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Abstract
This  study  introduces  a  novel  application  of  state-of-the-art  object  detection  models  for  automating 
quality control in automotive manufacturing, presenting the first comprehensive comparative analysis of  
YOLOv8, YOLOv9, and YOLOv10 architectures for vehicle damage detection. Utilizing a custom-curated 
dataset  of  7,258  images,  we  employ  transfer  learning  techniques  to  optimize  model  performance,  a  
pioneering approach in this domain. Our results demonstrate the unprecedented superiority of YOLOv10 
across key metrics, achieving a mean Average Precision (mAP50) of 0.65077 and an F1-score of 0.64934.  
We uniquely quantify the effectiveness of transfer learning, showing substantial performance gains with 
pre-trained weights initialization. Notably, we establish YOLOv10's viability for real-time quality control 
applications despite marginally increased computational requirements, a finding not previously reported.  
This  research  contributes  novel  insights  into  AI-driven  solutions  for  automotive  quality  control,  
advancing the digital transformation of manufacturing processes and paving the way for future industrial  
AI innovations.
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1. Introduction

The integration of computer vision systems in manufacturing processes has become crucial for 
automated quality control, especially in the automotive industry. Traditional manual inspection 
methods are time-consuming, subjective, and error-prone, necessitating more robust and efficient 
quality control mechanisms [1].

Recent advancements in deep learning, particularly the YOLO (You Only Look Once) family of 
models,  have  shown  promise  in  real-time  object  detection  [2].  This  study  explores  the  latest 
iterations – YOLOv8, YOLOv9, and YOLOv10 – for automated vehicle damage detection.

Transfer learning has emerged as a powerful technique, allowing pre-trained models to be fine-
tuned for specific tasks with limited domain-specific data [3]. This approach is particularly valuable 
in industrial settings where large, labeled datasets may be unavailable or costly to produce.

Previous studies have demonstrated the potential  of deep learning in manufacturing quality 
control [4-6]. Our research extends these foundations by:

 DTESI 2024: 9th International Conference on Digital Technologies in Education, Science and Industry, October 16–17, 2024, 
Almaty, Kazakhstan 
1∗ Corresponding author.
† These authors contributed equally.

  dolhopolov@icloud.com (S. Dolhopolov); goncharenko.ta@knuba.edu.ua (T. Honcharenko); 
chernyshev.do@knuba.edu.ua (D. Chernyshev); panina.ov@knuba.edu.ua (O. Panina); makhynia.aa@knuba.edu.ua (A. 
Makhynia)

  0000-0001-9418-0943 (S. Dolhopolov); 0000-0003-2577-6916 (T. Honcharenko); 0000-0002-1946-9242 (D. Chernyshev); 
0000-0002-8604-8712 (O. Panina); 0009-0002-0295-0627(A. Makhynia)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://orcid.org/0000-0002-1946-9242
https://orcid.org/0000-0003-2577-6916
https://orcid.org/0000-0001-9418-0943
mailto:%20makhynia.aa@knuba.edu.ua
mailto:panina.ov@knuba.edu.ua
mailto:chernyshev.do@knuba.edu.ua
mailto:goncharenko.ta@knuba.edu.ua
mailto:dolhopolov@icloud.com


1. Providing  a  comprehensive  comparison  of  the  latest  YOLO models  for  vehicle  damage 
detection.

2. Exploring the application of transfer learning to optimize performance with limited data.
3. Evaluating practical implementation challenges in real-world manufacturing settings.

The  implementation  of  an  effective  automated  quality  control  system  has  far-reaching 
implications  for  the  automotive  industry,  potentially  increasing  throughput,  improving 
consistency, and reducing waste [7].

Our study explores how advanced object detection models and transfer learning can enhance 
automated quality control for vehicle damage detection. This research contributes to computer 
vision and manufacturing technology,  offering insights  for  industry  practitioners  adopting AI-
driven quality control solutions.

Our research builds upon these foundations and extends them in several key ways. Firstly, we 
provide a comprehensive comparison of the latest YOLO models, building on the work of Redmon 
and  Farhadi  who  introduced  YOLOv3  [8],  offering  insights  into  their  relative  strengths  and 
weaknesses for vehicle damage detection. YOLOv9, released after, further refined the architecture, 
introducing novel features that promised even better performance in complex detection scenarios  
[9].  The  most  recent  iteration,  YOLOv10,  represents  the  cutting  edge  in  object  detection 
technology,  and its  potential  for  manufacturing applications  is  yet  to  be  fully  explored in  the 
literature [10].

One of  the key challenges  in implementing computer  vision systems for  quality  control  in 
manufacturing is the need for large, diverse, and accurately labeled datasets. This is particularly 
true in the automotive industry, where the variety of vehicle models, colors, and potential defect  
types can be vast.  Transfer  learning offers  a  promising solution to this  challenge by allowing 
models pre-trained on large,  general  datasets to be fine-tuned for specific tasks with relatively 
small amounts of domain-specific data [11-12]. This approach has shown success in various fields, 
from medical imaging to satellite imagery analysis, and its application to vehicle damage detection 
represents a novel contribution of our study [13-15].

The effectiveness of transfer learning demonstrated in this study aligns with the comprehensive  
survey by Tan et al., who provided an in-depth overview of deep transfer learning techniques and 
their applications [16]. Their work highlights the various approaches to transfer learning in deep 
neural networks, which is particularly relevant to our application of pre-trained YOLO models for  
vehicle damage detection. This understanding of different transfer learning strategies is crucial in 
the rapidly evolving automotive industry, where the ability to efficiently adapt models for new 
types of defects or different vehicle models is essential.

This research addresses real-world implementation challenges [17], aligning with Industry 4.0 
principles  [18-19],  and  extends  beyond  defect  detection  to  broader  manufacturing  process 
optimization [20-22].

2. Main research

The  research  process  is  structured  into  several  key  components:  dataset  preparation  and 
preprocessing, model architecture and implementation, training methodology, and comprehensive 
performance evaluation. Through this systematic approach, we aim to provide insights into the 
effectiveness of these advanced computer vision techniques for enhancing quality control processes 
in the automotive industry [23-26].



2.1. Dataset and preprocessing

We  utilized  the  Car  Dents  Computer  Vision  Project  dataset,  comprising  7,258  images  (6,855 
training, 377 validation, 26 test) of various vehicle damage types. Preprocessing steps included:

1. Resizing images to 640x640 pixels.
2. Data  augmentation:  90°  rotation,  ±15°  shear  transformation,  and  ±15%  brightness 

adjustment.

Dataset  analysis  revealed  class  imbalance  (Dent:  3391,  Accident:  1927,  Scratch:  2072)  and 
bounding box characteristics, informing model optimization strategies.

2.2. Model architecture and transfer learning

We implemented YOLOv8, YOLOv9, and YOLOv10, leveraging their architectural advancements:

1. YOLOv8. Anchor-free detection, new backbone network.
2. YOLOv9. Efficient neck structure, advanced loss functions.
3. YOLOv10. Dynamic attention mechanism, hybrid backbone (convolutional and transformer 

layers).

Transfer learning was applied using pre-trained weights from the COCO dataset, represented 
by:

θnew=θ pre+∆θ , (1)

where θnew are the new model parameters after fine-tuning; θ pre are the pre-trained parameters; ∆θ 
represents the parameter updates during fine-tuning.

2.3. Training methodology

We  employed  a  consistent  training  methodology  across  all  three  models  to  ensure  a  fair 
comparison. The key aspects of our training process were:

1. Optimizer. We used the Adam optimizer with a cosine learning rate schedule. The learning 
rate can be described by the equation:

lr (t )=lrmin+0.5 ∙( lrmax−lrmin )∙(1+cos ⁡( t ∙
π
T

)) ,
(2)

where t is the current epoch; T is the total number of epochs; lrmin is the minimum learning rate; 

lrmax is the maximum learning rate.

2. Loss Function. We utilized a combination of losses typical for object detection tasks:

Ltotal=λ1 ∙ Lbox+ λ2 ∙ Lobj+ λ3 ∙ Lcls , (3)

where Lbox is the bounding box regression loss; Lobj is the objectness loss; Lcls is the classification 

loss; λ1, λ2, and λ3 are weighting factors.



3. Early Stopping. We implemented early stopping with a patience of 20 epochs to prevent 
overfitting.

2.4. Evaluation metrics

Performance  assessment  utilized: Mean  Average  Precision  (mAP@0.5  and  mAP@0.5:0.95), 
Precision and Recall, F1-Score, Confusion Matrix, and Inference Time

The precision and recall can be calculated using the following equations:

Precision= TP
TP+FP

,
(4)

Recall= TP
TP+FN

,

where TP is True Positives; FP is False Positives; FN is False Negatives.
The F1-score is then calculated as:

F 1=2 ∙ Precision ∙ Recall
Precision+Recall

,
(5)

where  Precision represents  the  proportion  of  true  positive  predictions  among  all  positive 
predictions made by the model; Recall (also known as sensitivity or true positive rate) indicates the 
proportion of true positive predictions among all actual positives in the dataset.

2.5. Experimental setup

Experiments  were  conducted  using  PyTorch  on  NVIDIA  GeForce  RTX  4080  Super  GPUs, 
implementing  models  via  the  Ultralytics  YOLO  framework.  The  procedure  included  model 
initialization, training, validation, testing, and performance analysis.

To ensure reproducibility, a fixed random seed was used across all experiments, allowing fair 
comparisons between YOLO versions while controlling for neural network training stochasticity.

3. Results and analysis

After conducting our experiments with YOLOv8, YOLOv9, and YOLOv10 on the Car Dents dataset,  
we obtained comprehensive results that provide insights into the performance of each model. In 
this section, we will present and analyze these results in detail.

3.1. Training performance

All models showed consistent improvement during training, with YOLOv10 exhibiting the fastest  
convergence. YOLOv10 achieved the lowest final box loss (1.1842) and classification loss (0.80735),  
significantly outperforming YOLOv8 and YOLOv9. YOLOv10 demonstrated the highest mAP50(B) 
throughout training, peaking at 0.65077.

Models  successfully  detected  various  damage  types  with  high  confidence  (0.3-0.9)  and 
demonstrated robustness to diverse scenarios. Multiple damages on single vehicles were effectively 
identified. Some misclassifications were observed, particularly between dents and scratches.



3.2. Model performance comparison

Table 1 presents a summary of the key performance metrics for each model on the test set:

Table 1
Comparison of Key Performance Metrics Across YOLOv8, YOLOv9, and YOLOv10 Models

YOLOv10 consistently outperformed other models across all metrics, with a 5.7% improvement 
in F1-score over YOLOv8 and 3.1% over YOLOv9.

3.3. Class-wise performance analysis

To gain  deeper  insights  into  model  performance across  different  types  of  vehicle  damage,  we 
analyzed class-wise metrics. Figure 1 presents the F1-Confidence curves for each class (Accident,  
Dent, Scratch) across all three models.

Figure 1: The F1-Confidence curves for YOLOv8, YOLOv9, and YOLOv10 (Author’s work).

YOLOv10 achieved the highest F1-scores for all damage types: dents (0.719), scratches (0.689), 
and accidents (0.637). Accident detection proved most challenging across all models.

3.4. Precision-recall curve analysis

Figure 2 illustrates the Precision-Recall curves for each model, providing a comprehensive view of 
their performance across different confidence thresholds.

Metric YOLOv8 YOLOv9 YOLOv10

mAP50(B) 0.59692 0.62968 0.65077

mAP50-95(B) 0.30884 0.33261 0.34918

Precision 0.6335 0.65514 0.67517

Recall 0.55621 0.57303 0.62411

F1-Score 0.59246 0.61864 0.64934

Inference Time (ms) 12.5 13.2 14.1



Figure 2: The Precision-Recall curves for YOLOv8, YOLOv9, and YOLOv10 (Author’s work).

YOLOv10 demonstrated the largest Area Under the Curve (AUC) and maintained higher recall  
in high precision regions (>0.8) compared to YOLOv8 and YOLOv9.

3.5. Transfer learning effectiveness

To evaluate the effectiveness of transfer learning, we compared the performance of each model 
when trained from scratch versus when initialized with pre-trained weights. Table 2 presents this 
comparison:

Table 2
Performance Comparison of Models Trained from Scratch vs. Transfer Learning

These  results  demonstrate  the  significant  benefits  of  transfer  learning  across  all  models. 
Interestingly, while YOLOv10 showed the highest overall performance, it had the smallest relative 
improvement from transfer learning. This suggests that its architectural improvements allow it to 
learn more effectively even from limited data.

3.6. Computational efficiency

While  YOLOv10  demonstrated  superior  detection  performance,  it's  crucial  to  consider  the 
computational requirements for practical implementation. Table 3 compares the model sizes and 
average inference times:

Model
mAP50 

(Scratch)
mAP50 (Transfer) Improvement

YOLOv8 0.48735 0.59692 +22.5%

YOLOv9 0.52314 0.62968 +20.4%

YOLOv10 0.55682 0.65077 +16.9%



Table 3
Comparison of Model Sizes and Inference Times for YOLOv8n, YOLOv9t, and YOLOv10n

The  marginal  increase  in  model  size  and  inference  time  for  YOLOv10  is  relatively  small 
compared  to  the  performance  gains,  suggesting  that  it  remains  a  viable  option  for  real-time 
applications in manufacturing settings.

4. Conclusion

Our comprehensive study on implementing computer vision systems for automated quality control 
in  automotive  manufacturing,  focusing  on  vehicle  damage  detection,  has  yielded  significant 
insights into the capabilities of state-of-the-art object detection models.

YOLOv10 consistently outperformed its predecessors, achieving a mAP50 of 0.65077 and an F1-
score  of  0.64934,  representing  improvements  of  5.7%  and  3.1%  over  YOLOv8  and  YOLOv9, 
respectively. The application of transfer learning proved highly beneficial, with YOLOv8, YOLOv9,  
and  YOLOv10  showing  mAP50  improvements  of  22.5%,  20.4%,  and  16.9%  respectively  when 
initialized with pre-trained weights.

Despite  its  superior  performance,  YOLOv10  required  only  marginally  more  computational 
resources, with a negligible increase in inference time (14.1ms compared to 12.5ms for YOLOv8),  
making it viable for real-time applications in manufacturing settings.

Key implications for the automotive manufacturing industry include:

1. Enhanced Quality Control. Automation of damage detection can reduce human error and 
increase consistency.

2. Increased  Efficiency.  Real-time  defect  detection  enables  inspection  without  production 
bottlenecks.

3. Cost  Reduction.  Minimizing  manual  inspection  and  early  defect  detection  can  lead  to 
significant cost savings.

4. Adaptability.  Transfer learning enables quick adaptation to new defect types or vehicle 
models.

5. Data-Driven Insights. Deployment of these systems can generate valuable data on defect 
patterns and trends.

This  study  demonstrates  the  significant  potential  of  advanced  object  detection  models,  
particularly YOLOv10, in revolutionizing quality control processes in automotive manufacturing. 
The success of transfer learning techniques paves the way for widespread adoption of AI-driven 
solutions in industrial quality control, contributing to enhanced product quality and manufacturing 
efficiency.

Model Parameters (M) Model Size (MB) Inference Time (ms)

YOLOv8n 3.2 6.2 12.5

YOLOv9t 2 4.7 13.2

YOLOv10n 2.3 5.6 14.1
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