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Abstract
One of the most common examples of using the linear fractional optimization in project management is  
given by a problem of minimizing the expense per a unit of time or resource while maximizing the tasks  
completion quality. For example, in planning of a construction project, managers can use linear fractional  
models for optimizing the expense for construction materials and manpower with ensuring a high quality of 
works and good meeting of the schedule milestones at the same time.
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1. Introduction

In the rapidly developing world of nowadays, information technologies become a foundation for 
solving complicated problems in various branches of science and industry. The optimization is one of 
such important areas that enables finding the best solutions for attaining results desired while  
minimizing the expense or maximizing the efficiency. 

Problems of linear fractional optimization appear in many real situations when it is required to 
optimize the ratio between multiple parameters. For instance, this can be a problem of minimizing the 
prime cost of a product subject to reserving a certain level of quality or maximizing the profit when 
resources are restricted. Such problems are often of a nonlinear origin, which complicates their  
solution aided by conventional linear programing methods. Therefore, one of important areas of 
research consists in linearization of such problems that enables using efficient linear optimization 
algorithms.

2. Statement of basic material

The linear fractional optimization in project management is one of the most efficient approaches for 
solving complicated problems associated with planning, distribution of resources and management 
of risks. This method enables optimizing the ratio between multiple important parameters of a  
project, such as value, time, execution quality and other indicators being of critical importance for 
successful project closeout.

The linear fractional optimization differs from conventional methods in the fact that the objective 
function in such problems is written as a fraction where the numerator and the denominator are  
linear functions. For instance, it can be a ratio of expense vs executed works quality or of the project 
fulfilment time vs the project quality.  Problems of  this  type frequently appear in the real  life,  
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especially in the project management where it is essential to find the optimum ratio between various 
resources and results.

One  of  the  most  common  examples  of  using  the  linear  fractional  optimization  in  project  
management is given by a problem of minimizing the expense per a unit of time or resource while 
maximizing  the  tasks  completion  quality.  For  example,  in  planning  of  a  construction  project, 
managers can use linear fractional models for optimizing the expense for construction materials and 
manpower with ensuring a high quality of works and good meeting of the schedule milestones at the 
same time.

Another  example  is  given  by resources  usage  optimization.  In  large-scale  projects,  such  as 
construction of infrastructures or implementation of new technologies, it is required to efficiently 
distribute the resources across multiple project stages. Using the linear fractional optimization, you 
can  minimize  the  expense  per  one  unit  of  productivity  or  increase  the  productivity  within  a 
constricted budget, which is essential for a successful project closeout.

As it is difficult to solve linear fractional problems with the help of conventional optimization 
methods,  they  are  frequently  linearized,  i.e.  converted  into  linear  form.  This  is  attained  by 
introducing new variables that allow reducing the fractional function to a linear one, after which 
standard linear programing methods, such as simplex method, can be applied.

The linear fractional optimization is also used in risk management. In the project management, 
risks are often measured in the form of a ratio of a certain event probability vs its consequences.  
Linear  fractional  optimization  can  help  to  minimize  potential  expenses  with  maximizing  the 
efficiency of risk management measures at the same time.

The advantages of linear fractional optimization include the possibility of taking account of 
complicated  relationship  between  multiple  project  parameters,  which  enables  obtaining  more 
accurate and well-balanced solutions. It also provides flexibility in decision taking, as the managers 
can model various event development scenarios and select the most optimum way.

However, it is worth mentioning that the linear fractional optimization is the most complicated 
from the calculation point of view. It requires significant resources for solving and may require 
special algorithms and software. This creates a certain challenge for its utilization in real projects, 
especially in cases with a big number of variables and constraints.

3. Problem research

Mathematic models of mixed project management optimization often use nonlinear functions like:

, 
where

Similar nonlinear objective functions are used for mathematic models of economic specialization:
 The objective function of a model for optimizing the product manufacture expense 

profitability:



,
where

 - the quantity of product planned to manufacture,

 - the profit from selling one unit of product ,

 - the prime cost of producing one unit of product .
 The objective function of a model for optimizing the product sales profitability:

,
where

 - the quantity of product planned to sales,

 - the profit from selling one unit of product ,

 - the price of one unit of product .

 The objective function of a model for optimizing the expense per one monetary unit of  
product:

,
where

 - the quantity of product planned to sales,

 - the prime cost of one product unit manufacture ,

 - the price of one unit of product .

 The objective function of a model for optimizing the product manufacture prime cost:

,
where

 - the quantity of product produced,



 - the price of one unit of product .
In view of this, it is important to linearize objective functions of models to reduce the mathematic 

model to a linear optimization problem. 

a 0 a 1 a 2 a 3 a 4 a 5 a 6

1 3 -2 0 4 0 0

a 5 0 -3 -8 -2 -4 0 1 1 0
a 6 0 5 4 7 9 0 4 0 1
a 3 0 1 1 1 1 1 1 0 0
D j WI (Z 0) = -1 -1 -3 2 0 -4 0 0

a 0 1 3/8 1 1/4 1/2 0 - 1/8 - 1/8 0
a 6 0 7/2 0 6 7 0 9/2 1/2 1
a 3 0 5/8 0 3/4 1/2 1 9/8 1/8 0
D j WI (Z 1) = - 5/8 0 -11/4 5/2 0 -33/8 - 1/8 0

a 0 1 4/9 1 1/3 5/9 1/9 0 - 1/9 0
a 6 0 1 0 3 5 -4 0 0 1
a 4 4 5/9 0 2/3 4/9 8/9 1 1/9 0
D j WI (Z 2) =  5/3 0 0 13/3 11/3 0 1/3 0

Basis C B 

It is known that such an optimization problem is called linear fractional optimization problem 
where the objective function is a linear fractional function and the system of constraints complies  
with conditions of linearity, i.e. they are linear equations or inequalities.

A general linear fractional optimization problem shall look like:

(1)

We reduce linear fractional optimization problem (1) to solution of a linear optimization problem.

Let us designate , and introduce new variables:  .
Problem (1) turns to:



(2)
Additional problem (2) is a set of two problems. The first problem is a linear optimization problem. 

Therefore, it is solved by simplex method and then we are to find a solution to the initial linear  

fractional  problem.  The  second  problem  is  associated  with  designation   for 
simplifying the problem solution in general.

Model example No. 1.
Let us find the solution of problem

(3)
We have a linear fractional optimization problem. In the system of constraints, we move from 

inequality constraints to equation constraints:

(4)
Let us designate

,
and introduce new variables:

, , …, . (5)
The objective function of additional problem (2) turns to:

.

We shell multiply both the system of constraints equation members (4) by  and move to new 
variables (5).

Additional problem (2) turns to:



(6)
It is known that the beginning of solving a linear optimization problem with simplex method 

requires  obtaining  the  primary  basis   with  necessary  use  of  the  Jordan-Gauss  complete 
elimination method (Table 1).

Table 1
А linear optimization problem with simplex method

z 0 z 1 z 2 z 3 z 4 z 5 b ∑

-4 1 2 1 1 0 0 1
-1 -5 -1 -3 0 1 0 -9
3 1 2 1 0 0 1 8

Wiz 0 2 3 -1 0 0 0

-7 0 0 0 1 0 -1 -7
8 -2 5 0 0 1 3 15
3 1 2 1 0 0 1 8

Wiz 3 3 5 0 0 0 1

We have .
Table 2 provides a simplex calculation of additional problem (6).

Table 2
A simplex calculation of additional problem (6)

a 0 a 1 a 2 a 3 a 4 a 5

3 3 0 0 0 0

a 4 0 -1 -7 0 0 0 1 0

a 5 0 3 8 -2 5 0 0 1

a 3 0 1 3 1 2 1 0 0

D j WI (Z 0) = -1 -3 -3 0 0 0 0

a 0 3 1/7 1 0 0 0 - 1/7 0

a 5 0 13/7 0 -2 5 0 8/7 1

a 3 0 4/7 0 1 2 1 3/7 0

D j WI (Z 1) = - 4/7 0 -3 0 0 - 3/7 0

a 0 3 1/7 1 0 0 0 - 1/7 0

a 5 0 3 0 0 9 2 2 1

a 1 3 4/7 0 1 2 1 3/7 0

D j WI (Z 2) =  8/7 0 0 6 3 6/7 0

Basis C B 

The optimum solution of additional problem (6) is equal to:

,
then



, , ,

, .
For obtaining a solution to the minimization problem, it is worth mentioning that the current basis 

 of solving the maximization problem with simplex method (Table No. 2) is the solution to the  
minimization problem as all estimates in the simplex table are nonpositive.

We finally have: , , , .
Model example No. 2.

We need to find the solution to problem

(7)
We have a linear fractional optimization problem. In the system of constraints, we move from 

inequality constraints to equation constraints:

(8)
We designate

,
and introduce new variables:

, , …, , (9)
In this case, the objective function of additional problem (2) turns to:

.

We shall multiply both the system of constraints equation members (4) by  and move to new 
variables (5).

Additional problem (2) turns to:



(10)
It is known that the beginning of solution to a linear optimization problem with simplex method 

requires  obtaining  the  primary  basis   with  necessary  use  of  the  Jordan-Gauss  complete 
elimination method (Table 3).

Table 3
A linear optimization problem with simplex method use of the Jordan-Gauss complete elimination 
method

z 0 z 1 z 2 z 3 z 4 z 5 z 6 b ∑

-5 1 -1 3 4 1 0 0 3
-1 2 4 -5 -1 0 1 0 0
1 1 1 1 1 0 0 1 6

Wiz 0 2 -3 -1 3 0 0 0

-8 -2 -4 0 1 1 0 -3 -15
4 7 9 0 4 0 1 5 30
1 1 1 1 1 0 0 1 6

Wiz 1 3 -2 0 4 0 0 1

We have .
The optimum solution to additional problem (6) is equal to:

,
then

, , ,

, , .
Table 4 provides a simplex calculation to additional minimization problem (6).



Table 4
A simplex calculation to additional minimization problem (6).

a 0 a 1 a 2 a 3 a 4 a 5 a 6

1 3 -2 0 4 0 0

a 5 0 -3 -8 -2 -4 0 1 1 0
a 6 0 5 4 7 9 0 4 0 1
a 3 0 1 1 1 1 1 1 0 0
D j WI (Z 0) = -1 -1 -3 2 0 -4 0 0

a 0 1 3/8 1 1/4 1/2 0 - 1/8 - 1/8 0
a 6 0 7/2 0 6 7 0 9/2 1/2 1
a 3 0 5/8 0 3/4 1/2 1 9/8 1/8 0
D j WI (Z 1) = - 5/8 0 -11/4 5/2 0 -33/8 - 1/8 0

a 0 1 1/8 1 - 5/28 0 0 -25/56 - 9/56 - 1/14
a 2 -2 1/2 0 6/7 1 0 9/14 1/14 1/7
a 3 0 3/8 0 9/28 0 1 45/56 5/56 - 1/14
D j WI (Z 2) = -15/8 0 -137/28 0 0 -321/56 -17/56 - 5/14

Basis C B 

The optimum solution to additional minimization problem (6) is equal to:

,
then

, , ,

, , .

We have: , , , .
In a two-dimensional case, a linear fractional optimization problem can be graphically solved with 

graphic interpretation of the solution. 
A linear fractional problem of two variables optimization shall be formulated as follows: we need 

to  fine  such  a  basis   that  provides  the  optimum  value  to  objective  function 



(11)
Let us consider the solution and the geometric interpretation of the problem solution with two 

variables. Two cases are possible:

- Objective function of the problem is a homogeneous function like:

(12)

- Objective function of the problem is a nonhomogeneous function like:

(13)
Let us first consider a case when the objective function of the problem is homogeneous (12). We 

know that the solution to system of constraints  of problem (11) is a convex set constrained by 

lines also called polyhedron. In general case,  is geometrically shown as a polygon (Fig. 1).

Figure 1: Case,  

For geometric interpretation of conduct of objective function (12), solve this equation relative to 

:

,

,



.
We introduce designation 

,

and then we obtain the equation of line 

,

that passes across the coordinate’s origin .

Providing various values to objective function , we obtain a sheaf of lines with the center at 

point  of the coordinate’s origin. The sense of geometric solution of the two-dimensional linear  
fractional optimization problem consists in finding such a line that corresponds to the optimum value 

of  and belongs to polyhedron  at the same time. This line that is commonly called tagline 

(Fig. 2) will be a line touching the apex  or passing across the polyhedron side corresponding to 
the alternative minimum case (Fig. 3).

Figure 2: A tagline. Figure 3: A line touching the vertex or 
passing through the side of the polyhedron 
corresponding to the alternative minimal 
case.

The coordinates of the apexes the tagline passes across are the very coordinates giving the 
optimum problem attack plans.

Depending on the two-dimensional system of constraints , the following cases are possible: 
(Fig. 4)
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Figure 4: Various options for the location of the tagline depending on the two-dimensional 
constraint system.

 The admissible values area  is constrained, there are two alternative optimums obtained 

at points of the two sides of polyhedron (Fig. 4a)

 The admissible values area  is not constrained, there are two angular apexes providing 
the optimum values to the objective function (Fig. 4b)

 The admissible values area  is not constrained, there is only one angular apex providing 
the  optimum  (the  minimum)  value  to  the  objective  function.  The  second  optimum 
(minimum) corresponds to a case of the asymptotic maximum (Fig. 4c)
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 The admissible values area  is not constrained. The optimums are asymptotic (Fig. 4d)
Let us consider some examples of a geometric solution to linear fractional optimization problems 

in case of a homogeneous objective function.

4. Conclusion

Linear  fractional  optimization  is  a  powerful  tool  in  project  management,  particularly  when 
optimizing complex relationships between cost, time, and quality. By employing this method, project 
managers can achieve more balanced and practical solutions that ensure an efficient allocation of  
resources while simultaneously minimizing risks. This approach is beneficial in scenarios where 
traditional optimization techniques may need to fully address the multidimensional nature of project 
constraints and trade-offs.

One of the critical strengths of linear fractional optimization is its ability to handle conflicting 
objectives, such as reducing expenses while maintaining high quality and meeting tight deadlines.  
These  trade-offs are  common in  project  management,  where  stakeholders  often have  differing 
priorities and limited resources. The method provides a structured way to identify the best possible 
outcomes, making it easier to align the project goals with available resources and strategic objectives.

Despite  the  inherent  complexity  of  many  projects,  linear  fractional  optimization  remains 
adaptable and flexible. It offers a clear framework for decision-making in both simple and highly 
intricate project environments, making it a versatile tool. Its adaptability to various industries, from 
construction  and  engineering  to  information  technology  and  healthcare,  where  optimizing 
performance, cost efficiency, and quality assurance are critical, further underscores its adaptability 
and potential impact.

As project  management continues to  evolve with new technologies  and methodologies,  the 
practicality and relevance of linear fractional optimization become more apparent. The potential for 
further development and broader application of this technique grows, especially with advances in 
computational  tools,  data analytics,  and artificial  intelligence.  These advancements make linear 
fractional optimization more accessible and capable of handling even more complex decision-making 
processes, thereby improving project outcomes.
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