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Abstract
Face anti-spoofing is a critical challenge in biometric authentication systems, requiring robust methods to 
effectively distinguish between genuine and fraudulent attempts. The current study presents a Hierarchical 
Transformer-Based  Learning  (HTBL)  framework  designed  to  tackle  challenges  across  diverse 
environmental conditions and attack modalities. The architecture combines a Vision Transformer encoder  
for global context capture with a Swin Transformer for local feature refinement, supported by intermediate 
convolutional layers. The evaluations on the OULU-NPU dataset validate the HTBL framework across 
standardized  protocols  assessing  generalization to  new environments,  attack instruments,  and sensor 
inputs. The method achieves state-of-the-art performance, particularly in complex generalization scenarios. 
Feature visualization using Principal Component Analysis supports the quantitative results, illustrating the 
refinement  of  discriminative  capabilities  throughout  the  network  stages.  The  HTBL  framework 
demonstrates strong generalization across varied conditions, addressing a significant limitation in current 
face anti-spoofing systems.  Additionally,  its  balanced performance across error  rate metrics  indicates  
practical applicability, positioning the HTBL framework as a promising advancement in face anti-spoofing 
technology with important implications for biometric authentication security in real-world scenarios.
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1. Introduction

Face  anti-spoofing systems  have  emerged  as  a  critical  component  in  biometric  authentication, 
addressing the  escalating threat  of  presentation attacks in  facial  recognition technologies.  The 
proliferation of sophisticated spoofing techniques, including printed photographs, digital displays,  
and  3D masks,  has  necessitated  the  development  of  robust  countermeasures  to  safeguard  the 
integrity  of  facial  authentication  systems.  In  recent  years,  deep  learning  approaches  have 
demonstrated  remarkable  efficacy  in  discerning  genuine  faces  from  fraudulent  presentations, 
surpassing traditional handcrafted feature-based methods [1].

Among the many of deep learning architectures, Convolutional Neural Networks (CNNs) have 
been predominantly employed for face anti-spoofing tasks, applying their capacity to extract spatial 
features  from  facial  images  [2].  However,  CNNs  exhibit  limitations  in  capturing  long-range 
dependencies  and  hierarchical  relationships  within  facial  structures,  which  are  crucial  for 
distinguishing subtle spoofing artifacts. To address these shortcomings, attention mechanisms and 
transformer architectures  have been introduced,  revolutionizing various computer  vision tasks, 
including  face  anti-spoofing  [3].  The  transformer  architecture,  initially  proposed  for  natural 
language processing tasks, has demonstrated exceptional performance in modeling sequential data 
and  capturing  global  contextual  information  [4].  The  self-attention  mechanism  inherent  in 
transformers enables the model to weigh the importance of different facial regions dynamically, 
potentially enhancing the detection of spoofing cues across diverse attack types. Nevertheless, the  
application of transformers to face anti-spoofing presents unique challenges, particularly in terms of 
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computational efficiency and the need for hierarchical feature representation to capture both fine-
grained textures and global facial structures.

The  present  study  introduces  a  novel  HTBL framework  for  robust  face  anti-spoofing.  The 
proposed approach uses a hierarchical transformer architecture to capture multi-scale facial features 
and long-range dependencies, facilitating the detection of sophisticated presentation attacks. By 
integrating  a  hierarchical  structure,  the  model  efficiently  processes  facial  images  at  different 
resolutions, enabling the extraction of both local and global spoofing cues. Furthermore, the HTBL 
framework  uses  a  robust  training  pipeline  and  data  augmentation  techniques  to  improve 
generalization across diverse spoofing scenarios and environmental conditions.

The remainder of this paper is organized as follows: Section 2 provides an overview of related 
works in face anti-spoofing and transformer-based approaches. Section 3 delineates the proposed 
HTBL  framework,  elucidating  its  architectural  components,  training  methodology,  dataset 
information and experimental setup. Section 4 presents the experimental results, followed by an in-
depth analysis and discussion in Section 5. Finally, last section concludes the study and outlines 
future research directions.

2. Related works

Face  anti-spoofing  has  been  an  active  area  of  research  in  biometric  security,  with  numerous 
approaches proposed to  combat  evolving presentation attack techniques.  The literature  in  this 
domain can be broadly categorized into traditional handcrafted feature-based methods and deep 
learning approaches.

Early face anti-spoofing techniques relied on handcrafted features to distinguish between genuine 
and spoofed faces. Texture analysis played a pivotal role in these approaches, with Local Binary 
Patterns  (LBP)  emerging  as  a  popular  descriptor  for  capturing  micro-texture  variations  [5]. 
Extensions of LBP, such as LBP-TOP for spatio-temporal analysis, were proposed to use motion cues 
in video-based anti-spoofing [6]. Additionally, color space analysis and image quality assessment 
metrics  were  explored to  detect  artifacts  introduced  by printing  or  display  devices  [7]. While 
handcrafted features demonstrated efficacy in controlled environments, their performance degraded 
significantly  under  varying  illumination  conditions  and  against  high-quality  spoofing  attacks. 
Moreover, the manual design of features limited their adaptability to novel attack types, necessitating 
the exploration of more sophisticated approaches. The advent of deep learning ushered in a new era 
of face anti-spoofing research, with Convolutional Neural Networks (CNNs) at the forefront. CNNs 
exhibited remarkable performance in learning discriminative features directly from facial images,  
obviating  the  need  for  manual  feature  engineering  [8].  Various  CNN  architectures,  including 
AlexNet, VGGNet, and ResNet, were adapted for face anti-spoofing tasks, demonstrating superior 
performance compared to traditional methods [9]. To improve the temporal modeling capabilities of 
CNNs, researchers incorporated recurrent architectures such as Long Short-Term Memory (LSTM) 
networks for video-based anti-spoofing [10]. These hybrid CNN-LSTM models captured both spatial 
and temporal cues, improving robustness against video replay attacks. Despite their success, CNN-
based  approaches  faced  challenges  in  capturing  long-range  dependencies  and  hierarchical 
relationships within facial  structures.  To address  these limitations,  attention mechanisms were 
introduced to focus on salient facial regions and potential spoofing artifacts [11, 12, 13]. While ViT-
based models demonstrated promising results, they faced challenges in capturing fine-grained facial 
textures  crucial  for  spoofing  detection. To  address  these  limitations,  hybrid  CNN-transformer 
architectures were proposed, combining the strengths of both paradigms [14]. These models applied 
CNNs for low-level feature extraction and transformers for high-level semantic modeling. However, 
the computational complexity of full-image transformer processing remained a significant challenge, 
particularly for real-time anti-spoofing applications. Recent advancements in efficient transformer 
designs, such as the Swin Transformer [15], have paved the way for more effective hierarchical  
processing  of  visual  data.  Domain  shift,  arising  from  variations  in  camera  devices,  lighting 



conditions,  and presentation attack instruments,  often leads  to  performance degradation when 
models are deployed in real-world scenarios [16, 17, 18]. 

3. Materials and methods

Current section describes the methodological architecture applied in the development of an advanced 
face  anti-spoofing  system  for  biometric  authentication.  The  proposed  approach  is  visually 
represented in Figure 1, which illustrates a structured flowchart encompassing each stage from input 
image processing to the final classification decision. 

3.1. Problem statement

The goal of the research is to develop robust mechanisms that can accurately differentiate between 
genuine face presentations and spoofing attempts.  Effective face anti-spoofing architectures are 
crucial to improve the security of facial recognition systems, ensuring that only genuine users are 
authenticated while preventing unauthorized access by impostors using fake representations.
Given an input face image I∈ RH×W ×C, where H  denote height, W  width, and C  the number of 

channels, respectively, the objective is to learn a function f :RH×W ×C→{0 ,1} such that:

f ( I )={1 , if I is a genuine face presentation0 , if I is a spoofingattempt
                                       (1)

The function f  must effectively map the high-dimensional input space of facial images to a binary 
decision space, distinguishing between authentic biometric samples and fraudulent presentations.

3.2. Proposed method

The proposed HTBL framework in Figure 1 addresses the face anti-spoofing problem through a novel 
architecture combining hierarchical feature extraction, transformer-based processing, and multi-
scale fusion. The method contains several key components.

The input image I  with sizes 224×224×3 is divided into a grid of N = 784 non-overlapping 
patches, each of size P×P = 8×8. These patches are flattened and linearly projected to obtain a 
sequence of patch embeddings. 

X=[ x1
T

x2
T

…
xN
T ], X∈ RN ×D

                                                               (2)

where D = 768 is the embedding dimension. 



Figure 1: The proposed model architecture.

Learnable position embeddings E pos∈ RN×D are added to integrate spatial information

X '=X+E pos                                                                      (3)

The embedded sequence X' is processed by a transformer encoder consisting of L =12 layers. Each 
layer uses multi-head self-attention (MSA) and feed-forward network (FFN) modules:
The transformer encoder outputs are used to construct feature maps. Low Level features block 
(F low ) is taken by concatenating layers [2,3,4,5] and High Level features block (Fhigh ) is taken from 
layers [6,7,8,9], each block of size batch×784×3072 after concatenation.

   Slow=SwinTransformer (Conv ((F low )))                                     (4)

  

  Shigh=SwinTransformer (Conv ((Fhigh)))                                  (5)

Firstly, those blocks are passed through Conv2d layer. After two separate Swin Transformer modules 
process the low-level and high-level feature maps, capturing multi-scale contextual information. 
Swin Transformer uses shifted windows for efficient self-attention computation and hierarchical 
feature learning. Slow and Shigh output batch×784×768 feature maps. Mean function is applied for 
each map and results are averaged to further feed into the Sigmoid function.

3.3. Metrics 

APCER, BPCER, and ACER are metrics used in biometric system performance evaluation, especially 
in systems involving fingerprint recognition, facial recognition, or other biometric authentication 
methods [19]. This research also applied aforementioned metrics to reflect the model results.



APCER= Number of False Accepts
Total Number of Attack Presentations

                                          (6)

BPCER= Number of False Rejects
Total Number of Genuine Presentations

                                          (7)

 ACER= APCER+BPCER
2

                                                                 (8)

3.4. Dataset

The OULU-NPU dataset  [20]  is  a  widely recognized benchmark in face anti-spoofing research, 
designed to address the challenges of generalization across different environmental conditions and 
attack  types.  The  dataset  consists  of  4950  video  recordings  of  genuine  face  presentations  and 
presentation attacks, captured using six different mobile devices with front-facing cameras. The 
dataset includes 55 subjects,  with recordings conducted in three distinct  sessions with varying 
illumination and background conditions. The presentation attacks in OULU-NPU encompass two 
types: print attacks and video-replay attacks. Print attacks use high-quality printed photographs of 
the subjects, while video-replay attacks employ high-resolution digital videos displayed on electronic 
screens. OULU-NPU is structured around four protocols, each designed to evaluate specific aspects of 
face anti-spoofing systems. Each video in the dataset is 5 seconds long, recorded at 30 frames per  
second, resulting in 150 frames per video. However, the current research uses only few of those 
frames during the inference, mainly 10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th,100th and averages their 
results to get the final decision probability. 

3.5. Experimental setup

In this study, we conducted our experiments using an NVIDIA RTX 3090 GPU with 24GB of VRAM, 
which provided the necessary computational power for efficient training and inference. The training 
was performed using a batch size of 8, a configuration chosen to balance between memory usage and 
training efficiency. For optimization, we employed the AdamW optimizer. The model was trained for 
a total of 40 epochs, which was determined to be sufficient for convergence based on preliminary 
experiments. The learning rate was initialized at 0.00001 and was adjusted during training using a 
CosineAnnealingLR scheduler.  The  scheduler  is  capable  to  gradually  reduce  the  learning  rate, 
thereby  facilitating  smooth  convergence  and  helping  to  avoid  local  minima.  To  improve 
generalization  Horizontal  Flip,  Random  Contrast,  Random  Gamma,  Random  Brightness,  and 
Distortion based geometric augmentations were applied.

4. Experiment results

The proposed method was evaluated on the OULU-NPU dataset using its four standard protocols,  
which assess different aspects of face anti-spoofing generalization. Table 1 presents a comparison of 
our approach against four other methods: Auxiliary [21], Disentangle [22], DC-CDN [23], and NAS-
FAS [24]. 



Table 1
Comparison of the proposed model with other deep learning methods

In  Protocol  1,  which  evaluates  generalization  across  unseen  environmental  conditions,  our 
method demonstrates high performance with an ACER of 0.8%, outperforming the next best method 
NAS-FAS by a significant margin. Notably, our approach achieves a perfect APCER of 0%, indicating 
excellent capability in detecting presentation attacks, albeit with a slightly higher BPCER compared 
to some competitors. For Protocol 2, which tests generalization across unseen attack devices, our  
method shows competitive performance with an ACER of 1.4%. While not achieving the lowest error 
rates,  it  maintains  a  balanced performance across  both APCER and BPCER,  suggesting  robust 
generalization  capabilities.  Protocol  3  assesses  generalization  across  unseen  input  sensors, 
presenting a more challenging scenario reflected in the higher error rates across all methods. Our 
approach  achieves  the  lowest  ACER  of  1.5±0.6%,  demonstrating  significant  cross-sensor 
generalization compared to other methods. The results demonstrate particular strengths in handling 
unseen environmental conditions (Protocol 1) and the most challenging combined scenario (Protocol 
4). 

Protocol Method APCER(%) BPCER(%) ACER(%)

1

Auxiliary [21]
Disentangle [22]

DC-CDN [23]
NAS-FAS [24]

Ours

1.6
1.7
0.5
0.4
0 

1.6
0.8
0.3
0

1.6

1.6
1.3
0.4
0.2
0.8

2

Auxiliary [21]
Disentangle [22]

DC-CDN [23]
NAS-FAS [24]

Ours

2.7
1.1
0.7
1.5
0.8 

2.7
3.6
1.9
0.8
2.0

2.7
2.4
1.3
1.2
1.4

3

Auxiliary [21]
Disentangle [22]

DC-CDN [23]
NAS-FAS [24]

Ours

2.7±1.3
2.8±2.2
2.2±2.8
2.1±1.3
1.4±1.2

3.1±1.7
1.7±2.6
1.6±2.1
1.4±1.1
1.6±1.0

2.9±1.5
2.2±2.2
1.9±1.1
1.7±0.6
1.5±0.6

4

Auxiliary [21]
Disentangle [22]

DC-CDN [23]
NAS-FAS [24]

Ours

9.3±5.6
5.4±2.9
5.4±3.3
4.2±5.3
2.8±2.4

10.4±6.0
3.3±6.0
2.5±4.2
1.7±2.6
3.4±4.8

9.5±6.0
4.4±3.0
4.0±3.1
2.9±2.8
3.1±2.3



Figure 2: PCA of images processed only with ViT. Before applying Conv and Swin Transformer on 
the left and PCA of images processed through ViT > Conv > Swin Transformer on the right.

The efficiency of our hierarchical transformer-based approach for face anti-spoofing is further 
evidenced through principal component analysis (PCA) visualizations of the feature representations 
at two critical stages of the network. Figure 2 illustrates the PCA projection of features immediately 
after the ViT encoder. The plot reveals a curved manifold structure, with live faces (blue) distinctly 
separated from various types of  fake faces.  However,  there is  notable overlap among different 
spoofing attack types (printed, video replay). This suggests that while the ViT encoder successfully 
distinguishes genuine from spoofed presentations, it struggles to differentiate between specific attack 
modalities. Figure 2 presents the PCA visualization after processing through the convolutional block 
and Swin Transformer. The transformation in feature space is striking. Live faces are now tightly 
clustered  and  distinctly  separated  from  all  spoofing  attacks.  Moreover,  there  is  improved 
discrimination between different types of fake faces, although some overlap persists.



5. Discussion

The findings from our investigation into the HTBL framework substantiate its  effectiveness in 
tackling the complex challenges of face anti-spoofing. Analyzing these results in the context of the 
broader landscape of anti-spoofing research reveals several critical insights and potential areas for 
future  exploration.  Our  method  demonstrated  strong  performance  across  diverse  protocols, 
particularly in unseen environments and combined challenge scenarios, highlighting its exceptional 
generalization abilities. The success of our model in generalizing across different scenarios can be 
largely attributed to the combined strengths of global context capture by the ViT encoder and local  
feature refinement by the Swin Transformer. Previous approaches often struggled to simultaneously 
capture both global and local spoofing cues under varying environmental conditions [25], which was 
addressed by our architectural synergy approach. Its ability to maintain high performance across 
different  environmental  conditions,  attack  types,  and  sensor  inputs  aligns  with  the  industry's 
growing demand for adaptive and resilient security solutions [26].

In summary, the HTBL framework represents a significant leap forward in face anti-spoofing 
technology, effectively applying the strengths of transformer architectures and multi-scale feature 
learning to overcome key challenges in generalization and robustness. While the results are highly 
encouraging, they also point to new avenues for further research and refinement.

6. Conclusion

The HTBL framework presented in our study shows a significant progress in face anti-spoofing 
technology. By synergistically combining Vision Transformer encoder with Swin Transformers, our 
approach effectively addresses the complex challenges of distinguishing genuine face presentations 
from sophisticated spoofing attempts across diverse environmental conditions and attack modalities. 
The framework's ability to generalize across such varied conditions underscores its potential for real-
world  deployment  in  biometric  authentication  systems.  The  progressive  refinement  of  feature 
representations,  as  visualized through Principal  Component Analysis,  provides insight into the 
hierarchical learning process. The clear separation between live and fake face representations in the 
final stages of our network architecture corroborates the quantitative performance metrics and 
highlights the effectiveness of our multi-scale feature extraction approach. Future research directions 
include the integration of temporal information for video-based anti-spoofing and exploration of 
cross-dataset generalization.
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