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Abstract
In seismic data interpretation, neural networks have significantly advanced tasks such as fault detection and 
subsurface analysis. However, the quality of input data remains a critical factor in the performance of these 
models.  Seismic data is  often noisy,  incomplete,  or inconsistent,  making it  necessary to apply robust  
preprocessing techniques to ensure that neural network or machine learning algorithms can effectively 
interpret the data. This paper presents an overview of modern preprocessing and visualization techniques 
tailored for seismic data, with a focus on Python-based implementations. We explore methods such as 
stratal slicing [1], attribute co-rendering[2], and data interpolation[3], which are crucial for improving both 
2D and 3D seismic datasets before they are fed into neural networks. Our focus is not to directly prove the 
improvement in model performance but to examine how these techniques enhance the overall quality and 
interpretability of the seismic data. This review aims to provide geophysicists and data scientists with the  
tools necessary to improve data quality, optimize neural network input , without delving into the actual 
training of neural networks, but rather focusing on how to better prepare the input data for such tasks.
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1. Introduction

Seismic data analysis is a fundamental aspect of industries like oil and gas exploration, earthquake 
hazard mitigation, and geotechnical engineering. One of the critical tasks in seismic interpretation is 
the detection of faults and other geological structures, which offer valuable insights into subsurface 
characteristics. Traditionally, these tasks were performed using manual methods or computationally 
expensive models [4, 5]. While effective, these traditional approaches struggle with the increasing 
complexity and volume of seismic data [6-8], particularly as modern surveys generate larger datasets 
with more intricate structures.

In  recent  years,  neural  networks  have  emerged  as  powerful  tools  for  automating  seismic 
interpretation. Unlike traditional methods, which often require domain expertise and manual feature 
extraction, neural networks—especially convolutional neural networks (CNNs)—can automatically 
learn complex patterns from raw seismic data. This makes them highly effective in dealing with large 
2D and 3D datasets, where traditional methods might falter due to the complexity and sheer scale of 
the data. While neural networks offer immense potential, their effectiveness is contingent upon the 
quality of the input data [9-11].
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Traditional methods for seismic interpretation, such as manual fault picking or applying pre-
defined algorithms, often face limitations in handling large-scale datasets and complex geological 
structures. For example, methods like those described by Wu et al. [10] and Moreno et al. [9] rely on 
manual interaction or heuristic algorithms to unfault 3D seismic images and assist interpretation.  
These methods, while useful in specific cases, can struggle with maintaining consistency across 
larger datasets or detecting subtle features.

In contrast,  neural networks,  as  demonstrated in works like Wu and Hale's  automatic fault 
detection [11], offer a data-driven approach that learns from raw seismic images without manual 
intervention. By capturing complex spatial relationships and features across 3D datasets, CNNs have 
shown  superior  performance  in  accurately  identifying  faults,  horizons,  and  other  geological 
structures. This not only reduces the time required for interpretation but also improves accuracy, 
particularly in regions where traditional methods may miss or misinterpret critical features.

Seismic data, by its nature, is prone to noise and inconsistencies due to variations in acquisition 
methods and environmental factors. This noise can obscure key geological features, such as faults 
and horizons,  leading to inaccurate  results  if  not  properly  addressed.  Therefore,  preprocessing 
seismic data is essential to ensure that only relevant and clean data is fed into neural network models. 
Preprocessing includes techniques like noise reduction, data smoothing, and feature enhancement, 
which can greatly improve the interpretability of the data.

The importance of data quality cannot be overstated, particularly in fields like geophysics, where 
high accuracy is paramount. Poor-quality data can lead to suboptimal model performance, even with 
the  most  advanced  neural  network  architectures.  This  makes  robust  preprocessing  not  just  a 
recommendation but a necessity for successful seismic data analysis.

In this paper, we review modern preprocessing and visualization techniques specifically designed 
to handle the challenges of seismic data. Focusing on Python-based tools, we will explore methods 
like stratal slicing, co-rendering of seismic attributes, and data interpolation. These techniques not  
only prepare the data for neural network models but also enhance human interpretation, offering a 
more intuitive understanding of complex subsurface structures.  By improving data quality and 
visualization, we aim to facilitate better decision-making processes in seismic data analysis.

2. Problem statement

Seismic  data  analysis,  particularly  in  the  context  of  fault  detection  and  subsurface  feature 
identification, is challenged by the inherent complexity and variability of the datasets. Both 2D and 
3D seismic data can suffer from significant noise, inconsistencies, and artifacts, making it difficult to 
obtain  accurate  geological  interpretations.  While  neural  networks  offer  powerful  solutions  for 
seismic interpretation, their effectiveness depends heavily on the quality of the input data.

A key issue is the lack of standardized tools and methods that can consistently improve data  
quality before it is fed into neural network models. Seismic data often requires multiple layers of 
preprocessing, including noise reduction, attribute co-rendering, and interpolation, to ensure that 
geological features are clearly visible and interpretable. The challenge lies not only in removing noise 
but also in preserving the integrity of key features such as faults and horizons, which are critical for 
accurate interpretations.

Another critical problem is the limited ability of existing tools to visualize and explore data before 
neural network training. Effective visualization methods are essential for geophysicists and data 
scientists to assess the quality of preprocessing, ensuring that the data is suitable for both human 
interpretation and neural network tasks. This paper seeks to address these gaps by exploring modern 
preprocessing techniques and their role in improving the quality and interpretability of seismic 
datasets.

The main research question is: How can modern preprocessing and visualization techniques 
enhance the clarity and structure of seismic data, making it more suitable for subsequent analysis and 
interpretation? By evaluating methods such as noise reduction, stratal slicing, and attribute co-
rendering, we aim to provide a clearer understanding of how these techniques can improve both data 



quality and the overall seismic analysis workflow. The goal is not to prove improvements in neural 
network  model performance but rather to explore how better data preparation can lead to more 
robust datasets that are ready for neural network applications or manual interpretation.

3. Methodology

3.1. Data description

3.1.1. Seismic data overview

In this study, we work with both 2D and 3D seismic datasets, which are commonly used for exploring 
subsurface geological structures, particularly in fault detection and subsurface mapping [12]. Seismic 
data is collected through surveys that involve generating and recording energy waves reflected from 
subsurface layers, creating an image of the Earth’s subsurface. These images are then used to identify 
key features like faults, horizons, and fractures.

 2D seismic data provides cross-sectional views of the subsurface and is often used in early 
exploration phases. It offers a single vertical slice of data, which is easier to analyze but may 
miss important details in complex structures.

 3D seismic data, on the other hand, provides a volumetric representation of the subsurface. It 
offers  a  much  more  detailed  and  accurate  depiction  of  geological  structures,  enabling 
geophysicists to visualize and interpret complex formations. 3D data is essential for detailed 
fault  analysis  and exploration of  more  intricate  subsurface  features,  but  it  comes with 
challenges,  including increased noise  levels  and larger  data  volumes that  require  more 
extensive processing.

3.1.2. Seismic data formats

Different datasets are provided in specific formats that cater to large volumes of data and ensure the 
integrity of the recorded information.

 SEG-Y Format[13]: One of the most common formats for seismic data is SEG-Y (Society of 
Exploration Geophysicists Y). This format is widely used in the industry and serves as a  
standard for storing seismic data collected during surveys. SEG-Y files contain a mixture of 
binary and ASCII data, including the recorded seismic signals (often referred to as traces) and 
additional metadata, such as location coordinates, acquisition parameters, and recording 
times. 

 .vol  Format:  The .vol  format  is  another  format  commonly used for  storing 3D seismic 
volumes. Unlike SEG-Y, which stores individual traces, .vol files represent entire 3D seismic 
volumes, allowing for faster retrieval and manipulation of data when working with large, 
complex datasets. 

 .npy Format[14]: The .npy format is a data format used for storing large, multi-dimensional 
arrays, which is supported by the Python library NumPy. This format is especially useful in 
deep learning workflows where seismic data needs to be efficiently loaded into memory for 
model training and analysis. 

3.1.3. Open seismic data sources

For this study, several open-source seismic datasets were used, allowing for comprehensive analysis 
and comparison of different preprocessing techniques. Among these are:



 Opunake-3D Dataset[15]: Available at Opunake-3D, this dataset includes detailed 3D seismic 
images stored in the .vol format. This data is ideal for testing 3D seismic analysis and fault  
detection methods, particularly in regions with complex subsurface structures.

 FORCE 2020 Machine Learning Competition Dataset[16]: Hosted on the Harvard Dataverse, 
this dataset includes both 2D and 3D seismic images in the .npy format, specifically designed 
for machine learning tasks. It provides a diverse set of seismic features, making it a valuable 
resource for deep learning experiments in fault detection.

 Netherlands F3 Dataset[17]: The F3 dataset is widely used in seismic research and is available 
through platforms like TerraNubis. It includes 3D seismic data in SEG-Y format, offering a 
rich dataset for structural and stratigraphic interpretation.

 These datasets were selected for their diversity in format and content, allowing for the 
testing of various preprocessing techniques.

3.2. Data preprocessing

In seismic data processing, proper preprocessing is crucial for improving data quality, enhancing key 
features, and preparing the data for further interpretation or machine learning and deep learning 
tasks. Seismic datasets, particularly those with complex subsurface structures, often contain noise 
and  require  interpolation  or  specialized  visualization  techniques.  The  following  preprocessing 
methods  were  applied  to  ensure  the  data  is  both  clean  and  informative,  allowing  for  clearer 
visualization and more accurate interpretation.

One of the central techniques used was stratal slicing, which proved invaluable in examining 
subsurface  structures  across  multiple  layers.  Traditional  vertical  cross-sections  often  obscure 
important  lateral  variations,  making  it  difficult  to  track  features  such  as  faults.  Stratal  slicing 
addresses this by cutting through seismic volumes horizontally along stratigraphic layers, enabling a 
more  intuitive  exploration  of  how  geological  formations  extend  across  different  parts  of  the  
subsurface. This method provided a clear advantage when working with 3D volumes, allowing us to 
isolate and study specific depositional patterns that would otherwise remain hidden.

In conjunction with stratal slicing, volume flattening [18] was applied to simplify the visualization 
of complex geological formations. Flattening the volume along a key horizon, this approach removed 
distortions caused by folding or faulting, offering a clearer view of continuous layers. With the data 
"flattened,"  even  subtle  stratigraphic  details  became  more  apparent,  aiding  in  both  manual 
interpretation and deep learning-based feature extraction.

A key addition to our preprocessing toolkit was Crude Spectral Decomposition [19], a method that 
allows the breakdown of seismic data into its  component frequencies.  This technique helps in  
isolating specific frequency ranges that highlight different geological features, making it easier to 
identify stratigraphic traps and thin beds. Spectral decomposition enriches the dataset by providing 
more detailed insights into subsurface structures, particularly when combined with other seismic 
attributes like amplitude.

To handle incomplete or irregular data, we employed various interpolation techniques. While 
nearest-neighbor interpolation [20] preserved sharp boundaries in regions with missing data, more 
refined methods such as bilinear interpolation and cubic interpolation were used to create smoother 
transitions in areas where the data was less complex. Bilinear interpolation proved useful for filling 
gaps in 2D data, whereas cubic interpolation was more effective for creating smooth, continuous 
surfaces in 3D seismic volumes.

Filtering and denoising were applied to mitigate the noise inherent in seismic data, ensuring that 
critical features like faults and horizons remained clear. This process involved several techniques, 
including:

 Denoising  through  methods  like  CLAHE  [21]  (Contrast  Limited  Adaptive  Histogram 
Equalization), which enhanced contrast in regions with poor signal-to-noise ratios, making 
features easier to detect.



 Gaussian smoothing [22], which was used to reduce high-frequency noise while maintaining 
the overall structural integrity of the data.

 Outlier removal [23] to eliminate anomalous data points that could distort the seismic image.
 Spatial transformations to correct for any geometrical distortions introduced during data 

acquisition.

These filtering and noise-reduction techniques worked together to enhance the quality of seismic 
data, ensuring that deep learning models and human interpreters had access to clean, high-fidelity 
data.

Finally, co-rendering of multiple seismic attributes was applied to enhance the interpretability of 
the data.  This technique involved overlaying various attributes such as amplitude and spectral  
decomposition to create a composite view that emphasized subtle geological features. By combining 
these attributes, we were able to detect features like fault zones and stratigraphic traps with greater  
clarity, ensuring that no critical details were overlooked during the interpretation process.

Together,  these  preprocessing  techniques  form  a  comprehensive  approach  to  seismic  data 
preparation, ensuring that the datasets are not only clean and continuous but also rich in geological 
detail. These steps are critical for both manual interpretation and for providing high-quality input to 
deep learning models.

3.3. Tools and libraries

Handling and visualizing seismic data at this scale requires a combination of specialized tools and 
libraries, each playing a distinct role in the preprocessing and analysis pipeline. The integration of 
industry-standard tools with Python-based solutions allowed for a flexible yet robust workflow, 
particularly suited for the challenges of seismic data.

Geoprobe,  for  example,  served as  a  cornerstone for  interpreting seismic  volumes.  This  tool 
allowed for efficient horizon and fault picking, automating many of the tasks that would otherwise 
require manual intervention. The ability to quickly extract key structural information from the 
seismic volumes significantly accelerated the interpretation process, laying the groundwork for more 
in-depth analysis.

For 3D visualization, Mayavi [24] played an essential role. With its ability to render large 3D 
volumes interactively, Mayavi allowed us to explore seismic data in real time, adjusting parameters 
on the fly to better understand complex subsurface features. Its strength lies in the detailed, dynamic 
visualizations it produces, offering geophysicists the ability to inspect subsurface structures layer by 
layer and identify anomalies or points of interest with precision.

Complementing Mayavi was PyVista [25], a more Pythonic interface built on top of the VTK 
framework.  Where  Mayavi  excelled  in  real-time  visualization,  PyVista  provided  a  smoother 
experience for creating high-quality, static visualizations, perfect for documenting the effects of 
different preprocessing techniques. PyVista’s integration with Python allowed seamless transitions 
between data manipulation and visualization, making it an indispensable part of our workflow.

When it came to handling the data itself, particularly in SEG-Y format, Obspy [26] provided the 
necessary tools for reading, writing, and manipulating seismic traces. This library was pivotal in  
extracting the necessary metadata from seismic files, preparing the data for further processing steps 
like volume flattening or stratal slicing. Its broad compatibility with seismic data formats made it a  
go-to tool for data preprocessing.

By using this suite of tools and libraries, we were able to streamline the preprocessing pipeline,  
enabling efficient handling of large seismic datasets. The integration of these tools into a cohesive  
Python-based workflow ensured flexibility and scalability, essential for both seismic interpretation 
and deep learning applications.



3.4. Research

3.4.1. Metrics for evaluation

In this study, several key metrics are used to assess the quality and effectiveness of our preprocessing 
techniques. These metrics provide a quantitative evaluation of how well each method contributes to 
improving the seismic data before it is fed into neural networks. The following metrics were chosen 
for their ability to measure both the information content and the structural integrity of the data.

Correlation: This metric measures the relationship between the original seismic data and the 
processed data. A lower correlation after processing can indicate that new, meaningful information 
has been introduced, particularly after methods like spectral decomposition. This suggests that the 
processed data contains additional, independent features not present in the original dataset.

ρX ,Y=
cov (X ,Y )
σ X σY

,

(1)

where,  cov (X ,Y ) is  the  covariance  between variables  X and Y.  σ X and  σY  are  the  standard 
deviations of X and Y, respectively.

Information Entropy: Entropy is a measure of uncertainty or information content in the data. 
Higher entropy values indicate that the processed data contains more distinguishable information, 
which can be useful for further interpretation or deep learning tasks. An increase in entropy after  
preprocessing suggests that new features or patterns have been extracted from the data.

H (X )=−∑
i=1

n

P (xi) logbP (xi) ,

(2)

where,  P (x I ) is the probability of occurrence of event  xi.  lo gb is the logarithm to the base  b 

(commonly base 2). 
PSNR (Peak Signal-to-Noise Ratio):  PSNR quantifies the similarity between the original  and 

processed  data  by  measuring  the  ratio  between  the  maximum  possible  signal  and  the  noise 
introduced during processing. Higher PSNR values indicate that the processed data closely resembles 
the original, meaning that while noise has been reduced, the integrity of the original signal has been 
preserved.

PSNR=10 log10(MA XI
2

MSE ),
(3 )

where, MA XI is the maximum possible pixel value of the image. MSE is the mean squared error 
between the original and compressed image.

SSIM (Structural Similarity Index): SSIM evaluates the structural similarity between the original 
and processed data. It compares features such as luminance, contrast, and structure to determine how 
much the key features of the data have been preserved. A high SSIM score suggests that important  
geological  features  remain intact  after  preprocessing,  even  after  noise  reduction  or  smoothing 
techniques have been applied.

SSIM (x , y )=
(2 μx μ y+C1)(2σ xy+C2)

(μx2+μ y2 +C1)(σ x2+σ y2 +C2)
,

(4 )



where, μx and μ y are the mean values of x and y . σ x
2 and σ y

2   are the variances of x

and y . σ xy is the covariance between x and y . C1 and C2 are constants to stabilize the division.

3.4.2. Spectral decomposition

Spectral  decomposition is  a  powerful  technique used to break down seismic  signals  into their  
frequency components. This method allows for a more detailed analysis of subsurface features,  
revealing subtle geological structures that may not be visible in the original amplitude data. By 
decomposing the signal into its constituent frequencies, we can isolate specific frequency bands that 
highlight different geological characteristics, such as thin beds or stratigraphic traps.

Amplitude and Coherence Extraction: We begin by extracting amplitude and coherence attributes 
from the seismic data. These attributes form the basis for spectral decomposition, as they provide 
insight into the seismic signal’s strength and continuity across different layers.

Combining Spectral Components: After extracting the spectral components, we combine them 
with the amplitude and coherence data to form a more comprehensive dataset. This allows us to  
create new features that enhance the interpretability of the data, providing additional insights into 
subsurface structures.

Correlation and Entropy Evaluation: Once the spectral decomposition is complete, we evaluate 
the processed data using correlation and information entropy metrics. A lower correlation between 
the original and decomposed data indicates that new features have been introduced. An increase in 
entropy suggests that the decomposed data contains more distinguishable information, enhancing its 
value for subsequent analysis or deep learning models.

3.4.3. Interpolation

Interpolation is critical for filling in gaps in seismic data, ensuring continuity and completeness 
across the dataset. Seismic surveys often produce incomplete data due to technical limitations or 
environmental factors, and interpolation helps to mitigate these issues by reconstructing missing 
values.

Bilinear Interpolation: This method is used for simple regions of the seismic dataset, where a 
smooth transition between data points is sufficient. Bilinear interpolation calculates the value of a  
missing  data  point  as  the  weighted average  of  its  neighboring points,  resulting  in  a  seamless 
integration of the interpolated data into the original dataset.

Cubic  Interpolation:  For  more complex regions,  cubic  interpolation is  applied.  This  method 
provides smoother transitions between data points, making it ideal for areas with intricate geological 
structures.  Cubic  interpolation  ensures  that  the  reconstructed  data  points  are  more  accurate, 
preserving the continuity of the geological features.

PSNR and SSIM Evaluation: After interpolation, we evaluate the data using PSNR and SSIM. High 
PSNR values indicate that the interpolated data closely matches the original dataset, while high SSIM 
values suggest that the structural integrity of the geological features has been preserved. These  
metrics  ensure  that  the  interpolation  methods  have  effectively  reconstructed  the  missing  data 
without introducing significant distortions.

3.4.4. Filtering and noise reduction

To further enhance the quality of the seismic data, a combination of filtering and noise reduction 
techniques is applied. These methods are essential for removing high-frequency noise, outliers, and 
other artifacts that can obscure critical geological features.

Gaussian Smoothing: This technique is used to reduce high-frequency noise while maintaining 
the overall structure of the seismic reflections. Gaussian smoothing applies a weighted average to the 
data, effectively blurring out noise while preserving the key features of the subsurface.



CLAHE (Contrast Limited Adaptive Histogram Equalization): CLAHE is applied to enhance the 
contrast of the seismic data, particularly in regions with low signal-to-noise ratios. By improving 
contrast,  CLAHE makes subtle  features  more visible,  aiding in the interpretation of  geological  
structures.

Outlier Removal: Anomalous data points, which could distort the interpretation of the seismic 
data, are removed to ensure that the dataset remains clean and interpretable. Outlier removal is  
particularly important in regions where data acquisition may have been less accurate.

Spatial Transformations: Geometrical distortions in the data, introduced during acquisition, are 
corrected through spatial transformations. These transformations align the data with the expected 
subsurface geometry, ensuring that the features are accurately represented.

PSNR and SSIM Evaluation: Following the application of these noise reduction and filtering 
techniques, the data is evaluated using PSNR and SSIM to ensure that the integrity of the original  
seismic signal has been preserved. High PSNR and SSIM scores confirm that the noise has been 
effectively reduced without compromising the structural features of the data.

This approach ensures that each preprocessing step contributes to the overall goal of improving 
data quality and interpretability. By combining spectral decomposition, interpolation, and noise 
reduction techniques, we can significantly enhance the seismic dataset, making it more suitable for 
deep learning models and geological interpretation.

4. Results and discussion

In  our  study,  all  experiments  were  conducted  using  real  seismic  data,  ensuring  the  practical 
validation of the proposed methods. Specifically, we utilized both 2D and 3D seismic datasets. The 
Opunake-3D Dataset [15], stored in the .vol format, provided high-resolution 3D seismic images ideal 
for testing fault detection and subsurface analysis techniques, particularly in regions with complex 
geological structures. Additionally, the dataset includes detailed subsurface information, allowing for 
thorough evaluation of our preprocessing and interpretation methods on real-world data.

4.1. Spectral decomposition

In the spectral decomposition, we applied Gaussian filters with different levels (np.linspace(1, 9, 4)  
and  np.linspace(1,  15,  6)).  The  correlation  between  color  channels  (R,  G,  B)  and  the  average 
correlation were moderate, while entropy slightly increased with finer decomposition.

Figure 1: Original Slice and RGB Stack of the Slice after set level linspace(1, 9, 4). This is the RGB 
spectral stack of the same seismic slice. The RGB colors represent different spectral components,  
highlighting additional geological features or details that are not visible in the original grayscale 
slice.



Figure 2: Original Slice and RGB Stack of the Slice after set level linspace(1, 15, 6). Another RGB 
spectral stack, emphasizing different spectral components from the original slice, with more vibrant 
colors (including red and blue) showing subtle variations in the data.

Table 1 
Spectral Decomposition results

Correlation: The moderate correlation values (avg_corr = 0.2990 and avg_corr = 0.2943) indicate 
that spectral decomposition captures useful but noisy features.

Entropy: A slight increase in entropy (from 11.01 to 11.35) reflects added complexity in the data, 
but this complexity may also introduce noise.

Impact on Neural Networks: Moderate correlation and increased entropy suggest that while 
spectral decomposition introduces more detail, it may also make it harder for a neural network to 
distinguish meaningful patterns. Neural networks may benefit from this decomposition if the right 
balance between signal and noise is maintained, but too much complexity could overwhelm the 
model, making it harder to learn key features. 

4.2. Co-rendered Seismic Amplitude and Coherence

Attempt
Avg 

Correlation
R 

Correlation
G 

Correlation
B 

Correlation
Original 
Entropy

RGB 
Entropy

linspace
(1, 9, 4)

0.2990 0.5746 0.2114 0.1110 11.0114 11.3138

linspace
(1, 15, 6)

0.2943 0.5719 0.2012 0.1097 11.0114 11.3550



Figure 3: This image visualizes the co-rendering of seismic amplitude and coherence data. Different 
colors (yellow, green, purple, etc.) are used to emphasize areas where amplitude and coherence 
correlate, helping identify geological structures or features.

Table 2 
Co-rendered Seismic Amplitude and Coherence results

The combination of seismic amplitude and coherence showed a very low correlation (corr = 
-0.0041), indicating minimal linear relationship between the two. However, the entropy values for 
both datasets were close, suggesting that they contain comparable levels of complexity.

Impact on Neural Networks: The low correlation suggests that seismic amplitude and coherence 
provide  complementary  information,  which  could  enhance  the  model's  ability  to  learn diverse 
features. However, the lack of linear correlation may require the neural network to learn more 
complex, non-linear patterns between the datasets. The close entropy values imply that both datasets 
contribute a similar amount of information, which could help the model generalize better.

4.3. Interpolated seismic amplitude and coherence (bilinear and cubic)

4.3.1. Bilinear interpolation

Figure 4: Cubic Interpolation and Difference between Seismic and Resized Coherence this visualizes 
the difference between the seismic data and resized coherence after cubic interpolation, with the 
grayscale showing regions of greater mismatch or error.

Correlation Seismic Entropy Coherence Entropy

-0.0041 11.0002 10.8595



Table 3 
Bilinear Interpolation (Seismic Amplitude and Coherence) results

These  values  indicate  that  bilinear  interpolation  introduces  considerable  noise  and  poorly 
preserves the structure of the data.

Effect on Neural Networks: A low PSNR and SSIM suggest that bilinear interpolation could distort 
critical patterns, making it difficult for a neural network to extract meaningful features. The model 
may struggle to learn from this data, as the interpolation distorts the spatial relationships that are 
important for effective learning.

4.3.2. Cubic interpolation

Figure  5:  Bilinear  Interpolation  and  Difference  between  Seismic  and  Resized  Coherence  this 
visualizes the difference between the seismic data and resized coherence after bilinear interpolation, 
with the grayscale showing regions of greater mismatch or error.

Table 4 
Cubic Interpolation (Seismic Amplitude and Coherence) results

Cubic interpolation marginally improves structural similarity over bilinear interpolation, but the 
overall noise remains high.

Effect on Neural Networks: Cubic interpolation is slightly better at preserving structure, but the 
network may still face challenges learning from this data due to the introduced noise. Although it  
retains more information than bilinear interpolation, the distortion could negatively impact model 
performance, especially for tasks requiring fine detail recognition.

PSNR SSIM Correlation Seismic Entropy Coherence Entropy

8.7239 0.0246 -0.0049 10.9792 10.8354

PSNR SSIM Correlation Seismic Entropy Coherence Entropy

8.6663 0.0379 0.0033 10.9962 10.8551



4.4. Denoising and Filtering

Table 5 
Denoising with Median Filtering results

Table 6 
Gaussian Smoothing results

Table 7 
Outlier Removal results

Table 8 
Spatial Transformations (Rotation) results

Attempt Filter Size PSNR SSIM

1 3 19.13 0.7096

2 5 14.81 0.2579

3 7 14.82 0.1837

4 9 14.88 0.1644

5 11 14.87 0.1564

Attempt Sigma PSNR SSIM

1 1 18.28 0.6346

2 2 15.66 0.2876

3 3 15.19 0.1988

4 4 15.05 0.1750

5 5 15.01 0.1677

Attempt Percentiles PSNR SSIM

1 1-99 44.80 0.9998

2 2-98 42.24 0.9995

3 3-97 39.81 0.9992

4 4-96 38.09 0.9988

5 5-95 36.48 0.9981

Attempt Rotation Angle PSNR SSIM

1 15° 10.71 0.0848

2 30° 9.94 0.0656

3 45° 9.70 0.0468

4 60° 9.92 0.0426

5 75° 10.69 0.0387



Table 9 
Denoising with Median Filtering results

Among the different methods, CLAHE stands out as the most balanced for enhancing image 
quality, with a PSNR of 19.32 and SSIM of 0.8832 at Clip 2.0, Grid (8, 8). It effectively enhances 
contrast while preserving structure, making it ideal for neural network training, as it makes features 
more distinguishable without introducing artifacts.  Outlier removal produces the highest PSNR 
(44.80) and SSIM (0.9998), significantly improving signal clarity by removing extreme values. This  
method ensures that the neural network learns from clean, high-quality data, enhancing its ability to 
generalize. For denoising, a small median filter (size 3) performs well, removing noise while retaining 
important details (PSNR = 19.13, SSIM = 0.7096). Larger filters, however, lead to over-smoothing, 
reducing the network’s ability to capture key features. Gaussian smoothing with a small sigma also 
helps reduce noise without losing too many details, but higher sigma values risk blurring important 
patterns. 

CLAHE proved especially effective in improving contrast and detail visibility, allowing for better 
feature recognition by the model. However, excessive filtering or contrast enhancement could lead to 
over-smoothing or artifacts, reducing model performance.

In summary, CLAHE offers the best balance for feature enhancement, while outlier removal is  
ideal for improving signal clarity, making both methods excellent for neural network preprocessing.

4.5. Summary of results and limitations

The preprocessing techniques we applied, such as spectral decomposition, co-rendering, and 
denoising, significantly improved the quality of the input data, making it more suitable for neural  
network training. For example, spectral decomposition results showed moderate correlation values 
(average 0.2990 and 0.2943), indicating useful but noisy features, while entropy increased slightly, 
from 11.01 to 11.35, reflecting added complexity. Co-rendering of seismic amplitude and coherence 
also revealed complementary information, with a very low correlation (-0.0041) but similar entropy 
levels (around 11), which could enhance the neural network's ability to learn diverse features.

One of the main benefits of these methods is the enhancement of important geological features,  
making it easier for neural networks to identify patterns and detect anomalies. Techniques like 
spectral decomposition and co-rendering allowed us to extract complementary information from the 
data, improving the richness of the input. Denoising and filtering steps, such as median filtering with 
a PSNR of 19.13 and SSIM of 0.7096, further reduced noise, ensuring that the network learns from 
cleaner, more consistent data.

However, these improvements come with some challenges. The increased complexity of the data, 
especially after adding new features through spectral decomposition, means that training neural 
networks will likely take longer. More computational resources are needed, and the network might 
require a more sophisticated architecture to handle the complexity. There is also the risk that with 
too much added detail,  the model could struggle to generalize and may overfit to the noise or  
irrelevant features.

In summary, while our preprocessing methods greatly enhance data quality and can improve 
neural network performance, they also introduce challenges like longer training times and increased 
complexity, which require careful consideration when applying these techniques in practice.

Attempt Clip Limit Grid Size PSNR SSIM

1 2.0 (8, 8) 19.32 0.8832

2 3.0 (8, 8) 18.03 0.8474

3 4.0 (8, 8) 17.47 0.8318

4 2.0 (16, 16) 18.95 0.8755

5 3.0 (16, 16) 18.39 0.8470



5. Conclusion

This study has demonstrated the effectiveness of various preprocessing techniques applied to 
seismic data in improving data quality and preparing it  for neural  network-based analysis.  By 
utilizing methods such as spectral decomposition, interpolation, denoising, and filtering, we were 
able to enhance the clarity and structure of the data while preserving critical geological features.

Spectral decomposition successfully added new features by breaking down the seismic signal into 
its frequency components,  although it  also introduced some noise. The balance between added 
complexity and potential noise is crucial, as it provides more detail but requires careful management 
to avoid overwhelming neural networks.

Interpolation methods, including bilinear and cubic interpolation, provided continuity in areas 
with missing data, although cubic interpolation was slightly better at preserving structural integrity. 
Nonetheless, noise introduced during interpolation remains a challenge that could impact neural 
network performance, particularly in detailed tasks.

Denoising and filtering techniques such as CLAHE and median filtering played a critical role in 
improving  the  quality  of  the  data  by  reducing  noise  and  enhancing  contrast.  These  methods 
preserved key features necessary for both human interpretation and deep learning tasks, ensuring 
that seismic data retains its structural integrity throughout the preprocessing pipeline.

Finally, spatial transformations and outlier removal helped further refine the data, removing 
artifacts  and  extreme values  that  could  have  negatively  impacted  the  learning  process.  These 
techniques not only improved data quality but also ensured that neural networks receive clean, well-
structured input.

In conclusion, the preprocessing techniques discussed in this paper are integral to enhancing 
seismic data, making it more interpretable and suitable for deep learning applications. These methods 
offer a robust foundation for improving the quality of seismic datasets and facilitating more accurate 
subsurface geological interpretations.
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