
Adaptive strategies for autonomous robotic systems using
reinforcement learning methods

Oleksii Matsiievskyi1,†, Igor Achkasov1,†, Vladyslav Hots1,† and Yevhenii Borodavka1,†

1 Kyiv National University of Construction and Architecture, 31, Air Force Avenue, Kyiv, 03037, Ukraine

Abstract

This work focuses on the development of a behavioral model for autonomous robotic systems using
reinforcement learning (RL) techniques. With the development of robotics and artificial intelligence, more
and more attention is being paid to creating robots that can adapt to dynamic and unpredictable
environments. RL allows robots to independently learn optimal strategies through interaction with the
environment, receiving rewards for successful actions and penalties for mistakes. The study presents a
neural network designed specifically for robotic agents, which has been shown to be effective in
simulations. It was found that the use of RL increases the adaptability and reliability of robots in performing
tasks such as avoiding obstacles and navigating to a target. The main challenges are the complexity of the
environment and the need for efficient modeling. The work contributes to the development of artificial
intelligence methods for autonomous systems, which allows the creation of robots capable of working in
real, changing conditions.

Keywords 1

Autonomous Robotic Systems, Reinforcement Learning (RL), Neural Network Models, Artificial
Intelligence in Robotics, Dynamic Environments

1. Introduction

The behavior of autonomous robotic systems is one of the most promising and challenging tasks of
modern science and technology. The rapid development of technologies in the field of robotics,
computing, artificial intelligence, and machine learning is contributing to the emergence of new
methods and approaches to solve problems related to the autonomous operation of robots in the real
world. Modern robots must not only execute predefined commands but also adapt their behavior to
environmental conditions, make decisions in complex and unpredictable situations, while ensuring
high accuracy, reliability, and safety [1].

One of the key approaches to achieving this goal is the use of RL reinforcement learning methods
[2]. Reinforcement learning allows robots to independently learn optimal behavioral strategies
through interaction with the environment, receiving rewards for correct actions and penalties for
mistakes.

The essence of reinforcement learning is that the agent does not have predefined rules or
behavioral patterns [3]. Instead, it gradually accumulates knowledge about the environment,
determining which actions are best for achieving goals. The importance of this approach lies in the

 DTESI 2024: 9th International Conference on Digital Technologies in Education, Science and Industry, October 16–17, 2024,
Almaty, Kazakhstan
∗ Corresponding author.
† These authors contributed equally.
1 matsievskiyolexiy@gmail.com (O. Matsiievskyi); achckasov.i@ukr.net (I.Achkasov); gots.vv@knuba.edu.ua (V. Hots);
yevgeniy.borodavka@gmail.com (Y. Borodavka)

 0009-0008-2341-8166 (O. Matsiievskyi); 0000-0002-7049-0530 (I. Achkasov); 0000-0003-4384-4011 (V. Hots); 0000-0002-
7476-9387 (Y. Borodavka)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yevgeniy.borodavka@gmail.com
mailto:yevgeniy.borodavka@gmail.com(Y
mailto:achckasov.i@ukr.net

ability of agents to adapt to changing conditions, which cannot be achieved using traditional
programming methods.

In the context of autonomous robotic systems, reinforcement learning is of particular importance
because it allows robots to interact with the physical world, taking into account its dynamism and
uncertainty [4]. For example, autonomous vehicles must not only follow traffic rules, but also take
into account the behavior of other road users, changes in weather conditions, and road conditions.

Classical approaches to robot control [5], such as hard-coded rules or scheduling algorithms, are
often insufficient in complex dynamic environments. This is because real-world conditions may differ
significantly from those planned at the stage of algorithm development. This is where reinforcement
learning demonstrates its advantage, as the robot can learn from its own mistakes and improve its
behavioral strategy based on feedback.

The application of reinforcement learning to robotic systems also contributes to the development
of new methods and models of interaction with physical objects and people. For example,
autonomous robots can learn to recognize facial expressions, gestures, or other signs that indicate
human intentions and adjust their actions accordingly [6].

Despite the significant progress in reinforcement learning research, many aspects of this
approach remain an active area of research[7]. One of the main challenges is the large number of
iterations required to train agents in complex environments. Real-world robots often face time,
resource, and safety constraints, so modeling environments and algorithms in simulations is an
important part of research [8-10]. This reduces risks and costs, while providing the ability to quickly
test new approaches.

The main challenges for RL are:

 Complexity of the environment: Robots often operate in dynamic and unknown
environments, making it difficult to learn and optimize behavior. [11].

 The need for efficient modeling: Agents need many iterations to learn the optimal actions,
which in the physical world can lead to breakdowns..

 Scalability: As the number of states and actions increases, it is difficult to scale learning
methods [12].

Ways to solve these problems:

 Simulations: Using virtual environments to train without the risk of real-world errors. [13].
 Modeling: Accurate models of real-world environments accelerate learning through

predictions.
 Distributed and hierarchical learning: Distributing tasks among agents or into subtasks

reduces training time and increases scalability.
 Model-based methods: Using models to predict outcomes and reduce errors [14].

Thus, modeling the behavior of autonomous robotic systems using reinforcement learning is an
important area of modern science that allows for the creation of more flexible, reliable, and adaptive
systems [15]. This approach contributes to the development of artificial intelligence and robotics,
making innovative solutions possible for many areas of our lives.

2. The main research

The task: an autonomous robotic system, a robot agent, must perform certain actions in the
environment in order to move to a given point, avoid obstacles, etc. The testing environment will be a
simulation of the real world in which the robot operates. The environment determines the state in
which the robot is located and the reward for each action it performs. Figure 1 shows a neural

network model for modeling the behavior of autonomous robotic systems using Reinforcement
Learning (RL) techniques. This diagram represents a simple neural network consisting of three main
blocks: an input layer, a hidden layer, and an output layer. Let's analyze each of these blocks
separately:

Input Layer

 Description: The input layer is the first layer of a neural network. It is responsible for
receiving the input data.

 Function: Each node (neuron) in this layer represents one input parameter or feature from the
data set. For example, if a model uses five input parameters (such as sensor data or image
pixels), there will be five nodes in this layer.

 Transitions: The outputs of the input layer are passed to the hidden layer. Nodes in this layer
usually have no activation functions.

Hidden Layer

 Description: This is an intermediate layer between the input and output layers. In this model,
there is one hidden layer.

 Function: The hidden layer processes the input data using the Rectified Linear Unit activation
function.

 Transitions: The output from the hidden layer goes to the output layer. Each node in the
hidden layer processes the data it receives from the previous layer and passes it to the next
one.

Output Layer

 Description: The output layer is the final layer in a neural network model.
 Function: This layer is responsible for generating the final result or prediction. The number of

nodes in the output layer depends on the task. For example, there may be two output nodes
for a two-class classification, one for a regression.

 Transitions: The output layer takes the data from the hidden layer and uses it to generate the
final result by applying an activation function.

There are arrows between all the layers that symbolize the transfer of data between them. These
arrows show how data flows through the model sequentially: from the input layer to the hidden layer
and finally to the output layer. The connections between layers are fully connected, which means
that every node in one layer is connected to every node in the next layer.

To build a mathematical model of the behavior of autonomous robotic systems using
reinforcement learning methods, let us consider the main elements of this system. In general, RL is
described as the interaction between an agent and the environment through the Markov Decision
Process, MDP. The Markov decision-making process is modeled as a five:

V (s)=maxa [R (s ,of anaction)+γ∑
s'
P(s'∨s ,a)V (s')] (1)

Where V (s)is the expected amount of remuneration for the state s; a is an action performed by

an agent; R (s ,a) is remuneration received upon performance of an action a in the state s; γ is

discount factor (from 0 to 1), which reflects the importance of future remuneration; P(s'∨s ,a) is is

the probability of transition to the state s' from the state s when performing the action a; s' is next
state; .

The main elements RL:
Politics (π) is an agent's strategy that determines what actions it performs in different states of the

environment.

π (a|s)=P (a|s) (2)

where π (a|s) is probability of choosing an action a in a state of s. The goal of reinforcement
learning is to find the optimal policy π ¿ that maximizes the expected reward for the agent.

Q-learning method is one of the most common reinforcement learning algorithms. This method is
based on updating the Q-function through the interaction of the agent with the environment:

Q (s ,a)=Q (s ,a)+a(r+γ max
a
Q (s' , a')−Q (s ,a)) (3)

whereQ (s ,a) is is the current value of the function Q for the state s and action a. It represents an
estimate of the expected long-term reward if you act from this state and perform the action a; a is
learning rate, which determines how much the new value affects the old one. It varies from 0 to 1;
r is is the immediate reward that the agent receives after performing the action a in the state s; γ is
discount factor, which determines the importance of future remuneration. The values are γ also

varies from 0 to 1; s' is the next state the agent enters after the action is performed a; max
a
Q (s' , a') is

is the maximum value of the function Q for all possible actions a' in the following state s'. This is the

maximum expected reward that an agent can receive based on the state s' and acting optimally;

Q (s' , a')−Q (s ,a) is the difference between the new estimate and the current estimate, also known

as the temporal difference error.
In our study, the Q-Learning method was chosen as the main approach to training an agent in an

autonomous robotic system. To evaluate its effectiveness, we conducted comparative experiments
with other common reinforcement learning methods:

 SARSA (State-Action-Reward-State-Action) is a method similar to Q-learning, but with a
certain difference in updating the value function. The comparison showed that Q-Learning is
better at tasks where future rewards play a key role, while SARSA is more suitable for tasks
where safe behavior is important.

 Deep Q-Networks (DQN) is a method that uses neural networks to calculate Q-values in
high-dimensional environments. Although DQN provides better performance in large and
complex state spaces, our results show that Q-Learning is more effective for the problem
considered in our work due to the lower complexity of the environment.

 Proximal Policy Optimization (PPO) is one of the modern policy learning methods known for
its stability. A comparison with our method showed that PPO can provide better results in
environments with a continuous action space, while Q-Learning is better suited for discrete
environments such as our problem.

Additionally, a comparative performance analysis of our reinforcement learning method showed
advantages in terms of learning speed and computational efficiency compared to these methods.

Figure 1: A neural network model for an autonomous robotic system using reinforcement learning
methods.

The Q-learning algorithm is repeated until the Q-values are close to the optimal values. As a
result, the agent can choose actions based on maximizing the Q-value.

Input data arrives at the input layer, where it is passed to the hidden layer for processing. After
processing, the output data is passed to the output layer, which generates the final result or
prediction.

The next step is to create the structure of the neural network. The development environment will
be Pycharm, using the Python programming language and the 'PyTorch' library, we will write a
neural network structure for modeling an autonomous robotic system, Figure 2.

First, we import the 'torch' library for working with tensors, 'torch.nn' for creating neural
networks, 'torch.optim' for SGD training optimizers, Adam.

Figure 2: The structure of the neural network.

In the class ‘RobotAgent’:

 __init__ (constructor): Initializes the layers of the neural network.
 self.fc1: The first fully connected layer that accepts the input size vector state_size and

transforms it into a vector with 128 features.
 self.fc2: The second fully connected layer that transforms a vector with 128 features into

another vector with 128 features.
 self.fc3: The third fully connected layer, which takes a vector with 128 features and converts

it into a vector of size action_size, which corresponds to the number of possible actions.

Function ‘forward’:

 forward: Performs a direct pass through the neural network. This is the main function that
determines how data passes through the network layers.

 torch.relu: Applies the Rectified Linear Unit activation function after each of the first two
layers, which allows the model to detect non-linear dependencies.

 torch.softmax: An activation function that converts the output values of the last layer into
probabilities for each action. The outputs will reflect the probability of choosing each of the
possible actions.

To train the model, reinforcement learning is used, which requires large computing resources and
an iterative approach, Figure 3.

Figure 3: Neural network training code.

Where:

 optimizer = optim.Adam(agent.parameters(), lr=0.001): The Adam optimizer is used to update
the model parameters. The learning rate is set to 0.001.

 Learning cycle: In each episode, the agent interacts with the environment, choosing actions
based on probabilities computed by the network. It then receives a reward from the
environment, which is used to compute a loss function.

 optimizer.step(): Updates model parameters based on calculated gradients.

This neural network model allows an autonomous robotic system to learn and improve its
behavior through interaction with its environment using reinforcement learning techniques. The
model adapts to new situations and gradually improves its skills to achieve specified goals, such as
moving to a point or avoiding obstacles.

3. Results

The study confirmed the effectiveness of reinforcement learning methods for modeling the behavior
of autonomous robotic systems. The developed neural network model allowed the agent to
successfully learn through interaction with the environment, demonstrating the ability to adapt to
changing conditions and improve its strategies to achieve its goals.

Table 1 and Figure 4 show the progress of the neural network training for the autonomous robotic
system. The results show that as the number of episodes increased, the average reward of the agent
gradually increased and the number of steps required to complete tasks decreased. From episode 1 to
episode 50, there was a significant decrease in the average reward, indicating the difficulty of the
initial stages of learning. However, from episode 100 onwards, the average reward began to increase,
and in episode 350 it reached a maximum value of +100, which is an indicator of successful training of
the system.

Figure 4: Performance During Training of a neural network for an autonomous robotic system.

Table 1
Progress of neural network training for an autonomous robotic system

A significant proportion of the episodes were completed successfully starting from episode 100,
which confirms the gradual improvement of the agent's behavioral strategy. The obtained results
confirm the effectiveness of the developed neural network model and reinforcement learning
methods for autonomous robotic systems.

Acknowledgements

The study confirmed that Reinforcement Learning methods are effective for modeling the behavior of
autonomous robotic systems. Thanks to these methods, the agent was able to learn through
interaction with the environment, adapt to changing conditions, and improve its strategies to achieve
its goals.

The developed neural network model, which consists of input, hidden, and output layers, allowed
the agent to gradually accumulate knowledge about the environment and determine the optimal
actions. This ensured the agent's ability to learn independently and improve behavioral strategies in
complex environments.

The use of simulations made it possible to quickly test new approaches, create accurate models of
the environment, and significantly accelerate the learning process of autonomous systems.

Declaration on Generative AI

The authors have not employed any Generative AI tools.

References

[1] H. Yun, Y. Cho, J. Lee, A. Ha and J. Yun, “Generative Model-Based Simulation of Driver Behavior
When Using Control Input Interface for Teleoperated Driving in Unstructured Canyon
Terrains”, у Towards Autonomous Robotic Systems. Cham: Springer Nat. Switz., 2023, pp. 482–
493. https://doi.org/10.1007/978-3-031-43360-3_39.

[2] Bronin, S., Kuchansky, A., Biloshchytskyi, A., Zinyuk, O., Kyselov, V. (2021) Concept of Digital
Competences in Service Training Systems. Advances in Intelligent Systems and Computing,
1192 AISC, pp. 379-388. DOI: 10.1007/978-3-030-49932-7_37
https://www.scopus.com/record/display.uri?eid=2-s2.0-85091510744&doi=10.1007%2f978-3-
030-49932-+7_37&origin=inward&txGid=92ecf02dac7193631a65ad03c13eb2a8 .

Episode Average reward Number of steps Successful episode (Yes/No)

1 -50 10 No

50 -20 30 No

100 10 50 Yes

150 30 60 Yes

200 50 80 Yes

250 70 90 Yes

300 90 100 Yes

350 100 110 Yes

https://www.scopus.com/record/display.uri?eid=2-s2.0-85091510744&doi=10.1007%2F978-3-030-49932-+7_37&origin=inward&txGid=92ecf02dac7193631a65ad03c13eb2a8
https://www.scopus.com/record/display.uri?eid=2-s2.0-85091510744&doi=10.1007%2F978-3-030-49932-+7_37&origin=inward&txGid=92ecf02dac7193631a65ad03c13eb2a8
https://doi.org/10.1007/978-3-031-43360-3_39

[3] Biloshchytskyi, A., Kuchansky, A., Andrashko, Y., Bielova, O. (2018) Learning space conceptual
model for computing games developers. International Scientific and Technical Conference on
Computer Sciences and Information Technologies, 1, art. no. 8526719, pp. 97-102.
https://ieeexplore.ieee.org/document/8526719 .

[4] Lizunov, P., Biloshchytsky, A., Kuchansky, А., Andrashko, Y., Biloshchytska, S. (2020) The use of
probabilistic latent semantic analysis to identify scientific subject spaces and to evaluate the
completeness of covering the results of dissertation studies. Eastern-European Journal of
Enterprise Technologies, 4 (4-106), pp. 21-28.https://www.scopus.com/record/display.uri?eid=2-
s2.0-85096705018&doi=10.15587%2f1729-
4061.2020.209886&origin=inward&txGid=17265f06c98ea0baf247ef189989aecd .

[5] Neftissov, A., Biloshchytskyi, A., Talipov, O., Andreyeva, O. (2021) Determination of the
magnitude of short-circuit surge current for the construction of relay protection on reed
switches and microprocessors. Eastern-European Journal of Enterprise Technologies, 6 (5-114),
pp. 41-48. https://www.scopus.com/record/display.uri?eid=2-s2.0-
85123575884&doi=10.15587%2f1729-
4061.2021.245644&origin=inward&txGid=6b65914a4d4a8e5800c46bd37075bf15 .

[6] G. Ryzhakova, O. Malykhina, V. Pokolenko, O. Rubtsova, O. Homenko, I. Nesterenko, T.
Honcharenko. Construction Project Management with Digital Twin Information System”,
International Journal of Emerging Technology and Advanced Engineering, 2022, Vol. 12, Issue
10, pp. 19-28. https://doi.org/10.46338/ijetae1022_03

[7] I. Sung, B. Choi, P. Nielsen, “Reinforcement Learning for Resource Constrained Project
Scheduling Problem with Activity Iterations and Crashing”, IFAC-PapersOnLine, vol. 53, no. 2,
pp. 10493–10497, 2020. https://doi.org/10.1016/j.ifacol.2020.12.2794.

[8] S. Dolhopolov, T. Honcharenko, O. Terentyev, K. Predun and A.Rosynskyi. Information system
of multi-stage analysis of the building of object models on a construction site, IOP Conference
Series: Earth and Environmental Science, 1254 (2023) 012075, doi:10.1088/1755-
1315/1254/1/012075. https://iopscience.iop.org/article/10.1088/1755-1315/1254/1/012075/pdf

[9] D. Chernyshev; S. Dolhopolov; T. Honcharenko; H. Haman; T. Ivanova; M. Zinchenko.
Integration of Building Information Modeling and Artificial Intelligence Systems to Create a
Digital Twin of the Construction Site, 2022 IEEE 17th International Conference on Computer
Sciences and Information Technologies (CSIT), pp. 36-39, 2022. DOI:
10.1109/CSIT56902.2022.10000717

[10] T. Honcharenko, R. Akselrod, A. Shpakov, O. Khomenko. Information system based on multi-
value classification of fully connected neural network for construction management, IAES
International Journal of Artificial Intelligence, 2023, № 12(2), Р.593-601
https://ijai.iaescore.com/index.php/IJAI/article/view/21864

[11] M. Hu, “Problems with Continuous Action Space”, у The Art of Reinforcement Learning.
Berkeley, CA: Apress, 2023, pp. 197–204. https://doi.org/10.1007/978-1-4842-9606-6_10

[12] P. Pankayaraj, P. Varakantham, “Constrained Reinforcement Learning in Hard Exploration
Problems”, Proc. AAAI Conf. Artif. Intell., vol. 37, no. 12, pp. 15055–15063, June. 2023.
https://doi.org/10.1609/aaai.v37i12.26757

[13] Biloshchytskyi, Andrii; Kuchansky, Alexander; Andrashko, Yurii; Neftissov, Alexander; Vatskel,
Vladimir; Yedilkhan, Didar; Herych, Myroslava (2022) Building a model for choosing a strategy
for reducing air pollution based on data predictive analysis. Eastern-European Journal of
Enterprise Technologies, 3 (4-117), pp.23-30. https://www.scopus.com/record/display.uri?eid=2-
s2.0-85133774852&origin=resultslist&sort=cp-f .

[14] S. I. Fayziddinovich, “Ways to solve non-payment problems”, Asian J. Res. Banking Finance,
vol. 12, no. 5, pp. 7–11, 2022. https://doi.org/10.5958/2249-7323.2022.00030.x

https://doi.org/10.5958/2249-7323.2022.00030.x
https://www.scopus.com/record/display.uri?eid=2-s2.0-85133774852&origin=resultslist&sort=cp-f
https://www.scopus.com/record/display.uri?eid=2-s2.0-85133774852&origin=resultslist&sort=cp-f
https://doi.org/10.1609/aaai.v37i12.26757
https://ijai.iaescore.com/index.php/IJAI/article/view/21864
https://iopscience.iop.org/article/10.1088/1755-1315/1254/1/012075/pdf
https://doi.org/10.1016/j.ifacol.2020.12.2794
https://doi.org/10.46338/ijetae1022_03
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123575884&doi=10.15587%2F1729-4061.2021.245644&origin=inward&txGid=6b65914a4d4a8e5800c46bd37075bf15
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123575884&doi=10.15587%2F1729-4061.2021.245644&origin=inward&txGid=6b65914a4d4a8e5800c46bd37075bf15
https://www.scopus.com/record/display.uri?eid=2-s2.0-85123575884&doi=10.15587%2F1729-4061.2021.245644&origin=inward&txGid=6b65914a4d4a8e5800c46bd37075bf15
https://www.scopus.com/record/display.uri?eid=2-s2.0-85096705018&doi=10.15587%2F1729-4061.2020.209886&origin=inward&txGid=17265f06c98ea0baf247ef189989aecd
https://www.scopus.com/record/display.uri?eid=2-s2.0-85096705018&doi=10.15587%2F1729-4061.2020.209886&origin=inward&txGid=17265f06c98ea0baf247ef189989aecd
https://www.scopus.com/record/display.uri?eid=2-s2.0-85096705018&doi=10.15587%2F1729-4061.2020.209886&origin=inward&txGid=17265f06c98ea0baf247ef189989aecd
https://ieeexplore.ieee.org/document/8526719

[15] Z. Kakish, K. Elamvazhuthi and S. Berman, “Using Reinforcement Learning to Herd a Robotic
Swarm to a Target Distribution”, у Distributed Autonomous Robotic Systems. Cham: Springer Int.
Publishing, 2022, pp. 401–414. https://doi.org/10.1007/978-3-030-92790-5_31.

https://doi.org/10.1007/978-3-030-92790-5_31

	1. Introduction
	2. The main research
	3. Results
	Acknowledgements
	Declaration on Generative AI
	References

