms of SNR the proposed method obtains 35.8188, which is 
higher compared to hard thresholding 28.2976, soft thresholding 25.0662, and GOWT 27.1066, and 
hence showing the effectiveness of the proposed method in improving on the signal clearness. One of 
the main benefits of the proposed method is the possibility of its effective functioning in the presence 
of different kinds of noise and signal distortions. The structure of the neural network enables it to 
learn and apply it in case of various inputs which makes the method usable in many types ECG 
signals. This flexibility coupled with good performance measurements depict the ‘derivation’ method 
for its effectiveness in removal of noise from ECG. However, one drawback might be a large number 
of parameters in the neural network structure, and demanding computations for the model’s training. 
Further research might be focused on the idea of how to minimize the computational load which is 
required for the method while preserving its efficiency. Thus, it might be useful to extend the set of 
used ECG signals and noise conditions to improve the performance of the method in terms of 
generalization. All in all, the gradient descent optimization for neural network enhances the ECG 
signal  denoising  in  comparison  with  traditional  methods,  as  presented  in  terms  of  several 
parameters. This capability to have a clean line of signal transfer and with minimal interference 
improves the reading of ECG thus improving the chances of accurate diagnosis.

5. Conclusion

In this research, we introduced a new gradient descent method for eliminating noise from the ECG 
signals  based on a  proposed model,  we compared the results  with the hard thresholding,  soft 
thresholding and genetic optimize wavelet thresholding algorithms (GOWT). Our proposed method 
significantly outperforms these conventional approaches, as evidenced by its superior performance 
metrics: a remarkably low RMSE of 0.0031, an optimized smoothness index (r) of 0.6070, and a high 
SNR of 35.8188. The design of the neural network including the capacity to vary the weight matrix 
with the aid of the Gradient Descent Method enables high accuracy denoising of the ECG signal while 
the signal features will remain distinct. This balance between noise reduction and signal integrity is 
critical  in  medical  diagnosis  applications  to  ensure  the denoised  signals  are  more reliable  and 
applicable for diagnosis. The fact that our method is encumbered with few types of noise and various 
changes in the signal strength also underlines the approach’s general versatility and its potential use 
across multiple ECG datasets. However, care must be taken to note the computational process of 
training of the neural network. Future work can also consider investigations on how the training 
process can be brought to the most efficient form of computation while maintaining or enhancing the 
performance. Therefore, we have proposed the neural network-based gradient descent approach that 
put together represents a breakthrough in the area of ECG signals denoising. Its advantage includes 
better performance, flexibility and prospects for enhancing diagnostics of diseases it makes this tool 
relevant for clinicians and researchers. Such work opens the way for the development and further  
research in more complex architectures of the neural networks for biomedical signal analysis.
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