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Abstract
This  study  introduces  a  YOLOv5-based  object  detection  system  for  optimizing  construction  site 
management, addressing critical challenges in resource utilization and safety. We developed a custom 
YOLOv5 model to identify and track construction resources, equipment, and vehicles in real-time using  
CCTV footage. The model was trained on a dataset of 1,897 images over 30 epochs, achieving a final 
precision  of  0.852,  recall  of  0.723,  and  mean  Average  Precision  (mAP_0.5)  of  0.792.  Performance 
evaluation  using  Intersection  over  Union  (IoU)  and  confusion  matrix  analyses  demonstrated  high 
accuracy across different object categories, with an overall precision of 88%, recall of 79%, and mAP at the 
50 IoU threshold of 85% on the validation dataset. These results indicate the model's robust capability in  
accurately detecting and classifying various construction-related objects. The proposed system offers a 
comprehensive  framework  for  integrating  AI-driven  object  detection  into  construction  management, 
potentially enhancing operational efficiency through optimized resource allocation and improving site 
safety via real-time monitoring. Future research will focus on refining the model's performance in diverse 
environmental conditions and exploring its integration with other emerging construction technologies.
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1. Introduction

The  construction  industry  is  undergoing  a  significant  transformation  driven  by  AI  and  ML 
technologies,  particularly  YOLOv5-based  object  detection,  to  address  challenges  in  resource 
management and safety. This advanced technology offers real-time detection and classification of 
construction assets, enhancing operational efficiency and safety protocols [1,2].

Recent  studies  have  demonstrated  YOLOv5's  efficacy  in  construction  settings.  Xue  et  al.  
developed an improved YOLOv5 algorithm for track construction safety [1],  while  Zhou et  al. 
proposed a YOLOv5 model for sorting construction waste [2]. Cai et al.  showcased a YOLOv4-
based  framework  applicable  to  construction  site  management  [3],  and  Peng  et  al.  introduced 
CORY-Net, a YOLOv5 variant for power grid construction site monitoring [4,8].

YOLOv5's  applications  extend  beyond  basic  object  detection  to  analyzing  equipment  usage 
patterns, real-time monitoring of tool locations, and identifying potential safety hazards. Yang et al. 
demonstrated its effectiveness in monitoring safety protocol compliance [5,9], while Zeng et al.  
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highlighted the importance of adapting these models to the unique challenges of construction sites 
[6].

The integration of YOLOv5 into construction management systems represents a paradigm shift 
towards data-driven decision-making and operational efficiency. Wan et al.'s work on YOLOv5 for 
object  detection  in  high-resolution  images  underscores  the  model's  robustness  across  various 
conditions [7], a crucial attribute for the dynamic environment of construction sites.

The purpose of this research can be summarized as follows:

 Evaluate YOLOv5's effectiveness in improving construction site efficiency.
 Assess YOLOv5's impact on construction site safety.
 Explore customization of YOLOv5 models for specific construction environments.
 Investigate integration with other technologies (e.g., drones, IoT).
 Identify challenges and limitations in deploying YOLOv5-based systems.
 Provide recommendations for future research and development.

By  addressing  these  objectives,  this  study  seeks  to  contribute  to  the  knowledge  base  on 
advanced object detection technologies in construction site management,  paving the way for a 
more efficient, safe, and technologically advanced construction industry.

2. Main research

The  proposed  study  aims  to  enhance  construction  site  efficiency  and  safety  through  the 
implementation of a YOLOv5-based object detection model. This section outlines the materials and 
methods used to develop, train, and deploy the model for resource and equipment management on 
construction sites.

This comprehensive framework leverages YOLOv5 for object detection to manage resources and 
equipment  on  construction  sites  effectively  and  is  represented  as  a  model  in  Figure  1.  By 
emphasizing the detection and classification of  resources  and integrating this  information into 
actionable  insights  for  site  managers,  the  system  ensures  resources  are  used  efficiently  and 
effectively, enhancing overall site safety and operational efficiency.

2.1. Dataset of the study

The success of the YOLOv5 object detection model for construction site management relies heavily 
on  a  comprehensive  and  representative  dataset  [11].  This  study  employed  a  meticulous  data 
collection process to ensure the model's effectiveness across various construction site scenarios.



Figure 1: Proposed framework of the system.

2.2. Data collection

The dataset encompasses three main categories:

1. Equipment Utilization. Images of bulldozers, concrete mixers, and generators in both idle 
and active states.

2. Tool  and  Machinery  Tracking.  Images  of  hand  drills,  power  saws,  jackhammers,  and 
welding machines in various usage states.

3. Vehicle  Recognition.  Images  of  cranes,  dump trucks,  excavators,  and  cement  trucks  in 
operational and idle states.



Table 1
Number of instances across the different classes

Table 1 shows the number of cases across different classes.

2.3. Activity detection methodology

The fundamental idea is to analyze a sequence of images to identify whether an object, such as a 
concrete  mixer,  remains  in  the  same state  (indicating  inactivity)  or  transitions  between states 
(indicating activity). This determination is made by observing changes in the object's features or 
position across the image sequence.

Object Does Not Change Its State – Not Active.  When a sequence of images is fed into a 
detection system where the object does not change its state, the object is classified as not active.  
For a concrete mixer, this would mean that across multiple frames, there is no visible change in its 
position, orientation, or any operational components (e.g., the mixing drum remains stationary). 
The lack of change suggests that the concrete mixer is idle. Detecting inactivity involves analyzing 
the object's features across the sequence and noting the absence of significant variation.

Object  Changes Its  State – Active.  Conversely,  if  the object  changes its  state  across  the 
sequence  of  images,  it  is  classified  as  active.  For  the  concrete  mixer  example,  this  would  be 
indicated by visible changes such as the rotation of the mixing drum, movement of the mixer from 
one  location  to  another,  or  other  signs  of  operation.  Detecting  activity  involves  identifying 
variations in  the  object's  features,  such as  changes  in  texture (rotation patterns  of  the drum),  
position, or other operational indicators that signify the mixer is in use. An example of an active 
equipment recognition system is shown in Figure 2.

Object number Class name Number of instances

1 IB 150

2 AB 200

3 ICM 120

4 ACM 180

5 IG 100

6 AG 150

7 HD 200

8 PS 170

9 J 160

10 WM 140

11 CL 190

12 CI 150

13 DTL 180

14 DTE 160

15 ED 210

16 EI 170

17 CTP 190

18 CTI 150



Figure 2: Active equipment recognition system.

The detection of object activity typically involves the following steps:

 Feature Extraction. Identifying relevant features indicative of the object's state.
 Temporal  Analysis.  Comparing features  across  image sequences to  detect  changes over 

time.
 State  Classification.  Classifying  objects  as  active  or  inactive  based  on  detected  feature 

changes.
 Contextual  Information Integration.  Enhancing accuracy by incorporating knowledge of 

typical operational cycles.

This principle of object activity detection is not limited to concrete mixers but can be applied to  
a  wide  range  of  objects  and  scenarios  where  understanding  the  operational  state  is  crucial.  
Implementing such a system requires careful  consideration of  the features to be extracted,  the 
method for temporal analysis, and the criteria for classifying the state of the object.

2.4. Data cleaning

Data cleaning is crucial for preparing an optimal dataset for training the YOLOv5-based object 
detection model [12]. The process involved:

1. Removing irrelevant images not depicting construction equipment,  tools,  or  vehicles in 
specified states.

2. Eliminating duplicate images to prevent overfitting.
3. Correcting mislabelled images to ensure accurate representation of classes and states.
4. Implementing quality control measures to remove blurry, poorly lit, or obstructed images.

This  meticulous  process  ensures  a  dataset  optimized  for  training  an  effective  and  accurate 
YOLOv5 model, focusing on relevance, diversity, accuracy, and quality.



2.5. Image preprocessing

Image preprocessing is pivotal in enhancing the dataset's suitability for model training [13]. Key 
steps included:

1. Resizing all images to a uniform dimension for YOLOv5 training.
2. Adjusting brightness and contrast to simulate various lighting conditions.
3. Applying image normalization to scale pixel values.
4. Employing data augmentation techniques (rotations, translations, flipping, scaling).
5. Converting  some  images  to  different  color  spaces  (e.g.,  HSV,  LAB)  to  enhance  object  

detection capabilities [14-15].

The preprocessed dataset was then organized into training, validation, and test sets, ensuring 
comprehensive model evaluation.

2.6. Splitting data

The dataset was divided into three subsets:

 Training set (70%): 1,897 images (1,610 machinery, 287 tool tracking)
 Validation set (20%): 542 images (460 equipment/vehicle, 82 tool tracking)
 Test set (10%): 271 images (230 equipment/vehicle, 41 tool tracking)

This structured approach ensures balanced representation across all classes and states.

2.7. Testing and evaluation

The  model's  performance  was  evaluated  using  CCTV imagery  from  a  local  construction  site,  
focusing on accuracy and reliability in object detection and classification.

2.7.1. Intersection over Union (IoU)

IoU quantifies the accuracy of predicted bounding boxes against ground truth. The equation for IoU 
is given by:

IoU=areaof overlap
areaof∪¿ ,¿

(1)

where areaof overlap is the area where the predicted bounding box and the actual (ground truth) 
bounding box overlap; areaof∪¿ is the total area covered by both the predicted bounding box and 
the actual bounding box, minus the area of overlap. It represents the combined area of both boxes  
where either box has coverage.

2.7.2. Confusion matrix

Precision measures the model's accuracy in predicting positive observations. The equation for  
Precision is given by:

Precision= TP
TP+FP

= TP
all detections

,
(2)

where TP are the true positive predictions; FP are the false positive predictions.
Recall assesses the model's sensitivity. The equation for Recall is given by:



Recall= TP
TP+FN

,
(3)

where FN  are the false negative predictions.
Mean Average Precision (mAP) evaluates the model's accuracy across all classes. The equation 

for mAP is given by:

mAP=1
n
∙∑
k=1

n

APk ,
(4)

where n is the total number of classes in the dataset; AP is calculated for each class and represents 
the precision at different recall levels. It takes into account the order of the predictions, rewarding 
models that return true positives earlier. The equation of AP is given by:

AP=∑
k=0

n−1

[Recall (k )−Recall(k+1)] ∙ Precision(k ) ,
(5)

where k  is the index used to sum over a sorted list of objects, thresholds, or intervals.
The model was evaluated using these metrics on the dataset split into training, validation, and  

test  sets,  with  an  IoU  threshold  of  0.5.  This  comprehensive  assessment  ensures  the  model's 
accuracy and reliability in real-world construction site scenarios, contributing to improved safety 
and efficiency.

3. Results

The model underwent training for 30 epochs on the dataset comprising construction equipment, 
tools,  and  vehicles,  with  a  batch  size  set  at  16.  The  training  process  was  completed  in 
approximately  23  minutes  utilizing  a  Google  Colab  GPU.  Figure  3  illustrates  the  model's 
performance  across  the  training  phase  for  the  construction  equipment  and  tools  dataset, 
showcasing the metrics of precision, recall, and mAP at the 50 IoU threshold.



Figure 3: Performance of YOLOv5 during the training phase with the Vehicle Recognition dataset:  
(a) precision, (b) recall, and (c) mAP at the 50 IoU threshold.

Table 2
Validation results on the different classes

The  performance  of  YOLOv5  on  the  validation  dataset,  which  included  images  of  classes,  is 
summarized in Table 2. The model achieved an overall precision of approximately 88%, a recall of 
79%, and a mAP at the 50 IoU threshold of 85%.

4. Conclusion

Thus, the implementation of the YOLOv5-based object detection model for enhancing construction 
site efficiency and safety has demonstrated significant potential in revolutionizing the management 
of resources and equipment. Through meticulous training, validation, and testing processes, the 
model has shown high accuracy in detecting and classifying various construction-related objects,  

Object number Class name Precision Recall mAP-05
1 IB 0.871 0.756 0.814
2 AB 0.884 0.722 0.802
3 ICM 0.851 0.705 0.781
4 ACM 0.866 0.747 0.825
5 IG 0.842 0.712 0.797
6 AG 0.898 0.734 0.832
7 HD 0.811 0.696 0.751
8 PS 0.838 0.725 0.777
9 J 0.852 0.746 0.802
10 WM 0.828 0.709 0.766
11 CL 0.872 0.757 0.828
12 CI 0.864 0.739 0.818
13 DTL 0.886 0.720 0.845
14 DTE 0.844 0.714 0.785
15 ED 0.855 0.742 0.793
16 EI 0.832 0.702 0.761
17 CTP 0.892 0.761 0.850
18 CTI 0.807 0.681 0.743



including equipment in idle and active states, tools, and vehicles, directly contributing to improved 
operational efficiency and safety measures on construction sites. 

The model's training over 30 epochs, utilizing a dataset meticulously prepared with images of 
construction equipment, tools, and vehicles, resulted in a final precision of 0.852, a recall of 0.723,  
and a mAP_0.5 of 0.792. These metrics underscore the model's capability to accurately identify and 
classify objects, which is crucial for real-time monitoring and management applications. The high 
performance across different classes, particularly in vehicle recognition and equipment utilization, 
highlights the model's versatility and effectiveness in addressing the dynamic needs of construction 
site management. The validation and testing phases further affirmed the model's reliability, with 
precision  and  recall  rates  consistently  above  85%  and  79%,  respectively,  across  various  object 
categories.  This  level  of  accuracy  ensures  that  the  model  can  serve  as  a  dependable  tool  for 
construction site managers, enabling them to make informed decisions based on real-time data 
regarding the status and location of tools, machinery, and vehicles.

In conclusion, the YOLOv5-based object detection model represents a significant advancement 
in leveraging computer vision and deep learning technologies for construction site management. 
By providing a robust solution for real-time detection and classification of construction resources  
and equipment, the model paves the way for smarter, safer, and more efficient construction site 
operations.  Future  work  will  focus  on  further  refining  the  model's  accuracy,  exploring  its 
integration with other technological solutions, and expanding its application to a broader range of 
construction site scenarios, ultimately contributing to the ongoing digital transformation of the 
construction industry.
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