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Abstract

This work focuses on the development of  a  behavioral  model  for autonomous robotic  systems using 
reinforcement learning (RL) techniques. With the development of robotics and artificial intelligence, more 
and  more  attention  is  being  paid  to  creating  robots  that  can  adapt  to  dynamic  and  unpredictable 
environments. RL allows robots to independently learn optimal strategies through interaction with the 
environment, receiving rewards for successful actions and penalties for mistakes. The study presents a 
neural  network  designed  specifically  for  robotic  agents,  which  has  been  shown  to  be  effective  in  
simulations. It was found that the use of RL increases the adaptability and reliability of robots in performing 
tasks such as avoiding obstacles and navigating to a target. The main challenges are the complexity of the  
environment and the need for efficient modeling. The work contributes to the development of artificial 
intelligence methods for autonomous systems, which allows the creation of robots capable of working in 
real, changing conditions.
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1. Introduction

The behavior of autonomous robotic systems is one of the most promising and challenging tasks of 
modern science and technology. The rapid development of technologies in the field of robotics, 
computing, artificial intelligence, and machine learning is contributing to the emergence of new 
methods and approaches to solve problems related to the autonomous operation of robots in the real 
world. Modern robots must not only execute predefined commands but also adapt their behavior to 
environmental conditions, make decisions in complex and unpredictable situations, while ensuring 
high accuracy, reliability, and safety [1].

One of the key approaches to achieving this goal is the use of RL reinforcement learning methods 
[2].  Reinforcement  learning allows robots  to  independently  learn optimal  behavioral  strategies 
through interaction with the environment, receiving rewards for correct actions and penalties for 
mistakes. 

The essence  of  reinforcement  learning is  that  the  agent  does  not  have  predefined rules  or 
behavioral  patterns  [3].  Instead,  it  gradually  accumulates  knowledge  about  the  environment, 
determining which actions are best for achieving goals. The importance of this approach lies in the 

 DTESI 2024: 9th International Conference on Digital Technologies in Education, Science and Industry, October 16–17, 2024, 
Almaty, Kazakhstan
∗ Corresponding author.
† These authors contributed equally.
1  matsievskiyolexiy@gmail.com (O. Matsiievskyi); achckasov.i@ukr.net (I.Achkasov); gots.vv@knuba.edu.ua (V. Hots); 
yevgeniy.borodavka@gmail.com (Y. Borodavka)

 0009-0008-2341-8166 (O. Matsiievskyi); 0000-0002-7049-0530 (I. Achkasov); 0000-0003-4384-4011 (V. Hots); 0000-0002-
7476-9387 (Y. Borodavka)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0). 

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:yevgeniy.borodavka@gmail.com
mailto:yevgeniy.borodavka@gmail.com(Y
mailto:achckasov.i@ukr.net


ability  of  agents  to  adapt  to  changing  conditions,  which  cannot  be  achieved  using traditional 
programming methods.

In the context of autonomous robotic systems, reinforcement learning is of particular importance 
because it allows robots to interact with the physical world, taking into account its dynamism and  
uncertainty [4]. For example, autonomous vehicles must not only follow traffic rules, but also take  
into account the behavior of other road users, changes in weather conditions, and road conditions. 

Classical approaches to robot control [5], such as hard-coded rules or scheduling algorithms, are 
often insufficient in complex dynamic environments. This is because real-world conditions may differ 
significantly from those planned at the stage of algorithm development. This is where reinforcement 
learning demonstrates its advantage, as the robot can learn from its own mistakes and improve its 
behavioral strategy based on feedback.

The application of reinforcement learning to robotic systems also contributes to the development 
of  new  methods  and  models  of  interaction  with  physical  objects  and  people.  For  example, 
autonomous robots can learn to recognize facial expressions, gestures, or other signs that indicate 
human intentions and adjust their actions accordingly [6].

Despite  the  significant  progress  in  reinforcement  learning  research,  many  aspects  of  this 
approach remain an active area of research[7]. One of the main challenges is the large number of 
iterations required to train agents in complex environments. Real-world robots often face time, 
resource, and safety constraints, so modeling environments and algorithms in simulations is an 
important part of research [8-10]. This reduces risks and costs, while providing the ability to quickly 
test new approaches.

The main challenges for RL are: 

 Complexity  of  the  environment:  Robots  often  operate  in  dynamic  and  unknown 
environments, making it difficult to learn and optimize behavior. [11].

 The need for efficient modeling: Agents need many iterations to learn the optimal actions, 
which in the physical world can lead to breakdowns..

 Scalability: As the number of states and actions increases, it is difficult to scale learning 
methods [12].

Ways to solve these problems: 

 Simulations: Using virtual environments to train without the risk of real-world errors. [13].
 Modeling:  Accurate  models  of  real-world  environments  accelerate  learning  through 

predictions.
 Distributed  and hierarchical  learning:  Distributing  tasks  among agents  or  into  subtasks 

reduces training time and increases scalability.
 Model-based methods: Using models to predict outcomes and reduce errors [14].

Thus, modeling the behavior of autonomous robotic systems using reinforcement learning is an 
important area of modern science that allows for the creation of more flexible, reliable, and adaptive 
systems [15]. This approach contributes to the development of artificial intelligence and robotics,  
making innovative solutions possible for many areas of our lives.

2. The main research

The  task:  an  autonomous  robotic  system,  a  robot  agent,  must  perform certain  actions  in  the 
environment in order to move to a given point, avoid obstacles, etc. The testing environment will be a 
simulation of the real world in which the robot operates. The environment determines the state in  
which the robot is located and the reward for each action it performs. Figure 1 shows a neural  



network model for modeling the behavior of autonomous robotic systems using Reinforcement 
Learning (RL) techniques. This diagram represents a simple neural network consisting of three main 
blocks: an input layer, a hidden layer, and an output layer.  Let's analyze each of these blocks  
separately:

Input Layer

 Description: The input layer is  the first layer of  a neural network. It  is responsible for  
receiving the input data.

 Function: Each node (neuron) in this layer represents one input parameter or feature from the 
data set. For example, if a model uses five input parameters (such as sensor data or image  
pixels), there will be five nodes in this layer.

 Transitions: The outputs of the input layer are passed to the hidden layer. Nodes in this layer 
usually have no activation functions.

Hidden Layer

 Description: This is an intermediate layer between the input and output layers. In this model, 
there is one hidden layer.

 Function: The hidden layer processes the input data using the Rectified Linear Unit activation 
function.

 Transitions: The output from the hidden layer goes to the output layer. Each node in the 
hidden layer processes the data it receives from the previous layer and passes it to the next  
one.

Output Layer

 Description: The output layer is the final layer in a neural network model.
 Function: This layer is responsible for generating the final result or prediction. The number of 

nodes in the output layer depends on the task. For example, there may be two output nodes 
for a two-class classification, one for a regression.

 Transitions: The output layer takes the data from the hidden layer and uses it to generate the 
final result by applying an activation function.

There are arrows between all the layers that symbolize the transfer of data between them. These 
arrows show how data flows through the model sequentially: from the input layer to the hidden layer 
and finally to the output layer. The connections between layers are fully connected, which means 
that every node in one layer is connected to every node in the next layer.

To  build  a  mathematical  model  of  the  behavior  of  autonomous  robotic  systems  using 
reinforcement learning methods, let us consider the main elements of this system. In general, RL is 
described as the interaction between an agent and the environment through the Markov Decision 
Process, MDP. The Markov decision-making process is modeled as a five:

V (s )=maxa [R (s ,of anaction)+γ∑
s'
P( s'∨s ,a )V ( s' )] (1)

Where V (s )is the expected amount of remuneration for the state s; a is  an action performed by 

an agent; R (s ,a ) is remuneration received upon performance of an action a in the state s; γ  is 



discount factor (from 0 to 1), which reflects the importance of future remuneration; P( s'∨s ,a ) is is 

the probability of transition to the state s' from the state s when performing the action a; s' is next 
state; .

The main elements RL:
Politics (π ) is an agent's strategy that determines what actions it performs in different states of the 

environment.

π (a|s )=P (a|s ) (2)

where π (a|s ) is probability of choosing an action a in a state of s. The goal of reinforcement 
learning is to find the optimal policy π ¿ that maximizes the expected reward for the agent.

Q-learning method is one of the most common reinforcement learning algorithms. This method is 
based on updating the Q-function through the interaction of the agent with the environment:

Q (s ,a )=Q (s ,a )+a(r+γ max
a
Q (s' , a' )−Q ( s ,a )) (3)

whereQ (s ,a ) is is the current value of the function Q for the state s and action a. It represents an 
estimate of the expected long-term reward if you act from this state and perform the action a; a is 
learning rate, which determines how much the new value affects the old one. It varies from 0 to 1; 
r  is is the immediate reward that the agent receives after performing the action a in the state s; γ  is 
discount factor, which determines the importance of future remuneration. The values are  γ  also 

varies from 0 to 1; s' is the next state the agent enters after the action is performed a; max
a
Q (s' , a' ) is 

is the maximum value of the function Q for all possible actions a'  in the following state s'. This is the 

maximum expected reward that an agent can receive based on the state  s' and acting optimally; 

Q (s' , a' )−Q ( s ,a ) is  the difference between the new estimate and the current estimate, also known 

as the temporal difference error.
In our study, the Q-Learning method was chosen as the main approach to training an agent in an 

autonomous robotic system. To evaluate its effectiveness, we conducted comparative experiments 
with other common reinforcement learning methods:

 SARSA (State-Action-Reward-State-Action) is a method similar to Q-learning, but with a 
certain difference in updating the value function. The comparison showed that Q-Learning is 
better at tasks where future rewards play a key role, while SARSA is more suitable for tasks 
where safe behavior is important.

 Deep Q-Networks (DQN) is a method that uses neural networks to calculate Q-values in 
high-dimensional environments. Although DQN provides better performance in large and 
complex state spaces, our results show that Q-Learning is more effective for the problem 
considered in our work due to the lower complexity of the environment.

 Proximal Policy Optimization (PPO) is one of the modern policy learning methods known for 
its stability. A comparison with our method showed that PPO can provide better results in 
environments with a continuous action space, while Q-Learning is better suited for discrete 
environments such as our problem.

Additionally, a comparative performance analysis of our reinforcement learning method showed 
advantages in terms of learning speed and computational efficiency compared to these methods. 



Figure 1: A neural network model for an autonomous robotic system using reinforcement learning 
methods. 

The Q-learning algorithm is repeated until the Q-values are close to the optimal values. As a 
result, the agent can choose actions based on maximizing the Q-value.

Input data arrives at the input layer, where it is passed to the hidden layer for processing. After  
processing,  the  output  data  is  passed  to  the  output  layer,  which  generates  the  final  result  or  
prediction.

The next step is to create the structure of the neural network. The development environment will 
be Pycharm, using the Python programming language and the 'PyTorch' library, we will write a 
neural network structure for modeling an autonomous robotic system, Figure 2.

First,  we  import  the  'torch'  library  for  working with  tensors,  'torch.nn'  for  creating  neural 
networks, 'torch.optim' for SGD training optimizers, Adam.

Figure 2: The structure of the neural network. 



In the class ‘RobotAgent’:

 __init__ (constructor): Initializes the layers of the neural network.
 self.fc1: The first fully connected layer that accepts the input size vector state_size and 

transforms it into a vector with 128 features.
 self.fc2: The second fully connected layer that transforms a vector with 128 features into 

another vector with 128 features.
 self.fc3: The third fully connected layer, which takes a vector with 128 features and converts 

it into a vector of size action_size, which corresponds to the number of possible actions.

Function ‘forward’:

 forward: Performs a direct pass through the neural network. This is the main function that 
determines how data passes through the network layers.

 torch.relu: Applies the Rectified Linear Unit activation function after each of the first two 
layers, which allows the model to detect non-linear dependencies.

 torch.softmax: An activation function that converts the output values of the last layer into 
probabilities for each action. The outputs will reflect the probability of choosing each of the 
possible actions.

To train the model, reinforcement learning is used, which requires large computing resources and 
an iterative approach, Figure 3.

Figure 3: Neural network training code. 

Where:

 optimizer = optim.Adam(agent.parameters(), lr=0.001): The Adam optimizer is used to update 
the model parameters. The learning rate is set to 0.001.



 Learning cycle: In each episode, the agent interacts with the environment, choosing actions 
based  on  probabilities  computed  by  the  network.  It  then  receives  a  reward  from  the 
environment, which is used to compute a loss function.

 optimizer.step(): Updates model parameters based on calculated gradients.

This  neural  network model  allows an autonomous robotic  system to learn and improve its 
behavior through interaction with its environment using reinforcement learning techniques. The 
model adapts to new situations and gradually improves its skills to achieve specified goals, such as 
moving to a point or avoiding obstacles.

3. Results

The study confirmed the effectiveness of reinforcement learning methods for modeling the behavior 
of  autonomous  robotic  systems.  The  developed  neural  network  model  allowed  the  agent  to 
successfully learn through interaction with the environment, demonstrating the ability to adapt to 
changing conditions and improve its strategies to achieve its goals.

Table 1 and Figure 4 show the progress of the neural network training for the autonomous robotic 
system. The results show that as the number of episodes increased, the average reward of the agent 
gradually increased and the number of steps required to complete tasks decreased. From episode 1 to 
episode 50, there was a significant decrease in the average reward, indicating the difficulty of the  
initial stages of learning. However, from episode 100 onwards, the average reward began to increase, 
and in episode 350 it reached a maximum value of +100, which is an indicator of successful training of 
the system.

Figure 4: Performance During Training of a neural network for an autonomous robotic system. 



Table 1
Progress of neural network training for an autonomous robotic system

A significant proportion of the episodes were completed successfully starting from episode 100, 
which confirms the gradual improvement of the agent's behavioral strategy. The obtained results 
confirm the  effectiveness  of  the  developed  neural  network  model  and  reinforcement  learning 
methods for autonomous robotic systems.
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