
Fusion  of  vision  transformers  and  convolutional 
networks for advanced face anti-spoofing

Zhanseri Ikram1,∗,† and Bauyrzhan Omarov1,†

1Al-Farabi Kazakh National University, Almaty, Kazakhstan

Abstract
Face anti-spoofing systems play a crucial role in securing biometric authentication frameworks against 
presentation  attacks.  The  growing  complexity  of  spoofing  techniques  demands  the  development  of  
advanced detection methods that can effectively generalize across various attack forms and environmental 
conditions. In response to challenges, a new architecture fusing Vision Transformers (ViT), ConvNeXT, 
and  Swin  Transformer  is  proposed  for  advanced  face  anti-spoofing.  The  method  combines  global  
contextual modeling with local feature extraction and multi-scale analysis. Detailed evaluations on the 
OULU-NPU and CASIA-MFSD datasets demonstrate competitive performance across various protocols, 
with  notable  improvements  in  generalization  to  unseen  environmental  conditions.  Feature  space 
visualizations  reveal  improved  class  separability  post-fusion,  emphasizing  the  effectiveness  of  the 
combined  approach.  Cross-dataset  experiments  highlight  challenges  in  domain  generalization  in 
bidirectional  evaluations between OULU-NPU and CASIA-MFSD.  The proposed method advances the 
state-of-the-art  in  face  anti-spoofing,  offering  insights  into  feature  fusion  strategies  and  avenues  for 
future research in cross-domain generalization.
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1. Introduction

Face recognition technologies have rapidly evolutionized and are now essential to various security 
systems,  from personal  devices  to  large-scale  surveillance  networks.  However,  the  widespread 
adoption  of  these  technologies  has  also  led  to  the  emergence  of  face  spoofing attacks,  where 
attackers use photos, videos, masks, or other facial representations to deceive recognition systems 
[1].  The field of face anti-spoofing is a critical component of robust biometric systems and it has 
undergone significant advancements in recent years, primarily fueled by the rapid evolution of  
deep learning methodologies. 

The fusion of ViT and Convolutional Neural Networks (CNNs) represents a promising route for 
addressing  these  challenges.  Vision  Transformers,  introduced  by  [2],  have  demonstrated 
remarkable performance in various computer vision tasks by applying self-attention mechanisms 
to model long-range dependencies. Conversely, CNNs excel at extracting hierarchical local features 
and  have  been  the  cornerstone  of  many  successful  face  anti-spoofing  approaches  [3].  The 
synergistic  integration  of  these  architectures  aims  to  harness  their  complementary  strengths, 
potentially yielding a more detailed and nuanced representation of facial characteristics pertinent 
to spoofing detection.

The proposed methodology implies  a  multi-stream architecture that  processes input  images 
through ViT and uses two parallel pathways. In this context ViT offers the potential to capture 
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subtle, global features that may be indicative of spoofing attacks. The proposed approach builds  
upon recent advancements in face anti-spoofing research, including multi-modal fusion techniques 
[4], attention mechanisms [5], and domain generalization strategies [6]. 

The remainder of this paper is organized as follows: Section 2 provides an overview of related 
works, the advancements and challenges in the domain of face anti-spoofing. In Section 3, we detail  
the  materials  and  methods  used  in  our  study,  including  the  problem statement,  the  proposed 
method,  evaluation  metrics,  loss  functions,  and  datasets.  Section  4  presents  the  experimental 
results, demonstrating the performance of our approach on various benchmarks. Finally, Section 5 
offers a discussion of the findings, their implications, and potential directions for future research.

2. Related works

Face  anti-spoofing research  has  made  a  big  growth  transitioning  from traditional  handcrafted 
feature-based approaches to deep learning-driven methodologies.

Early face anti-spoofing techniques primarily relied on texture analysis to differentiate between 
genuine  and  spoofed  facial  presentations.  Local  Binary  Patterns  (LBP)  and  its  variants  were 
extensively  employed to  capture  micro-textural  patterns  [7].  Subsequent  works  explored  more 
sophisticated descriptors  such as  SURF [8]  and HOG [9]  to  boost  the discriminative power of 
extracted features. While these methods demonstrated good results in controlled environments, 
their  performance  often  degraded  under  variable  lighting  conditions  and  against  high-quality 
spoofing attacks.

The deep learning settled a paradigm shift in face anti-spoofing research. CNNs became the 
powerful  tools  for  automatically  learning  hierarchical  features  from  raw  input  images.  [10] 
proposed a CNN architecture specifically designed for face anti-spoofing, incorporating a pixel-
wise supervision strategy to improve localization capabilities. [11] introduced a multi-stream CNN 
framework that concurrently processed color, depth, and infrared information to bolster spoofing 
detection accuracy,  thus outperforming traditional  methods,  particularly  in  scenarios  involving 
diverse spoofing techniques. Recognizing the potential of temporal cues in distinguishing between 
genuine and spoofed facial presentations,  researchers began incorporating motion analysis into 
anti-spoofing  frameworks.  [12]  proposed  a  3D  CNN  architecture  to  capture  spatio-temporal 
features from video sequences. Long Short-Term Memory (LSTM) networks were employed by [13] 
to model the temporal dynamics of facial movements, demonstrating strong robustness against  
video replay attacks and 3D mask impersonations.

The integration of attention mechanisms into face anti-spoofing models has gained significant 
interest due to their ability to focus on salient regions. [14] introduced a spatial attention module to 
emphasize discriminative facial  areas for spoofing detection.  [15] proposed a channel attention 
mechanism to  adaptively  recalibrate  feature  maps,  improving  the  model's  sensitivity  to  subtle 
spoofing artifacts. 

A continuous challenge in face anti-spoofing lies  in the domain shift between training and 
testing  distributions.  To  address  this,  several  works  have  explored  domain  generalization 
techniques. [16] proposed a multi-adversarial domain generalization framework to learn domain-
invariant  features.  [17]  introduced  a  meta-learning  approach  to  simulate  domain  shift  during 
training, thereby increase the model's generalization capabilities.   The recent success of ViT in 
various computer vision tasks has sparked interest in their application to face anti-spoofing. [18] 
adapted the ViT architecture for spoofing detection, demonstrating competitive performance with 
CNN-based counterparts. [19] proposed a hybrid CNN-Transformer model that applied both local 
and global feature representations for advanced spoofing detection. Recognizing the limitations of 
single-modality approaches, researchers have explored the fusion of multiple information sources 
for robust spoofing detection. [20] proposed a multi-modal framework that combined visible light, 
infrared,  and  depth  information.  [21]  introduced  a  cross-modal  fusion  strategy  that  used 
complementary cues from different sensing modalities, showing that multi-modal approaches can 
address diverse spoofing scenarios and environmental variations.



3. Materials and methods

The proposed architecture in Figure 1 consists of ViT, ConvNeXT [22], and Swin Transformer [23]  
to create a robust face anti-spoofing system. ConvNeXT introduces a pure ConvNet approach that 
incorporates design elements from transformers, achieving performance competitive with state-of-
the-art vision transformers while maintaining the efficiency and inductive biases of CNNs. Swin 
Transformer proposes  a  hierarchical  vision transformer that  utilizes  shifted windows,  enabling 
efficient modeling of image features at various scales. The methodology uses the strengths of each 
component  to  address  the  complex  challenge  of  distinguishing  genuine  from  spoofed  facial 
presentations. 

3.1. Problem statement

Face  anti-spoofing  systems  aim  to  differentiate  between  bona  fide  facial  presentations  and 
fraudulent  attempts  using  various  spoofing  techniques,  such  as  printed  photographs,  digital 
displays, or 3D masks. The challenge lies in capturing both fine-grained textural details and global 
contextual information while maintaining robustness across diverse environmental conditions and 

attack  modalities.  Formally,  given  an  input  image  ,  where   and  represent 

height, width, and channels respectively, the objective is to learn a function , 
where 0 denotes a spoofed presentation and 1 indicates a genuine facial image. 

3.2. Proposed method

The proposed architecture comprises three main components.  A ViT for global feature extraction, 
a ConvNeXT module for local feature refinement, and a Swin Transformer for multi-scale feature  
analysis.  The  fusion  of  outputs  from  ConvNeXT  and  Swin  Transformer  yields  the  final 
classification decision. 

The ViT module partitions the input image I into N non-overlapping patches, each of size 

. In our experiment since we use 8x8 patching for 224x224x3 image, the N will become 784. 

                                        (1)

, for embedding D = 768. Let’s say  is our ViT model. Then 

  is  the output of i-th layer, where total number layers is 12 and  is the batch size. 
Out of 12 layers, we use only last 4 layers, since they represent the higher level information. Each 

of shape , after concatenation the tensor becomes .



Figure 1: The proposed model architecture.

The ConvNeXT module processes the concatenated high-level feature maps from ViT using a 
series of depthwise separable convolutions and inverted bottleneck layers. For each block i.

                                                                     (2)

                                                                             (3)

                                                                  (4)

where DWConv and PointwiseConv represent depthwise and pointwise convolutions, respectively, 
and GELU is the Gaussian Error Linear Unit activation function.

The Swin Transformer operates  on the same concatenated feature  maps,  employing shifted 
window-based self-attention to capture multi-scale contextual information

                                               (5)

where Q, K, V are query, key, and value matrices, d is the dimension of queries/keys, and B is the 
relative position bias. Prior to the Swin Transformer, features were passed through a convolutional  
layer  to  reduce  the  number  of  parameters,  thereby  facilitating  more  efficient  training.  This 
approach was necessary because the Swin Transformer, unlike ConvNeXT, is comparatively slower 
in processing.
The outputs from ConvNeXT and Swin Transformer undergo global average pooling:



                                                          (6)

                                                     (7)

where GAP is Global Average Pooling. The final value before feeding to Sigmoid function is

                                                                    (8)
so that both have an equal contribution.

3.3. Metrics and loss

Performance  metrics  used  to  evaluate  the  effectiveness  of  these  anti-spoofing systems include 
APCER, BPCER, and ACER [24]. 

APCER measures  the  rate  at  which the system incorrectly  classifies  a  spoofing attack as  a 
genuine  attempt.  In  other  words,  it  is  the  proportion  of  spoofing  attempts  that  are  wrongly 
accepted as legitimate by the system.

                                          (9)

BPCER measures the rate at which the system incorrectly classifies a genuine attempt as a  
spoofing attack. metric reflects the system's ability to correctly recognize legitimate users.

                                        (10)

ACER is the average of APCER and BPCER. It is usually used to find a balance between 
aforementioned metrics: 

                                                                 (11)

For the loss, we used Binary Cross Entropy Loss:

                        (12)

where N - the total number of samples, - true label,  - predicted probability.

3.4. Dataset

The proposed method was evaluated on two widely recognized datasets in the face anti-spoofing 
domain: OULU-NPU [25] in Figure 2 and CASIA-MFSD [26] in Figure 3. These datasets provide 
diverse spoofing scenarios and environmental  conditions,  enabling detailed assessment of  anti-
spoofing algorithms.

OULU-NPU combines 4,950 real access and spoofing videos from 55 subjects, captured using six 
mobile  devices  with  front-facing  cameras.  The  dataset  provides  four  protocols  evaluating 
generalization  across  unseen  environmental  conditions,  attack  types,  input  sensors,  and  a 
combination thereof. Spoofing attacks include print and video-replay using two printers and two 
display devices. Environmental variations encompass three sessions with different illumination and 
background settings.

CASIA-MFSD contains 600 video clips of genuine and attack attempts from 50 subjects. The 
dataset  features  three  image  quality  categories:  low-quality,  normal-quality,  and  high-quality. 
Spoofing attacks are categorized into three types: warped photo attacks, cut photo attacks, and 



video attacks. The dataset was collected under varying illumination conditions and with different 
digital devices, presenting challenges in terms of image quality and attack diversity. The dataset  
provides seven scenarios from three main protocols with low, high qualities and last is a mix of all  
train versus mix of all test samples. For this dataset we used only the 3 rd protocol, which is a 7th 

scenario.
For both datasets we took only every 25th frame and 5 frame in total only. Face detection was 

performed using MTCNN [27] library.

                 

Figure 2: Samples from OULU-NPU. From left to right: “live” face and “replay” attack.

                 

Figure 3: Samples from CASIA-MFSD. From left to right: “live” face and “print” attack.

3.5. Experimental setup

In this research, the experiments were executed using an NVIDIA RTX 4090 GPU with 24GB of 
VRAM. Batch size is 16, which took about 17GB memory of GPU. The optimizer is Adam with  
initial learning rate value 0.00001 by reducing using ReduceLROnPlateau scheduler after each 3 
epochs without loss decrease for 20 epochs.  For the augmentations we used flipping,  rotating, 
random cropping, blurring and changing the brightness.

4. Experiment results

The proposed method went through a different evaluations using the OULU-NPU and CASIA-
MFSD datasets, with performance metrics including ACER, APCER and BPCER. The experimental 
results  are  presented  in  Tables  1,  2,  and  3,  showing  the  model's  performance  across  various 
protocols and cross-dataset scenarios. 



Table 1
Comparison of state-of-the-are and our methods on OULU-NPU dataset

Table 1  delineates the comparative analysis  of  the proposed method against  state-of-the-art 
approaches  on  the  OULU-NPU  dataset  across  four  protocols.  In  Protocol  1,  which  evaluates 
generalization across unseen environmental conditions, the proposed method achieved an APCER 
of  0.2%,  outperforming  all  baseline  methods.  The  BPCER and  ACER values  of  0.6%  and  0.4% 
respectively,  demonstrate competitive performance, with only NAS-FAS achieving a marginally 
lower ACER. Protocol 2, assessing generalization to unseen attack types, revealed the proposed 
method's APCER of 1.0%, ranking second after DC-CDN. While the BPCER of 2.0% was higher than 
some baselines, the overall ACER of 1.5% remained competitive, matching CDCN and surpassing 
STDN.  For  Protocol  3,  which  examines  generalization  to  unseen  input  sensors,  the  proposed 
method exhibited consistent performance with an APCER of 2.0±1.6%, BPCER of 1.8±1.4%, and 
ACER of 1.9±0.8%. The results indicate robust generalization capabilities, with the method ranking 
second  in  ACER,  marginally  behind  NAS-FAS.  Protocol  4,  combining  all  previous  challenges,  
demonstrated the method's resilience in the most demanding scenario.  An APCER of 3.0±2.6%, 
BPCER of  4.4±4.8%,  and  ACER of  3.7±2.3% were  achieved,  positioning  the  proposed approach 
competitively among top-performing methods.

Protocol Method APCER (%) BPCER (%) ACER (%)

1

STDN [28]
CDCN [3]

DC-CDN [30]
NAS-FAS [31]

Ours

0.8
0.4
0.5
0.4
0.2

1.3
1.7
0.3
0

0.6

1.1
1.0
0.4
0.2
0.4

2

STDN [28]
CDCN [3]

DC-CDN [30]
NAS-FAS [31]

Ours

2.3
1.5
0.7
1.5
1.0

1.6
1.4
1.9
0.8
2.0

1.9
1.5
1.3
1.2
1.5

3

STDN [28]
CDCN [3]

DC-CDN [30]
NAS-FAS [31]

Ours

1.6±1.6
2.4±1.3
2.2±2.8
2.1±1.3
2.0±1.6

4.0±5.4
2.2±2.0
1.6±2.1
1.4±1.1
1.8±1.4

2.8±3.3
2.3±1.4
1.9±1.1
1.7±0.6
1.9±0.8

4

STDN [28]
CDCN [3]

DC-CDN [30]
NAS-FAS [31]

Ours

2.3±3.6
4.6±4.6
5.4±3.3
4.2±5.3
3.0±2.6

5.2±5.4
9.2±8.0
2.5±4.2
1.7±2.6
4.4±4.8

3.8±4.2
6.9±2.9
4.0±3.1
2.9±2.8
3.7±2.3



Table 2
Testing the method on the CASIA-MFSD dataset. The benchmark requires the equal error rates 
(EER) so that both APCER and BPCER were equal at some threshold

Table 2 presents the performance on the CASIA-MFSD dataset. The proposed method achieved 
an APCER of 1.68%, BPCER of 1.68%, and ACER of 1.68%, indicating high performance in detecting 
presentation attacks while maintaining a low false rejection rate for genuine presentations.

Table 3
Cross dataset testing of the Proposed method

Table  3  shows  the  cross-dataset  generalization  capabilities  of  the  proposed  method.  When 
trained  on  OULU-NPU and  tested  on  CASIA-MFSD,  the  model  achieved  an  APCER of  22.5%, 
BPCER of 8.8%, and ACER of 15.7%. Conversely, training on CASIA-MFSD and testing on OULU-
NPU yielded an APCER of 12.3%, BPCER of 2.5%, and ACER of 7.4%. The disparity in performance 
between the two cross-dataset scenarios highlights the challenges associated with domain shift and 
the varying complexity of presentation attacks across datasets.

Method APCER (%) BPCER (%) ACER (%)
Fisher Vector [32]
Patch&DepthFusion [33]
3D Synthesis [34]
Ours

2.80
2.67
2.22
1.68

2.80
2.67
2.22
1.68

2.80
2.67
2.22
1.68

Trained on Tested on APCER (%) BPCER (%) ACER (%)
OULU-NPU
CASIA-MFSD

CASIA-MFSD
OULU-NPU

22.5
12.3

8.8
2.5

15.7
7.4



Figure  4: The  graph  on  top  shows  the  PCA of  ViT  output,  while  below is  the  output  after  
ConvNeXT and Swin Transformer blocks fusion is illustrated. The samples’ taken from CASIA-
MFSD dataset.

Figure  4  presents  a  visual  representation  of  the  feature  spaces  generated  by  different 
components  of  the  proposed  architecture.  The  top  graph  illustrates  the  Principal  Component 
Analysis  (PCA)  of  the  ViT  output,  while  the  bottom  graph  depicts  the  PCA  after  fusion  of 
ConvNeXT and Swin  Transformer  blocks.  Both  visualizations  use  the  same samples  from the 
CASIA-MFSD dataset. The ViT output on top graph provides a relatively clustered distribution of  
features, with considerable overlap between live faces and various types of spoofing attacks. The 
feature space lacks clear separation between classes,  indicating that the ViT alone struggles to 
distinguish between genuine and fake presentations consistently. In contrast, the fused output of  
ConvNeXT and Swin Transformer blocks on the bottom graph demonstrates a markedly improved 
feature distribution. The live face samples form a distinct cluster, which are shown in blue and 
gray,  well-separated  from the  spoofing  attack  samples.  The  fake  face  presentations,  including 
paper-based and video replay attacks, are grouped together but distinctly apart from the live face 
cluster. 

Figure 5: PCA of images on cross-dataset test, showing the domain-shift problem. The model is 
trained on CASIA-MFSD and tested on OULU-NPU.



Figure  5  illustrates  the  challenge  of  domain  shift  in  cross-dataset  scenarios.  The  PCA 
visualization shows the feature distribution when the model, trained on CASIA-MFSD, is tested on 
OULU-NPU. The plot reveals four distinct clusters corresponding to live faces and different types of 
spoofing attacks. Notably, the printed fake faces (orange cluster) are well-separated from other 
categories, suggesting robust detection of this attack type across datasets. However, the live faces 
(blue),  video replay attacks (red),  and another type of printed fake (green) show some overlap, 
indicating potential challenges in distinguishing these categories in cross-dataset scenarios. The 
significant shift in feature distribution between the training and testing datasets is evident from the 
distinct grouping of samples on the right side of the plot. 

5. Discussion

The  experimental  results  and  feature  space  visualizations  provide  valuable  insights  into  the 
performance and characteristics of the proposed face anti-spoofing method.  The fusion of  ViT, 
ConvNeXT,  and  Swin  Transformer  demonstrates  promising  capabilities  in  addressing  the 
challenges of face presentation attack detection across various scenarios.

On the OULU-NPU dataset, the proposed method shows competitive performance across all four 
protocols.  Notably,  in  Protocol  1,  which  evaluates  generalization  to  unseen  environmental 
conditions, the method achieves the lowest APCER among all compared approaches, suggesting 
that the fusion of global and local feature extraction mechanisms effectively mitigates the impact of 
varying  illumination  and  background  conditions.  The  method's  performance  in  Protocols  2-4 
remains competitive,  indicating robustness to unseen attack types and input sensors.  The high 
performance on the CASIA-MFSD dataset further confirms the method's effectiveness in handling 
diverse spoofing techniques and image qualities. The lowest APCER on this dataset is particularly  
noteworthy, showing a strong ability to detect all presentation attacks without false acceptances. 

The PCA visualizations in Figure 4 provide crucial insights into the feature learning process. 
The ViT output alone shows limited separation between live faces and spoofing attacks, indicating 
that global context modeling is insufficient for robust anti-spoofing. However, the fused output of 
ConvNeXT  and  Swin  Transformer  blocks  demonstrates  a  marked  improvement  in  class 
separability,  indicating  the  importance  of  combining  global  contextual  information  with  local 
textural  features  and multi-scale  analysis  for  effective  spoofing detection.  The clear  separation 
between live  faces  and various attack types  in  the  fused feature  space  aligns  with  the strong 
performance metrics observed on individual datasets. It suggests that the proposed architecture 
successfully learns discriminative features that generalize well across different spoofing techniques 
and environmental conditions within a single dataset. The cross-dataset experiments reveal both 
strengths and limitations of the proposed method.  When trained on OULU-NPU and tested on 
CASIA-MFSD, the model achieves an ACER, which, while not optimal, indicates some degree of 
generalization. On the other hand, training on CASIA-MFSD and testing on OULU-NPU yields a 
better ACER, suggesting that the features learned from CASIA-MFSD may be more generalizable. 
Figure 5 visualizes the domain shift problem inherent [35] in cross-dataset scenarios. The distinct 
clustering  of  samples  from  the  test  dataset  separate  from  the  training  dataset  distribution 
highlights the challenge of domain adaptation in face anti-spoofing. The clear separation of printed 
fake  faces  in  this  scenario  is  encouraging,  indicating  that  certain  attack  types  may  be  more 
consistently detectable across domains. 

While the proposed method demonstrates strong performance within individual datasets, the 
cross-dataset results reveal room for improvement in domain generalization. The disparity in cross-
dataset  performance  depending  on  the  training  set  suggests  that  the  model's  generalization 
capabilities are influenced by the diversity and characteristics of the training data. Future work 
should  focus  on  addressing  the  domain  shift  problem,  potentially  through techniques  such  as 
adversarial domain adaptation or meta-learning approaches [36].



6. Conclusion

In  summary,  the  proposed  face  anti-spoofing  method,  which  combines  Vision  Transformer, 
ConvNeXT, and Swin Transformer,  demonstrates high results in detecting presentation attacks 
across  diverse  scenarios.  Experimental  evaluations  on  OULU-NPU  and  CASIA-MFSD  datasets 
reveal competitive performance, particularly in generalizing to unseen environmental conditions 
and  attack  types.  Feature  space  analysis  through PCA visualizations  shows the  importance  of 
fusing global and local feature representations. The clear separation between genuine and spoofed 
samples in the fused feature space correlates with the strong performance metrics observed on 
individual datasets. The proposed method offers a balance between capturing fine-grained textures 
and modeling long-range dependencies, crucial for robust spoofing detection. 

However, cross-dataset experiments expose challenges in domain generalization, with varying 
performance when transferring between OULU-NPU and CASIA-MFSD.  Future work should focus 
on  improving  cross-dataset  generalization  through  advanced  domain  adaptation  techniques  or 
meta-learning  approaches.  Additionally,  investigating  the  individual  contributions  of  each 
architectural  component  may  lead  to  further  optimizations  in  the  fusion  strategy.  While  the 
proposed method exhibits strong performance within individual datasets, addressing domain shift 
remains a critical challenge for real-world deployment of face anti-spoofing systems.
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