
Linked Open Simulations: An Ontology-Based Approach
for System Dynamics Models on Insight Maker
Laryza L. Mussavi1, Benno Kruit1

1Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

Abstract
This thesis introduces a System Dynamics ontology, SDMOnto, for the System Dynamics models (SDMs) available
on the modeling platform Insight Maker (IM). The aim was to capture the metadata associated with these models
and automate their translation to RDF using a programming approach. This involves integration with SDMOnto
to enhance model interoperability and promote the reusability of cross-domain SDMs. SDMOnto consists of 24
classes, 14 object properties, 11 data properties, and 129 pre-defined individuals. Three test cases (models) were
used to develop and evaluate the ontology’s capability to store SDMs from IM as intended, and to identify any
inconsistencies within the ontology. We found that each test case generated corresponding triples and individuals
without resulting in any inconsistencies, indicating a successful conversion. In addition to the main research, we
proposed a preliminary implementation for the integration of external, tabular data and its units of measure based
on CSVW (CSV on the Web) standards. This implementation also generated consistent conversions. However,
further inspection revealed inaccuracies, which require refinements in the implementation and more testing to
prove feasibility. Since this paper is a first attempt at a standardized representation for SDMs, we recommend
that future research focuses on evaluating the scalability and reusability of the ontology to address any issues
that may arise on a larger scale.

1. Introduction

This paper presents an RDF-based ontology aimed at improving the integration and reusability of
System Dynamics models available on the Insight Maker platform. Insight Maker (IM) is an online
application that allows users to create, share, and adjust models across various domains [1]. While the
System Dynamics models (SDMs) on IM cover many domains, they lack modularity. Consequently, data
cannot be easily reused and integrated among models, and certainly not across modeling platforms,
limiting the dissemination of knowledge. A formal representation in RDF is meant to generate a linked
data representation of the Insight Maker models that will make it easier to inspect, analyze, and work
with the models using automated methods. Because translating these models to RDF becomes a tedious
task for large or numerous models, our goal is to automate this process using a programming approach.

Existing models may rely on numerical, tabular datasets that contain either hypothetical data, or real
data obtained from an external source. It becomes difficult to ensure that models use updated tables as
this data evolves. Moreover, there is currently no option in IM to automatically add information about
the external data source. If we can also integrate these sources using RDF, it becomes easier to update,
connect, and combine data from different models that use external data, leading to more efficient model
analysis and development.

As a result, we not only want to capture the underlying structure of a model and automate its
translation to RDF, but also propose an extension to the ontology that allows for the integration of
metadata associated with any external data sources. Although a complete version of this extension is
beyond our scope, a preliminary implementation is presented to showcase feasibility. Ultimately, the
ontology described in this paper will facilitate cooperation and encourage the reuse of models across
different platforms and domains by providing a foundation for a standardized framework for publishing
and distributing the System Dynamics models on Insight Maker.

EKAW 2024: EKAW 2024 Workshops, Tutorials, Posters and Demos, 24th International Conference on Knowledge Engineering and
Knowledge Management (EKAW 2024), November 26-28, 2024, Amsterdam, The Netherlands.
$ l.l.mussavi@student.vu.nl (L. L. Mussavi)

© 2024 Copyright © 2024 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:l.l.mussavi@student.vu.nl
https://creativecommons.org/licenses/by/4.0/deed.en


Figure 1: High-level overview of the development process

Our main goal can be summarized by the research question: “How can we enhance the interoperability
and accessibility of System Dynamics models created using Insight Maker?”

This is supported by two sub-questions:

1. “Which ontological constructs are most suitable for developing an RDF-based ontology to represent
SDMs within Insight Maker?”

2. “Can data source mapping enhance the interoperability and effectiveness of System Dynamics
models represented in RDF, enabling dynamic data retrieval and updates from external sources,
including unit verification?”

The next sections will address these questions using the following structure: Section 2 discusses the
relevance of the topic and its importance in filling the currently existing gap in research by presenting
background information and related work. Section 3 introduces the methods used to build the ontology,
translate IM models to RDF, and a proposed method for the extraction of external data source and unit
integration. Section 4 describes the results of our main research and this preliminary implementation.
Finally, the discussion in Section 5 evaluates the research set-up and the pitfalls and benefits of the
approach taken, followed by a summary and suggestions for future research in the Conclusion. Figure 1
contains a high-level overview of the practical process behind this structure.

2. Background information and Related Work

2.1. System Dynamics

System dynamics (SD) is a method that focuses on capturing the structure and behavior of complex,
dynamic systems1. Within SD, the concept of feedback systems thinking plays an important role in
interpreting models that are based on so-called causal loop diagrams (CLDs). These are a type of system
dynamics model (SDM) consisting of feedback loops that influence the flow through the model, either
postively or negatively [2]. However, when the scenario we want to model becomes more complex,
reaching the point of not being solvable with the currently available mathematical knowledge, only
a step-by-step solution in the form of a simulation may be possible [3]. Qualitative representations
such as CLDs are insufficient when making a simulation model, meaning a more complex and algebraic
structure is required, which introduces stock-flow diagrams and differential equations. A stock-flow
diagram is another type of SDM representing stocks regulated by flows that vice versa depend on the
condition of a stock. This regulation takes place under the influence of differential equations that can
range from relatively simple to extremely complex [4].

The SDMs on IM are primarily based on stock-flow diagrams with differential equations. However,
challenges of these simulations include the management of heterogeneous data that requires expert
knowledge and the inability to exchange data or work together in a bigger system without manual
linking. Consequently, connecting SDMs becomes a time-consuming task, which can be costly in a
fast-paced work environment. To remove these limits, ontologies provide a solution capable of handling
and combining the diverse types of information they hold—both written and numerical [5].

1A collection of components that work together for a general goal



2.2. Ontologies for Knowledge Integration

An ontology, in the context of information sciences, refers to a formal representation of a common set of
concepts and the relationships between them that make up a schema. They are important building blocks
of knowledge graphs and the Semantic Web as they define and reason about the semantics of entities
and their relations. Ontologies can help improve interchangeability and reusability of heterogeneous
information, making them a well-suited model to achieve improved interoperability [6]. Furthermore,
they address the following challenges of modeling and simulations and interoperability as described by
[7] : 1) Semantic Inaccessibility, 2) Logical Disconnectedness, and 3) Consistency Maintenance.

These issues also apply to SDMs to some extent, but could be overcome by proposing a formal repre-
sentation in RDF that covers their basic underlying structure. RDF (Resource Description Framework)
is a standard data model which is used in the creation of ontologies, recommended by W3C for data
interchange on the web [8]. It is a formal machine-processable language that underpins the semantic
structure of an ontology by enabling the description of any defined instances2 and their logical relations
in the form of triples [9]. A standardized ontology would not only allow for models to be translated
to the same RDF format, but, vice versa, also make for greater accessibility across various domains as
models are integrated into the same knowledge base, thereby enhancing model interoperability and
accessibility [10].

2.2.1. Related Ontologies

Several studies [11, 12, 13] have explored and proposed ontologies for improving interoperability
across multiple systems or domains. A notable example is CDOnto for the Internet of Things (IoT), a
result of the desire for a method able to describe common and generic IoT data [14]. Alignment and a
contextual approach form the basis of CDOnto. Alignment is the task of identifying the overlapping
characteristics between concepts to enable meaningful data interchange. The contextual approach
implies that domains (i.e. contexts) have common concepts and independent domain data. Consequently,
CDOnto is built on global concepts and links that form the top-level ontology, while instantiating them
with domain-specific information on a local level.

Attempts such as the ones above have yet to be made for the field of system dynamics modeling.
Similar to CDOnto, creating an ontology for SDMs containing only the fundamental elements that
make up their structure would be a well-suited approach to enhance integration. In the context of this
paper and thus with respect to SDMs, they could be interpreted as follows:

• Alignment – Identifying the underlying structure of a System Dynamics model on Insight Maker,
i.e. the main components defined by SD-specific terms. This is the overlapping characteristic
between all SDMs regardless of their domain.

• Global vs. Local representations – The idea that each SDM is translated to RDF as its own model
entity, while specific model data will be translated to instances in RDF and connected to the
corresponding model.

2.3. System Dynamics Models in Insight Maker: Key Concepts and Attributes

To design an ontology for SDMs available on IM and address the task of alignment, it is important to
identify the key concepts and attributes that make up the basic structure of these models.

The main building blocks of all SDMs are primitives. These consist of the earlier mentioned stocks
and flows, with the addition of variables and converters. A Variable can be a constant or a dynamic
value. Converters are data transformers that allow users to map inputs to outputs, much like a graphical
function. These outputs are then used to influence the values of other primitives in the model. Table 1
contains an overview of the primitives, their uses, and their symbolic representation on IM. For an
example of what the SDMs look like, see fig. 2 which will be discussed as part of section 3.1.

2Also referred to as entities or individuals



Table 1
Overview of IM key primitives as presented by [15]

Primitive Use Example usages Symbol

Stock
To store a material.
Equivalent to a state variable
in a differential equation

A lake that stores water.
A bank account that stores money.
A population that stores people

Flow
To move material between stocks.
Equivalent to a derivative term
in differential equations

A river into a lake.
Withdrawals from a bank account.
Deaths in a population

Variable
To store a parameter value or
dynamically calculate a feature
of the model

The flow rate for a river.
The interest rate for a bank account.
The death rate for a population

Converter
To load tabular data.
To carry out a non-parametric
transformation function

A schedule of flow rates by time of year.
A non-parametric function relating
population death rate to population size

Models in IM have links (arrows) between primitives to visually present that they are related.
However, contrary to this visual connection, primitives primarily influence each other through the
use of mathematical expressions that tie them together into one dynamic system and determine the
output of the simulation. A mathematical expression can be one of two kinds: 1) a constant or 2) a
more complex, dynamic expression, a differential equation. The latter may consist of direct numerical
or custom pre-named constants, custom functions or those built-in in IM’s simulation engine [16] , or
the values of other primitives.

Another important component is the unit of measure. Since IM simulations depend on numerical
values, specifying units for each primitive is “a great way to clarify conceptualization, disambiguate
terminology, guard against common formulation errors, and check the model for dimensional con-
sistency” [17]. While current SDMs on IM specify and validate units within the models themselves,
external tabular data may encompass multiple units that are now being excluded.

2.4. Tabular Data

In the context of SDMs, semantic accessibility plays its parts when using external data. Currently, there
is no way for the SDMs on IM to determine and define the metadata associated with its original source.
Consequently, information becomes limited in this part of the model and thus also no possibility to
easily extract and reuse this data to link or create other models. As can be done with the basic structure
of an SDM, ontologies would make this integration of tabular data easier by presenting them in a
common RDF format. It remains an ongoing topic in research, however, how to obtain and convert
tabular data to RDF. Scholars like [18, 19] have proposed implementations that align with the guidelines
in CSV on the Web (CSVW) [20]. CSVW is another W3C recommended standard used to describe
the content of CSV files, capturing their metadata [21]. It offers users a method to transform CSV to
RDF. We believe this could serve as a viable solution to fill the current gap in semantic accessibility of
external tabular data. Hence, our goal is to combine CSVW standards with the reuse of existing unit
ontologies such as QUDT [22] to explicitly define and standardize the units used in external datasets.
This ensures consistency and clarity when integrating data from different sources.

3. Methodology

Using the key concepts and attributes introduced in section 2.3, this section discusses the design
approach and experimental setup.

To keep our design focused and avoid obscurity, two assumptions were made regarding the level of
detail to include in our ontology:

1. Links are considered ambiguous because of their visual purpose. Different parts of a model are
expected to be connected through mathematical expressions or Stock-Flow relations.



2. Since our research focuses on the symbolic representation of these expressions, we only consider
the custom pre-defined or built-in constants in a differential equation, and not the numerical
values. However, we do include numerical stand-alone constants, as we expect a primitive
expression to have at least some value.

3.1. Building the Ontology

The next step is to build the ontology in Protégé, an open-source editor that adheres to W3C stan-
dards [23]. Ontologies promote data sharing through linked data, often by reusing existing ones.
However, since no previous system dynamics ontology exists, our challenge will be to build one from
scratch. We will do this by following widely accepted principles in ontology development, as discussed
by various researchers (e.g., [6]).

We have determined the scope of the ontology, namely the underlying structure of System Dynamics
Models on Insight Maker. The subsequent stages of the development process are explained below.

3.1.1. Test Models

The following three models (test cases) were selected to develop and evaluate the ontology:

1. The Predator-Prey model (PP) [24]
2. The Climate Change model (CC) [25]
3. The Emergency Department Story model (ED) [26]

Each model was chosen to cover distinct domains and contains at least one instance of every primitive
type (stock, flow, variable, and converter) so that their translation to RDF can be assessed across multiple
cases and domains. Figure 2 presents the test cases. Throughout development, the CC model served as
a reference to confirm that the design included the identified key concepts and attributes. CC contains
all necessary elements and incorporates external data. Together with PP and ED, it was used to check
for inconsistencies in the final evaluation of the ontology.

The main concepts of SDMs introduced in section 2.3 are used to create classes. To determine
the class hierarchy, concepts are clustered according to their purpose in the model. IM models can
be converted into an XML file containing all attributes related to their primitives. Data and object
properties are selected by reviewing these attributes and their relevance to the project. Since the aim is
to standardize System Dynamics models, we aim to keep the ontology abstract, adding only domain
and range constraints to test entity relation consistency.

Next, we want to describe the models in RDF using the proposed ontology. There is currently no
way to automatically extract RDF triples from the models. As this becomes a nearly impossible task
to do by hand for large amounts of data, we want to automate the conversion using a programming
approach. Our implementation leverages JavaScript and Python to extract the information and convert
it into RDF. We used JavaScript to collect all the data, which was then processed in Python to achieve
the desired format and integrate it into the ontology.

Insight Maker offers its users a code-interface simulation engine built on the simulation package
which runs on JavaScript (JS) [27]. Users can create models directly using the package, but also import
and run existing models built on IM. The latter makes it particularly useful for this project since some of
its methods can be used to obtain the data that will be translated to RDF. As a result, we wrote a JS script
that extracts and saves instances and their attributes in TSV (tab-separated values) files. These files
formed the basis of the triple generation in Python with the RDFLib library. RDFLib enables importing
the SDM ontology, creating an RDF graph of an IM model, and integrating this graph into the ontology
[28].



((a))
((b))

((c))

Figure 2: (a) The Predator-Prey model (b) The Climate Change model and (c) The Emergency Department Story
model. For larger figures, see Appendix.

3.2. A Preliminary Implementation of External Data Integration

It is possible to incorporate external, tabular data in the Insight Maker models using the converter
primitive, but as mentioned before, there is no option to describe the metadata associated with these
tables. To describe external data sources as entities with the advantage of better integration, we propose
a method using the tool CoW [29]. CoW enables the import of CSV files and conversion to JSON
(metadata) or RDF according to CSVW standards. The advantage of CoW is that it provides its users
with a web service or GUI that makes it easy to convert CSV to RDF.

While IM is only able to specify units within models themselves, external tabular data can
encompass multiple units as well. CoW will allow us to accommodate multiple units that may be
present in external tables. The idea is to add units defined in QUDT to the generated JSON files.
If we can convert the data to RDF, it will become possible to define external data entities and link
them to the corresponding converter in the model through the developed ontology. This would en-
rich the ontology with data that cannot be automatically extracted using only the IM simulation package.

Note that this preliminary implementation will not be included in the evaluation of the working
ontology in the next section. Instead, we will present its results separately, focusing on its ability to
generate triples and integrate units that accurately represent the original source. This approach ensures
that the objective of our research remains consistent and focused.

After completion of the ontology, conversion scripts, and optional integration of external data, the
goal is to validate the ontology against the three test cases from IM and check for any inconsistencies.

4. Results

The following sections present the final ontology: SDMOnto (System Dynamics Model Ontology). First, a
comprehensive overview of SDMOnto will be given, presenting the main classes and relations. This will



be followed by a validation of the RDF translation script combined with the integration into SDMOnto
using a selection of IM models.

4.1. SDMOnto: Conceptualization

SDMOnto consists of 24 classes, 14 object and 11 data properties (predicates), and 129 individuals3.
Table 2 contains an overview of all the classes, their hierarchy in terms of subclass relations, and a brief
description of their use.

Table 2
Classes and class hierarchy in SDMOnto

Class Subclass of Use
Model Class for IM models
Primitive Class for IM primitives

Symbol
Class for symbolic representation that
may appear in a mathematical expression

Expression Class for mathematical expressions
DataSource Class for external data sources
Stock Primitive, Symbol Class containing the stocks in a model
Flow Primitive, Symbol Class containing the flows in a model
Variable Primitive, Symbol Class containing the variables in a model
Converter Primitive, Symbol Class containing the converters in a model
Constant Symbol Class for any constants defined in the model
Function Symbol Class for any function defined in the model

BuiltInFunction Function
Class containing all built-in functions
available on IM

CustomFunction Function
Class containing any function pre-defined
by the user

Classes were based on the key concepts identified in section 2.3. These included: the main primitives
(stocks, flows, variables, and converters), units, and mathematical expressions. Two more superclasses
were derived to account for the role of these concepts: Primitive and Symbol. The classes Stock,
Flow, Variable, and Converter are all of the type Primitive but are also considered Symbols when
part of a mathematical expression used by another primitive (instances of the class Expression). The
Symbol class was extended with the two remaining symbols that may be part of a mathematical
expression: constants and functions, both custom and built-in. The latter consists of more subclasses to
represent the different types of built-in functions, which were left out to maintain clarity in the overview.

Table 3 shows how instances of the classes are related to each other and to data values through
object and data properties. SDMOnto includes the converter table data as a simple string object with
the hasData data property. Additionally, we added the data property hasSourceURL to allow the main
implementation to include links to external sources when provided by the user by creating an instance of
the DataSource class with a relation to a string containing the URL. The DataSource class was also used
to integrate external metadata and units using CoW, which will be evaluated separately in section 4.2.1.

A visual representation of the class relations using the object properties can be seen in the partial
Tbox4 in fig. 3. The highlighted box containing an RDF file with external illustrates that external data
would be incorporated into SDMOnto through the DataSource class. Our focus, however, remains on
the basic implementation in which foreign data is manually added with the hasData property and an
optional source URL. For the complete Tbox of SDMOnto, see appendix A.

3Built-in constants and functions on IM that could already be pre-defined
4Visual representation containing the schema of an ontology (classes and relations using object and data properties)



Table 3
Object and Data properties in SDMOnto

Domain Range
Object Properties
hasTimeUnit Model Unit
hasPrimitive Model Primitive
hasFlowrate Flow Expression
hasStart Flow Stock
hasEnd Flow Stock
hasInitialValue Stock Expression
hasInflow Stock Flow
hasOutflow Stock Flow
hasExpression Variable Expression
hasInputSource Converter Primitive, Time
hasDataSource Converter DataSource
primitiveOf Primitive Model
hasEquation Primitive Expression
hasUnit Primitive, DataSource Unit
Data Properties
hasID Primitive xsd:int
hasName Primitive rdfs:Literal
hasStrExpression Expression rdfs:Literal
hasData Converter rdfs:Literal
hasTimeLength Model xsd:int
hasTimeStep Model xsd:decimal
hasTimeStart Model xsd:int
hasSourceURL DataSource rdfs:Literal

Figure 3: Partial Tbox of SDMOnto

4.2. Validating the Automated Translation to RDF

The design of the ontology combined with the translation scripts were assessed on the test cases
(see section 3.1.1). Each model was transformed to RDF and linked to SDMOnto using a pipline
implemented in Javascript and Python 5. The results of their integration with SDMOnto were tested for
any inconsistencies using the Hermit reasoner and manual inspection of the generated RDF graph in
Protégé.

To remain clarity, we only present part of the smaller Predator Prey model after conversion to
RDF, see fig. 4. Further visualizations of the conversion of all three test cases can be found in appendix B.

The main goal here was to demonstrate that the proposed ontological framework works as intended.

5all code is available at https://github.com/LaryzaL/Linked-Open-Simulations

https://github.com/LaryzaL/Linked-Open-Simulations


Figure 4: Partial visualization after translation of PP to RDF using SDMOnto

The results in table 4 imply a significant increase in the number of triples and unique individuals in
SDMOnto after integration of the three SDMs. Through further inspection of the generated graphs
in Protégé, it became evident that the conversion method was successful and models were properly
converted, showing only some minor flaws in the syntax design. For example, numerical constants
were defined as instances of the constant class, whereas the preferred, standardized representation
would use literals. No major errors or inconsistencies were raised.

Table 4
Comparison of ontology size after Integration of IM models

Model Triples Unique
Individuals

Growth in
Triples (%)

Growth in
Unique Individuals (%)

SDMOnto 391 129 - -
PP 531 161 35.8% 24.8%
CC 740 205 89.3% 58.9%
ED 1208 309 209.0% 139.5%

4.2.1. Preliminary Implementation: Results of external data and unit integration

To perform the external data integration, we used the CC model as a test case because its creator specified
the external sources they used for the converters, making it possible for us to test the preliminary
method with CoW and QUDT. Table 5 shows the increase in knowledge triples and unique individuals
after external data integration compared to the RDF translation of the CC model using only the hasData
property (see table 3).

Table 5
Comparison of the size of CC before and after integrating external data

Triples Individuals Classes
Without external data integration 740 205 24
With external data integration 1831 221 28

It becomes evident from the results in table 5 that the use of CoW substantially increased the amount
of generated triples. This again indicates that the suggested implementation works. However, after
inspection of the generated RDF file and its instances, it became clear that there were some issues
regarding the translation to RDF and the accuracy of these results. The main problem with the CoW-
generated content is that the relations between the source and the data are not properly formulated.
It is possible to link the external RDF data to the corresponding converter by defining a DataSource



instance that uses the same base URI as defined in the metadata during the conversion to RDF using
CoW, but it goes wrong when defining the triples associated with this external data source. QUDT is
not properly imported as ontology to define the units in the tables, and triples are noted solely using
annotation properties. This is an issue we were unable to fix due to time constraints and to prevent
the research from losing its main focus, which is SDMOnto and the automated translation to RDF of
System Dynamics models on Insight Maker.

5. Discussion

Looking back on the development and validation of SDMOnto, naturally, it did not come without its
challenges.

The ontology was constructed under the assumption that visual links are ambiguous (section 2.3)
and primitives are connected through differential equations. Therefore, we excluded Insight Maker
models that are built solely on links in which zero values are added for each primitive. This makes it
impossible to properly represent all the connections in a model using RDF. If the ontology were to take
links into account, this would mean it would encompass a larger range of models.

Another pitfall was the scope of the models covered. While we looked at System Dynamics models,
it is important to note that simulations on IM can also be a combination of both System Dynamics
and Agent-based modeling. These models are not covered by the ontology. Therefore, future work
could investigate how SDMOnto may be extended to encompass not only pure SDMs, but also those
that combine System Dynamics and Agent-based components for improved interoperability regardless
of their type. This could be achieved through reuse of previously developed Agent-based modeling
ontologies. Furthermore, the automated translation of models to RDF depends on the use of IM’s
simulation package. Hence, it would require adjustments to automate the transformation of models on
other platforms.

Finally, in terms of the entire work process and its validation, we mentioned that no previous work
has been done on the topic, thus we had no reference framework to work and compare the performance
of our proposed methods with. Therefore, the way to go about it was to work with a simple trial
and error approach using the test cases and the steps defined in section 3. While this resulted in the
translation of models without inconsistencies, it goes without saying that it remains a first proposal of
a formal standard that has to be further assessed. To identify areas where SDMOnto or the automated
scripts need improvements, it is recommended that the ontology will be continued to be tested on
scalability and reusability. Using a larger and more diverse set of SDMs alongside methods such as
querying based on competency questions will help evaluate the ontology’s weaknesses.

Regarding the proposed integration of external data and units, it became clear that the current
implementation lacks the ability to properly generate triples that effectively describe their semantics.
While we were able to generate data in RDF, a considerable amount of improvements is required to turn
this into a well-structured, usable format without the difficulties of having to correct everything by
hand. Nevertheless, it offered a first look into the feasibility of extending models in RDF through CSVW.
We continue to believe this is possible, but only with a considerable amount of additional research.

6. Conclusion

In this paper, we built an ontology targeted at System Dynamics models found on the Insight Maker
platform: SDMOnto. Its creation was made up of two parts: (1) designing the ontology that describes
the general underlying structure of SDMs on IM, and (2) the creation of automated scripts to transform
models to RDF and integrate their data with SDMOnto. The result consists of 24 classes and 129 pre-
defined individuals, linked to each other by 14 object properties and 11 data properties. The results were
tested on three test cases (models) that were successfully translated to RDF, generating a substantial
amount of knowledge. Though the implementation proved to be successful, the suggested approach is



not without limitations. Before conclusive answers can be given about the true success of SDMOnto,
other alternatives and enhancements will want to be investigated. Future work may encompass testing
on a larger set of models and the application of competency questions to identify what can be improved.

We also looked at a pre-limenary implementation of the incorporation of external tabular (meta)data
using a combination of CSVW and CoW. The results show a significant difference in the amount of
knowledge generated, but lacks a well-formulated structure when closely inspected. Fixing this issue
will require further research efforts.

References

[1] S. Fortmann-Roe, Insight Maker, https://insightmaker.com/, Accessed 30-06-2024.
[2] M. Reynolds, S. Holwell, Systems approaches to making change: a practical guide, Springer, 2020.

doi:https://doi.org/10.1007/978-1-4471-7472-1_2.
[3] B. K. Bala, F. M. Arshad, K. M. Noh, et al., System dynamics, Modelling and Simulation 274 (2017)

5–12.
[4] M. Reynolds, S. Holwell, Systems approaches to making change: a practical guide, Springer, 2020.

doi:https://doi.org/10.1007/978-1-4471-7472-1_2.
[5] M. H. de Boer, Exploring knowledge extraction techniques for system dynamics modelling:

Comparative analysis and considerations (2023).
[6] I. S. Bajwa, A framework for ontology creation and management for semantic web, International

Journal of Innovation, Management and Technology 2 (2011) 116–118.
[7] P. Benjamin, M. Graul, A framework for adaptive modeling and ontology-driven simulation

(FAMOS), in: Enabling Technologies for Simulation Science X, volume 6227, SPIE, 2006, pp. 39–49.
[8] D. Brickley, R. V. Guha, B. McBride, Rdf schema 1.1. w3c recommendation, World Wide Web

Consortium 2 (2014).
[9] O. Lassila, Resource description framework (rdf) model and syntax specification, w3c, http://www.

w3. org/TR/REC-rdf-syntax/ (1999).
[10] M. Hofmann, Ontologies in modeling and simulation: an epistemological perspective, in: Ontology,

epistemology, and teleology for modeling and simulation: Philosophical foundations for intelligent
m&s applications, Springer, 2013, pp. 59–87.

[11] Q. Geng, S. Deng, D. Jia, J. Jin, Cross-domain ontology construction and alignment from online
customer product reviews, Information Sciences 531 (2020) 47–67.

[12] A. Devanand, G. Karmakar, N. Krdzavac, R. Rigo-Mariani, Y. F. Eddy, I. A. Karimi, M. Kraft,
Ontopowsys: A power system ontology for cross domain interactions in an eco industrial park,
Energy and AI 1 (2020) 100008.

[13] M. Fumagalli, G. Bella, S. Conti, F. Giunchiglia, Ontology-driven cross-domain transfer learning,
in: Formal Ontology in Information Systems, IOS Press, 2020, pp. 249–263.

[14] S. Benkhaled, M. Hemam, M. Djezzar, M. Maimour, An ontology–based contextual approach for
cross-domain applications in internet of things, Informatica 46 (2022).

[15] S. Fortmann-Roe, Insight maker: A general-purpose tool for web-based modeling & simulation,
Simulation Modelling Practice and Theory 47 (2014) 28–45.

[16] Built-in Functions, https://insightmaker.com/docs/functions, Accessed 29-06-2024.
[17] IEEE Systems, Working with units, Accessed: 2024-06-24. URL: https://www.iseesystems.com/

resources/help/v1-2/Content/03-BuildingModels/Working_with_Units/Overview_Working_
with_Units.htm.

[18] D. Chaves-Fraga, L. Pozo-Gilo, J. Toledo, E. Ruckhaus, O. Corcho, Morph-csv: Virtual knowledge
graph access for tabular data., in: ISWC (Demos/Industry), 2020, pp. 11–16.

[19] S. H. Mahmud, M. A. Hossin, M. R. Hasan, H. Jahan, S. R. H. Noori, M. R. Ahmed, Publishing csv
data as linked data on the web, in: Proceedings of ICETIT 2019: Emerging Trends in Information
Technology, Springer, 2020, pp. 805–817.

[20] CSVW - CSV on the Web, https://csvw.org/, Accessed 30-06-2024.

https://insightmaker.com/
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-7472-1_2
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-7472-1_2
https://insightmaker.com/docs/functions
https://www.iseesystems.com/resources/help/v1-2/Content/03-BuildingModels/Working_with_Units/Overview_Working_with_Units.htm
https://www.iseesystems.com/resources/help/v1-2/Content/03-BuildingModels/Working_with_Units/Overview_Working_with_Units.htm
https://www.iseesystems.com/resources/help/v1-2/Content/03-BuildingModels/Working_with_Units/Overview_Working_with_Units.htm
https://csvw.org/


[21] J. Tennison, G. Kellogg, I. Herman, Model for tabular data and metadata on the web. w3c recom-
mendation, World Wide Web Consortium (W3C) (2015).

[22] QUDT, Accessed: 2024-06-24. URL: https://www.qudt.org/.
[23] M. A. Musen, The protégé project: a look back and a look forward, AI Matters 1 (2015) 4–12. URL:

https://doi.org/10.1145/2757001.2757003. doi:10.1145/2757001.2757003.
[24] group3, Investigation of Predator/Prey Modal 2, https://insightmaker.com/insight/

5wxPfAWq0vyL38fCh077vB/Investigation-of-Predator-Prey-Modal-2, Accessed 29-06-2024.
[25] S. Fortmann-Roe, Global Climate Change, https://insightmaker.com/insight/

34ijXHsL8uVmuT2vnYv7En/Global-Climate-Change, Accessed 29-06-2024.
[26] R. Forero, Story of ED Flows without Separate Areas, https://insightmaker.com/insight/

2IBvMYSwzz6LYcFHUfvCOh/Story-of-ED-Flows-without-Separate-Areas, Accessed 29-06-2024.
[27] S. Fortmann-Roe, Simulation – Simulation and modeling for Node and the browser, https://github.

com/scottfr/simulation/tree/main, Accessed 29-06-2024.
[28] R. Team, rdflib 7.0.0 documentation, https://rdflib.readthedocs.io/en/stable/, Accessed 30-06-2024.
[29] R. Hoekstra, CoW: Converter for CSV on the Web, https://csvw-converter.readthedocs.io/en/latest/,

2016. [Accessed 29-06-2024].

https://www.qudt.org/
https://doi.org/10.1145/2757001.2757003
http://dx.doi.org/10.1145/2757001.2757003
https://insightmaker.com/insight/5wxPfAWq0vyL38fCh077vB/Investigation-of-Predator-Prey-Modal-2 
https://insightmaker.com/insight/5wxPfAWq0vyL38fCh077vB/Investigation-of-Predator-Prey-Modal-2 
https://insightmaker.com/insight/34ijXHsL8uVmuT2vnYv7En/Global-Climate-Change 
https://insightmaker.com/insight/34ijXHsL8uVmuT2vnYv7En/Global-Climate-Change 
https://insightmaker.com/insight/2IBvMYSwzz6LYcFHUfvCOh/Story-of-ED-Flows-without-Separate-Areas
https://insightmaker.com/insight/2IBvMYSwzz6LYcFHUfvCOh/Story-of-ED-Flows-without-Separate-Areas
https://github.com/scottfr/simulation/tree/main
https://github.com/scottfr/simulation/tree/main
https://rdflib.readthedocs.io/en/stable/
https://csvw-converter.readthedocs.io/en/latest/


Appendix

A. SDMOnto

Figure 5: The Tbox of SDMOnto



B. Visualizations of PP, CC, and ED after translation to RDF using
SDMOnto

B.1. Predator Prey model

Figure 6: The Predator-Prey model

(a).: Decription of the Flow rabbitsBirths (b).: Decription of the Expression linked to rabbitsBirths

Figure 7: Example descriptions of PP instances in RDF

B.2. Climate Change model

Figure 8: The Climate Change model

B.3. Emergency Department Story model



(a).: Graph of CC and its instances

(b).: Graph of CC expanding on the Flow landSink

Figure 9: Partial visualizations of CC after translation to RDF using SDMOnto

(a).: Decription of the Flow landSink
(b).: Decription of the Expression linked to landSink

Figure 10: Example descriptions of CC instances in RDF

Figure 11: The Emergency Department Story model



(a).: Graph of ED and its instances (b).: Graph of ED expanding on the Converter arrivalFraction

Figure 12: Partial visualizations of ED after translation to RDF using SDMOnto

(a).: Description of the Converter arrivalfraction
(b).: Description of the Expression linked to arrivalfraction

Figure 13: Example descriptions of ED instances in RDF


	1 Introduction
	2 Background information and Related Work
	2.1 System Dynamics
	2.2 Ontologies for Knowledge Integration
	2.2.1 Related Ontologies

	2.3 System Dynamics Models in Insight Maker: Key Concepts and Attributes
	2.4 Tabular Data

	3 Methodology
	3.1 Building the Ontology
	3.1.1 Test Models

	3.2 A Preliminary Implementation of External Data Integration

	4 Results
	4.1 SDMOnto: Conceptualization
	4.2 Validating the Automated Translation to RDF
	4.2.1 Preliminary Implementation: Results of external data and unit integration


	5 Discussion
	6 Conclusion
	A SDMOnto
	B Visualizations of PP, CC, and ED after translation to RDF using SDMOnto
	B.1 Predator Prey model
	B.2 Climate Change model
	B.3 Emergency Department Story model


