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Abstract
Time series analysis involves examining data collected at various time points to identify patterns, trends,  
and seasonal changes. Accurate forecasting of future values is crucial for call centers to optimize staff  
scheduling and manage workloads effectively. While traditional statistical methods and manual forecasting 
have been widely used, machine learning techniques have shown promising results in enhancing forecast 
accuracy. This paper explores the application of machine learning for forecasting incoming call volumes,  
with a focus on comparing Long Short-Term Memory (LSTM) networks and Random Forest Regression 
models. The models are evaluated using Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 
R-squared (R2) metrics. Experimental results indicate that Random Forest Regression performs well with 
limited data, achieving competitive MAE and RMSE values. However, LSTM networks outperform Random 
Forest Regression on an hourly scale, showing superior accuracy and higher R2 scores as the dataset size  
increases.  This study demonstrates that while Random Forest Regression provides stable performance 
across  different  data  sizes,  LSTM  models  offer  significant  improvements  in  forecasting  accuracy, 
particularly with larger datasets and high temporal granularity.
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1. Introduction

Time series  analysis  involves  examining sequences  of  data  points  collected  at  successive  time 
intervals to identify patterns, trends, and seasonal variations. This analysis is crucial for forecasting 
future values, particularly in domains where understanding and predicting temporal patterns can 
significantly impact decision-making and resource management. One such domain is call center 
operations, where accurate forecasting of inbound call volumes is essential for optimizing staffing 
levels and enhancing customer service [1].

Call  centers  serve  as  a  primary  point  of  contact  for  customers,  making  effective  workload 
forecasting critical to prevent operational inefficiencies and improve service quality. Traditional 
methods for forecasting call volumes often rely on statistical models or manual approaches, which 
may not fully capture the complex and dynamic nature of call volume patterns. As call centers 
continue to be a key interaction channel, there is a growing need for advanced forecasting techniques 
that can handle the inherent variability and seasonality in call data.
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Machine learning has emerged as a powerful tool for time series forecasting, offering the ability to 
model complex, non-linear relationships and capture intricate temporal dependencies. Among the 
various  machine  learning  methods,  Long  Short-Term  Memory  networks  and  Random  Forest 
Regression are particularly noteworthy for their unique strengths in time series prediction.

LSTM networks, a type of recurrent neural network (RNN), are designed to capture long-term 
dependencies and sequential patterns in data. Their ability to remember information over extended 
periods makes them well-suited for modeling time series data with significant temporal dynamics [2, 
3]. LSTMs have been shown to outperform traditional statistical methods in capturing complex 
patterns and trends, especially in cases with strong seasonality and non-linear relationships [4, 5, 6].

On the other hand, Random Forest Regression is an ensemble learning technique that aggregates 
multiple decision trees to improve prediction accuracy and robustness. Random Forest Regression 
excels at handling both linear and non-linear relationships and is known for its ability to manage 
high-dimensional data and prevent overfitting [7, 8]. Its flexibility and ease of implementation make 
it a popular choice for various forecasting tasks, including those involving time series data [9-12].

This study aims to explore and compare the performance of Long Short-Term Memory and 
Random Forest Regression in forecasting inbound call volumes for call centers. The comparison is 
driven by the need to evaluate how each model's strengths contribute to accurate predictions in this 
specific context. By assessing their performance based on Mean Absolute Error (MAE), Root Mean 
Squared Error (RMSE), and R-squared (R2) metrics, we seek to provide actionable insights into the 
most effective forecasting methods for call center operations [13-16].

2. Problem statement

In the dynamic environment of call center operations, accurately predicting inbound call volumes is 
essential  for  efficient  resource  management  and  maintaining customer  satisfaction.  Traditional 
forecasting methods often struggle to account for the inherent variability and complexity in call  
volume data, leading to challenges in optimizing agent scheduling and controlling operational costs.

Despite the potential of machine learning models like Random Forest Regression and Long Short-
Term Memory networks to address these challenges, their application in the specific context of call 
center call volume forecasting remains insufficiently explored. There is a critical need to determine 
the effectiveness of these models in capturing the intricate temporal patterns in call volume data, 
particularly when forecasting across different time scales, such as daily and half-hour intervals.

This study seeks to address the following key research questions:

 How do Random Forest Regression and LSTM models compare in terms of accuracy and 
reliability when forecasting inbound call volumes in a call center?

 What are the specific conditions under which each model performs optimally?
 How do different time scales (daily vs. half-hour intervals) and feature engineering strategies 

impact the performance of these models?

By answering these questions, this research aims to provide a deeper understanding of how 
machine learning can be effectively leveraged to improve call center operations through more precise 
call volume forecasting.

3. Methodology

This study employs two machine learning models—Random Forest Regression and Long Short-Term 
Memory networks—to forecast inbound call volumes in a call center. The methods are applied to two 



datasets: one aggregated by day, capturing total daily call volumes, and the other segmented by 30-
minute  intervals,  providing  a  finer  granularity  of  call  activity  throughout  the  day.  The 
methodological approach is divided into several key stages.

3.1. Data preprocessing and feature engineering

The dataset used in this study spans from April 2022 to August 2024 and includes detailed records of 
inbound  call  volumes.  The  datasets  were  first  examined  for  missing  values  and  outliers.  Any 
anomalies were either corrected or removed to ensure data quality. An anomaly detection step was 
performed using the Isolation Forest algorithm. This method is particularly effective in identifying 
outliers in high-dimensional data. The model was trained on the scaled data with a contamination 
rate set to 0.001, meaning that 0.1% of the data points were considered as anomalies. These identified 
anomalies  were  then  removed  from the  dataset,  resulting  in  a  cleaner  dataset  for  subsequent 
modeling.

The plot illustrates the identified anomalies (marked as red points) in the dataset, which were 
detected using the Isolation Forest algorithm with a contamination rate of 0.001.

To enhance the predictive performance of the machine learning models, we employed a variety of 
feature engineering techniques based on the available timestamped call data. The raw data provided 
timestamps for each inbound call, which we transformed into meaningful features aimed at capturing 
both temporal patterns and the operational dynamics of the call center.

 
Figure 1: Detection of Anomalies using Isolation Forest. 

First,  we  generated  time-based  features  by  extracting  key  temporal  information  from  the 
timestamp data. Each call record was assigned its corresponding half-hour of the day (e.g., 9:30, 10:00) 
and the day of the week (e.g., Monday, Tuesday), thereby allowing the model to account for daily and 
weekly patterns. We also introduced binary indicators to signal specific periods of interest. For 
instance, a binary variable was created to mark whether a call occurred during daytime half-hours 
(8:00 AM to 9:30 PM), which typically see higher call volumes. Similarly, we defined variables for  
lunch hours (12:00 PM to 1:00 PM) and work hours (8:00 AM to 6:00 PM) to capture fluctuations 
related to these timeframes.

Categorical features, such as the day of the week, were one-hot encoded to ensure that the model 
did not mistakenly treat these categories as having an inherent order. This encoding technique 



created separate binary variables for each day, allowing the model to capture variations in call 
volume across different days without assuming any linear relationship between them.

In addition to these temporal features, we incorporated lag features to account for the influence of 
past call volumes on future predictions. These lag features represent call volumes at previous time 
steps, and we generated lags from one to ten time steps prior. This allowed the model to recognize 
autocorrelations within the data, such as whether a high call volume in the previous period would 
lead to a similar or opposite trend in the next period.

To further capture patterns and trends in the call volume data, we calculated rolling statistics. 
Rolling mean and rolling standard deviation were computed over various time windows to smooth 
out short-term fluctuations and reveal longer-term trends. For instance, the rolling mean over the 
past 8 steps provided the model with information about the general trend in call volume, while the 
rolling standard over the past 4 step deviation highlighted the variability within those windows.

By thoroughly transforming the timestamp data into informative features, we aimed to improve 
the model's ability to predict future call volumes by leveraging both short-term dependencies and 
longer-term trends.

Table 1
Features for Daily and Half-Hourly Call Volume Forecasting Datasets

3.2. Model training and evaluation

Random Forest Regression model was chosen for its robustness and ability to capture nonlinear  
relationships in the data. The model was trained using the preprocessed feature set. Hyperparameters 
such as the number of trees, maximum depth, and minimum samples per split were optimized using 
RandomizedSearchCV.  These  hyperparameters  were  selected  to  balance  model  complexity  and 
performance, ensuring that the model generalizes well to unseen data.

LSTM networks were chosen for their strength in modeling sequential data and capturing long-
term dependencies, which are crucial for accurate time series forecasting. The LSTM model includes 
multiple LSTM layers to capture temporal dependencies, followed by dense layers to map the output 
to the target variable. The model architecture is as follows:

 Input layer with shape matching the feature dimensions;
 The model architecture includes multiple LSTM layers, with a dropout layer to prevent 

overfitting;
 Dense output layer with a single unit for regression.

Feature Type Dataset Type Description

Lag Features Daily and Half-Hourly
Previous call volumes at lagged time 

steps

Rolling Statistics Daily and Half-Hourly
Measures of variability and trend over 

rolling windows

Categorical Variables Daily and Half-Hourly
Features representing categorical aspects 

such as time of day, day of week, etc.



Key hyperparameters such as the number of LSTM units, learning rate, and batch size were tuned. 
Early stopping was used to monitor validation loss and prevent overfitting.

Both models were evaluated using cross-validation to ensure generalizability. The data was split  
into training and validation sets, with the models trained on the training set and evaluated on the  
validation set.

The models were assessed using metrics such as Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE) to measure their predictive accuracy and explainability.

A comparative analysis was conducted to evaluate the performance of the Random Forest and 
LSTM models across different time scales (daily vs.  30-minute intervals)  and feature sets.  This 
analysis aimed to identify the conditions under which each model performs best. 

3.3. Implementation and tools

The models were implemented using Python, with libraries such as Scikit-learn for the Random 
Forest model and TensorFlow/Keras for the LSTM model. Data scaling and anomaly detection were 
performed using StandardScaler and IsolationForest, respectively.

The  training  and  evaluation  processes  were  conducted  in  a  high-performance  computing 
environment to handle the computational demands of model training, particularly for the LSTM 
network.

Through this methodological approach, the study seeks to provide a robust comparison between 
traditional ensemble methods and deep learning techniques for forecasting inbound call volumes, 
offering insights into the most effective strategies for call center management.

4. Results and discussion

4.1. Model Performance

The Random Forest model demonstrated strong performance across both daily and half-hourly 
datasets. Using the optimized hyperparameters, the model achieved an average Mean Absolute Error 
(MAE) of 481 for the daily dataset and 14 for the half-hourly dataset. The Root Mean Squared Error 
(RMSE) was 674 for daily and 26 for half-hourly data. The R-squared (R²) values were 0.8958 for daily 
and 0.9686 for half-hourly data, indicating a good fit for both datasets.

The LSTM model, leveraging its capacity to capture long-term dependencies in sequential data, 
also performed well. The average MAE was 387 for the daily dataset and 13 for the half-hourly 
dataset. The RMSE was 595 for daily and 23 for half-hourly data. The R-squared (R²) values were 
0.9350 for daily and 0.9720 for half-hourly data. The LSTM model showed superior performance in 
capturing temporal patterns and trends compared to the Random Forest model.



Table 2
Results of model predictions

The LSTM model's training dynamics, visualized through loss graphs, indicated efficient learning 
and convergence, highlighting the model's ability to adapt to sequential data over epochs. This 
reinforces the LSTM model's suitability for time series forecasting.

Figure 2: Dynamics of LSTM model training on half-hourly data.

4.2. Comparison across time scales

The comparative analysis revealed that both models performed better with the half-hourly dataset 
compared to the daily dataset. This improvement is likely due to the finer granularity of the half-
hourly data, which allows the models to capture more detailed patterns and trends in call volumes. 
The LSTM model, in particular, showed a significant advantage in handling the higher resolution of 
the half-hourly data, reflecting its strength in modeling sequential dependencies.

Figure 3 illustrates the predicted vs. actual call volumes for both models,  demonstrating the 
models' effectiveness in capturing call volume trends.

Metric
Random Forest 

(Daily)
LSTM 
(Daily)

Random Forest 
(Half-Hourly)

LSTM (Half-
Hourly)

Mean Absolute Error 
(MAE)

481 387 14 13

Root Mean Squared 
Error (RMSE)

674 595 26 23

R-squared (R2) 0.8958 0.9350 0.9686 0.9720



Figure 3: Predicted vs. actual call volumes for both models in the interval from July 13, 2024 to July 
20, 2024.

This study highlights the strengths and limitations of Random Forest Regression and LSTM 
networks in forecasting inbound call volumes. The results indicate that both models offer valuable 
insights, with LSTM networks showing particular strength in handling sequential data and capturing 
long-term dependencies.  The findings  suggest  that  a  combination of  these  models,  along with 
continuous refinement of features and parameters, can provide robust forecasting solutions for call 
center operations.

Figure 4: Residuals Distribution Across Predicted Values for Random Forest Regression and LSTM.

The  residuals  plot  displays  the  difference  between  actual  and  predicted  values  against  the 
predicted values for both Random Forest Regression and Long Short-Term Memory models. It shows 
a funnel-shaped pattern where residuals widen with higher predicted values, indicating that Random 
Forest Regression tends to have larger errors for higher call volumes, while LSTM maintains tighter 
residuals  and  more  consistent  predictions.  This  suggests  that  LSTM may be  more  reliable  for  
forecasting  larger  call  volumes  compared  to  Random Forest  Regression.  Both  models  perform 
similarly well for smaller predicted values.



4.3. Feature importance

The feature importance analysis for the Random Forest model indicated that lag features (e.g., Lag-1, 
Lag-2) and rolling statistics (e.g., Standard Deviation, Rolling Mean) were the most influential in 
predicting call volumes. This aligns with the expectation that recent call volumes and historical 
trends play a crucial role in forecasting.

For the LSTM model, the impact of features was less straightforward due to the model's ability to 
learn complex temporal patterns. However, lagged features and rolling statistics were still important, 
as they provided essential context for the LSTM's sequential processing.

4.4. Model limitations

While the Random Forest model performed well, it is limited by its inability to capture very long-term 
dependencies due to its non-sequential nature. Additionally, the model's performance can degrade if 
the feature set does not adequately capture all relevant temporal patterns.

The LSTM model, despite its strengths, requires significant computational resources and can be 
sensitive to hyperparameter settings. The performance of the LSTM model also depends on the 
quality and granularity of the input features.

4.5. Practical implications

The insights from this study have been applied in a call center setting, where machine learning 
models  are  now  used  to  forecast  call  volumes  and  optimize  staffing  levels.  While  the  initial  
implementation has shown promise in improving staffing efficiency and reducing operational costs, 
we are still in the process of fully evaluating the impact on service levels and customer satisfaction. 
Early results suggest that these models are aligning staffing more closely with expected call activity, 
potentially leading to reduced wait times and more effective resource management.

Future enhancements could involve integrating additional factors into the forecasting models, 
such as external events, promotional campaigns, and technical anomalies. Addressing these aspects 
could  further  refine  the  accuracy  of  the  predictions  and  improve  overall  model  performance. 
Exploring other advanced machine learning techniques or hybrid models may also offer further 
improvements  in  forecasting  capabilities,  providing even more  robust  solutions  for  call  center 
management and beyond.

5. Conclusion

This study evaluated the effectiveness of Random Forest Regression and Long Short-Term Memory 
models for forecasting inbound call volumes in call centers. The analysis was conducted using both 
daily and half-hourly datasets to determine the models' performance across different time scales.

The LSTM model outperformed the Random Forest model in forecasting call volumes. Specifically, 
the LSTM achieved lower Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), and 
higher R-squared (R2) values, demonstrating its superior ability to capture long-term dependencies 
and sequential patterns in time series data.

The training loss  graph for  the  LSTM model  illustrated efficient  learning and convergence, 
reinforcing its suitability for time series forecasting.

While both models showed strong performance, the LSTM's ability to model temporal trends and 
dependencies provided a significant advantage over the Random Forest model, especially for half-
hourly data.



Accurate call volume forecasting is essential for effective call center management. The results 
suggest that LSTM models can enhance staffing decisions and operational efficiency by providing 
more precise predictions compared to traditional models like Random Forest Regression.

Further research could explore additional machine learning techniques and integrate external 
factors  to  improve  forecasting  accuracy.  Expanding  the  scope  to  include  varied  time  series 
characteristics may also offer deeper insights into call volume prediction.
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