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Abstract 
This paper examines the critical  problem of ensuring data security in low-Earth orbit  (LEO) satellite  
communication systems,  where resources are  limited,  and the risk of  cyberattacks is  heightened.  An 
innovative approach to continuous user authentication is proposed, based on adaptive machine learning 
using logistic regression and support vector machines, combined with robust cryptographic protocols. 
The study's primary goal is to develop a lightweight and efficient encryption method that guarantees a  
high  level  of  data  security  without  significantly  increasing  the  computational  load  on  LEO satellite 
onboard systems. The article analyzes existing continuous authentication methods and identifies their 
vulnerabilities, such as dependence on specific features, scalability issues, and susceptibility to targeted 
attack scenarios. The proposed approach is based on the adaptive sliding window method, which allows 
dynamic adaptation to changes in user behavior and effectively detects anomalies indicating potential 
unauthorized access attempts.  To safeguard data, the study proposes using functional encryption and 
decentralized key generation, enhancing the system’s resilience to various types of attacks. Preliminary 
simulation results using mouse movement data demonstrate that the proposed approach achieves high 
anomaly detection accuracy (over 80%) with minimal computation time (less than 9 ms). This method can 
be applied to protect data in various communication systems with LEO satellites, including flight control,  
telemetry, and data transmission systems. 
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1. Introduction

The rapid advancement of satellite communication technologies and the increasing number of LEO 
satellites offer unprecedented opportunities for collecting and processing vast amounts of data, 
such as high-resolution satellite images. However, this progress also brings significant challenges 
in ensuring the security of data transmitted between LEO satellites and ground stations. Limited 
onboard resources, high risks of data interception, and the increasing sophistication of cyberattacks 
necessitate the development of innovative data encryption approaches that provide robust security 
without overburdening the computational capabilities of these satellites.

Traditional  encryption  methods,  including  symmetric  algorithms  like  AES  and  asymmetric 
algorithms like RSA, present several  limitations when applied to LEO satellite  communication. 
Symmetric algorithms require the pre-distribution of keys among all communication participants, a 
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complex task in a dynamic LEO satellite network with changing topology. Asymmetric algorithms, 
while suitable for secure key exchange, are computationally intensive and may be unsuitable for 
resource-constrained  LEO  satellites  [1].  Moreover,  both  traditional  encryption  methods  are 
potentially vulnerable to attacks based on quantum computing [2].

Federated Learning (FL) methods have emerged as a promising solution for training machine 
learning models on distributed data without requiring centralized data collection [1]. This approach 
holds potential for satellite communication systems, but current FL methods often overlook the  
unique characteristics of such systems and lack sufficient data security measures.  For example,  
while some research [2] addresses data security in satellite communications using FL, it doesn't 
offer concrete solutions to protect against internal and external threats. Other studies [3, 4, 5, 6, 7,  
8, 9, 10] explore various aspects of FL in satellite systems but lack a comprehensive approach that  
addresses  all  security  and efficiency concerns.  This  paper  proposes  a  novel  federated  learning 
approach  for  LEO satellites  based  on  adaptive  machine  learning  using  logistic  regression  and 
support vector machines, integrated with cryptographic protocols. This approach aims to address 
the following challenges:

 Ensuring data privacy: Protecting sensitive data from unauthorized access and preventing 
information leakage.

 Improving  efficiency:  Minimizing  computational  and  communication  overhead  while 
maintaining robust security.

 Ensuring  high  classification  accuracy:  Developing  machine  learning  models  capable  of 
effectively classifying data collected by LEO satellites.

To achieve these goals, we propose using functional encryption, decentralized key generation, 
and on-orbit model aggregation methods. This paper also explores the potential of quantum key 
distribution (QKD) for secure communication between LEO satellites and ground stations [11-19, 
20, 21]. QKD allows the generation of secret keys used to encrypt data transmitted between LEO 
satellites  and  ground  stations,  with  security  based  on  the  fundamental  principles  of  quantum 
mechanics, making it resistant to attacks from quantum computers.

2. Methods

Our approach utilizes functional encryption (FE) to ensure data privacy during the aggregation of 
machine learning models trained on different LEO satellites [12]. Each satellite generates its own 
encryption keys, eliminating the need for a central key generation authority and bolstering system 
security. This scheme employs the anonymous veto network protocol (AV-net) [15] for secure key  
exchange  between  satellites  without  relying  on  a  trusted  center.  AV-net  utilizes  asymmetric 
encryption  to  ensure  the  privacy  and  authentication  of  transmitted  data,  protecting  against 
unauthorized access and data manipulation.

To expedite model convergence, we propose on-orbit model aggregation. This minimizes delays 
associated with transmitting data to the ground station and optimizes communication bandwidth.  
It also enhances system fault tolerance, as the loss of communication with one satellite doesn't halt 
the training process. On-orbit model aggregation involves these steps:

1. Each satellite in orbit trains its model based on the global model received from the ground 
station.

2. The first visible satellite sends its model to its neighbor, which performs partial aggregation 
of its model with the received model.



3. This process continues until the final partially aggregated model reaches the initial satellite.
4. The initial satellite transmits this final model back to all satellites in the orbit (Fig. 1).

Figure 1: In-orbit model forwarding and aggregation.

Figure 1 illustrates the process of  forwarding and aggregating models  in orbit.  The process 
starts  with Satellite  1  sending its  model  to  Satellite  2,  which aggregates  it  with its  own.  This  
aggregated model is then passed on to Satellite 3, and so on until it reaches Satellite 8. Finally, 
Satellite 8 sends the final aggregated model back to Satellite 1, which then distributes it to all other  
satellites.



To detect anomalies in user behavior, potentially indicating unauthorized access attempts, we 
employ  the  adaptive  sliding  window method  [22].  This  method  dynamically  adjusts  the  data 
analysis window size based on the current situation, improving anomaly detection accuracy. 

The adaptive learning algorithm used in this study involves a combination of logistic regression 
and support vector machines (SVM) to classify user behaviour based on the collected data. The key 
feature of this algorithm is its adaptability to changing user patterns, which is achieved through an 
adaptive sliding window mechanism. Here, we provide a more detailed technical description of 
how this algorithm is implemented in practice:

1. Data Preprocessing: Data from user behaviour, such as mouse movement data, is collected 
and normalized to ensure consistency. Features are standardized to have a mean of zero and 
a  unit  variance,  which is  crucial  for  the  performance of  machine  learning models  like 
logistic regression and SVM.

2. Sliding  Window  Implementation:  The  adaptive  sliding  window  is  responsible  for 
dynamically adjusting the amount of data used for model training and anomaly detection.  
Initially, a default window size is set. The window size increases during stable behaviour to 
reduce computational load and decreases when unusual behaviour is detected to allow more 
focused analysis. This helps in improving anomaly detection accuracy.

3. Model  Training:  The logistic  regression model  is  used to establish a linear relationship 
between the features and the classification labels (e.g., normal or anomalous behaviour). For 
more complex, non-linear relationships, an SVM with a radial basis function (RBF) kernel is 
employed. The models are trained incrementally, with the sliding window providing the 
latest batch of data for continuous learning. This allows the system to adapt quickly to new 
user patterns.

4. Anomaly Detection Process: The detection process begins by comparing the current user 
behaviour  against  historical  patterns  stored  in  the  model.  If  the  deviation  exceeds  a 
predefined threshold, the system classifies the behaviour as anomalous. The threshold is 
dynamically adjusted based on recent observations to reduce false positives.

5. Algorithm Workflow:

Initialization:  Initialize model parameters (weights for logistic regression and hyperplane for 
SVM). Set initial window size and rejection threshold.

Data  Processing  Loop:  use  a  continuous  sequence  in  which  incoming  data  samples  are 
processed in real-time. For each new data sample, the data is normalized and standardized before 
being incorporated into the sliding window. Depending on the observed behavior, the window size 
may be adjusted—reduced for focused analysis when anomalies are detected or increased during 
stable periods to lower computational demands. The models (logistic regression and SVM) are then 
retrained with the latest data, and the sample is classified as either normal or anomalous.

6. Model  Updating:  As  new data  arrives,  the  model  is  updated  using  an  online  learning 
approach. This incremental updating ensures that the model remains up to date without 
requiring a full retraining, which is computationally expensive for LEO satellites.

7. Communication Efficiency: Given the resource-constrained environment of LEO satellites, 
the  training  is  optimized  to  minimize  communication  overhead.  Only  essential  model 
updates  are  transmitted  between  satellites,  reducing  the  demand  on  communication 
bandwidth while maintaining model accuracy.



For instance, the window size is reduced when suspicious activity is detected for more detailed  
analysis and increased during normal operation to reduce computational load. The criterion for 
adjusting the window size can be the deviation of current user behavior parameters from historical 
averages. This method's effectiveness was demonstrated in [22], where it was successfully applied 
for recognizing hand gestures using a data glove.

Table 1
Main parameters of the system

Table  1  presents  the  key  parameters  used  in  the  simulation  of  the  proposed  system.  One 
potential limitation of this approach is the reliance on reliable communication between satellites 
for on-orbit model aggregation. Communication loss or satellite failure may disrupt this process. 
To mitigate this, backup communication channels and data recovery mechanisms can be employed.

This reliance presents a significant challenge, as the dynamic and often unpredictable conditions 
of LEO satellite environments can lead to frequent interruptions or degradations in communication 
quality.  For  instance,  electromagnetic  interference,  satellite  positioning  errors,  or  unexpected 
hardware  failures  can  all  contribute  to  communication  breakdowns,  making  it  challenging  to 
maintain a continuous and reliable connection between satellites. Such disruptions could directly 
impact the aggregation process, leading to incomplete or inconsistent models that degrade system 
performance.

To mitigate these risks, it is crucial to develop robust redundancy mechanisms, such as backup 
communication channels that automatically engage in the event of primary communication failure. 
Additionally, employing distributed data storage and model checkpointing techniques could help in 
preserving the intermediate states of the model, ensuring that any progress made before a failure is  
not lost. These enhancements would not only improve system resilience but also facilitate quicker 
recovery,  thus  reducing  the  potential  impact  of  communication  disruptions  on  overall  system 
performance.

3. Results and discussion

The performance of the proposed FedSecure approach was evaluated using Intersection over Union 
(IoU) and Dice Coefficient metrics,  common for assessing semantic image segmentation quality 
[16]. IoU measures the overlap between predicted and actual masks, while the Dice Coefficient 
considers both overlap and region size. The model was trained using stochastic gradient descent  
with mini-batches of size 4 and a learning rate of ζ=0.00008.

However, it's crucial to acknowledge that these simulations might not fully represent real-world 
LEO satellite conditions. The system could be influenced by external factors like radiation [18, 25], 
interference in quantum channels  [19,  26],  instability of  the radiation source [19,  27],  and the 

Parameter Value

Number of satellites 8

Data rate 1 Mbps

Training set size 1000 samples per satellite

Adaptive sliding window parameters Rejection threshold: 0.8, Window size: 10-100 
samples



Earth's gravitational field [20, 28]. Thus, these simulation results should be considered preliminary 
and require further validation with real-world data, such as data collected from actual LEO satellite  
communication systems.

Moreover, while the preliminary simulations provide valuable insights into the feasibility and 
efficiency of the proposed approach, they may not fully account for the complexities present in 
real-world LEO satellite  environments.  To ensure the reliability  and robustness  of  the system, 
further experiments using actual satellite communication data are necessary. These experiments  
will  help  address  potential  discrepancies  caused by environmental  factors  like  electromagnetic 
interference,  unpredictable network latencies,  and hardware limitations that  are challenging to 
replicate in simulations. Verification with real-world data will be crucial to refining the proposed 
methods and ensuring their practical application in mission-critical satellite operations.

Table 2
Comparison of FedSecure with other approaches

As  shown  in  Table  2,  FedSecure  demonstrates  faster  convergence  and  higher  accuracy 
compared  to  other  approaches.  Factors  Affecting  Performance.  Several  factors  influence 
FedSecure's performance:

Number of satellites: Increasing the number of satellites in the constellation accelerates model 
convergence but increases communication overhead. Optimization methods from [10, 23] can be 
used to address this.

Data rate: Limited bandwidth between LEO satellites and the ground station can hinder the 
training process.  Increasing data  rate  improves  convergence speed but  demands more satellite 
processing resources. Figure 2 illustrates the impact of data rate on the accuracy and computation 
time of the proposed approach.

Figure 2: Accuracy and computation time for different data rates.

Approach Convergence time 
(hours)

Accuracy (%) Computational cost 
(ms)

FedSecure 3 88.76 <9

FedISL [4] 4 82.76 -

FedHAP [7] 15 - -

FedSpace [9] 96 - -



Figure  2  shows  that  increasing  the  data  rate  leads  to  higher  accuracy  but  also  increased 
computation time. Training set size: Larger training sets on each satellite enhance classification 
accuracy but increase the computational burden on onboard systems. A balance between training 
set  size  and  satellite  capabilities  is  essential.  Adaptive  sliding  window  parameters:  Optimal 
parameters for the adaptive sliding window method, such as rejection threshold and window size, 
depend on the specific application and data characteristics.

Limitations of Preliminary Simulations and Optimization Paths. Preliminary simulations were 
conducted using the Balabit Mouse Challenge dataset, containing user mouse movement data [22,  
24],  to  simulate  user  behavior  and evaluate  the  adaptive  sliding window method for  anomaly 
detection.  To  address  the  reliance  on  inter-satellite  communication,  backup  communication 
channels and data recovery mechanisms can be used.

Table 3
Comparison of FedSecure with other security approaches

Table 3 shows that FedSecure offers better protection against man-in-the-middle attacks and 
higher resistance to transmission errors compared to other security approaches. This advantage 
stems from the use of functional encryption and decentralized key generation, which significantly 
increase the complexity for attackers attempting to intercept and decrypt data. The high resilience 
to transmission errors is achieved by employing quantum key distribution (QKD), enabling the 
detection and correction of errors occurring during data transmission over a quantum channel.

4. Conclusion

This  paper  presents  a  novel  approach to  federated  learning  for  LEO satellites,  using  adaptive 
machine  learning  with  logistic  regression  and  support  vector  machines,  combined  with 
cryptographic protocols. The primary objective was to develop a lightweight, efficient encryption 
method  that  ensures  high  data  security  without  significantly  impacting  the  computational  
resources of LEO satellite systems. Our approach employs the adaptive sliding window method,  
enabling dynamic adaptation to user behavior changes and effective detection of anomalies that  
may  indicate  unauthorized  access  attempts.  Functional  encryption  and  decentralized  key 
generation enhance the system's resilience against various attacks. Preliminary simulations using 
mouse movement data show that our approach achieves high anomaly detection accuracy (over 
80%) with minimal computation time (less than 9 ms). This result suggests that FedSecure can be an 
effective tool for data security in LEO satellite communication systems, particularly in resource-
constrained environments. 

Approach Protocol Type Protection against 
man-in-the-middle 

attacks

Transmission 
Error Resistance

FedSecure Adaptive Machine Learning with 
Functional Encryption

High High

BB84 [19] Quantum Key Distribution Medium Medium

CCMEA [11] Multiple Encryption with Control 
Code

Low Low



Future research will involve experiments with real-world data collected from LEO satellites to 
evaluate  the  effectiveness  and  security  of  this  method  under  realistic  conditions.  We  will 
investigate various functional encryption and decentralized key generation methods and different 
federated learning architectures. Scalability and fault tolerance of the system, considering limited 
resources and the dynamic nature of LEO satellite networks, will be a particular focus. Further 
studies will assess the impact of environmental factors, such as radiation exposure, on the proposed 
method's  performance.  This  research  is  expected  to  contribute  to  the  development  of  more 
advanced data encryption methods for satellite communication systems, enhancing their security 
and  reliability.  This  is  particularly  crucial  for  mission-critical  applications  like  flight  control, 
telemetry, and data transmission, where data security is paramount.
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