CEUR-WS.org/Vol-3967/K-NUMS-2024_paper_5.pdf

C

CEUR

Workshop
Proceedings

Knowledge Representation of Time Series Data: A
Comparison Analysis of Standardized Ontologies

Joao Moreira® T, Cornelis Bouter?, Laura Daniele?, Mateus Peixoto® and Marcos Machado!

"University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
2TNO, Netherlands Organization for Applied Scientific Research, The Netherlands
3Pontifical Catholic University of Rio de Janeiro, Rua Marqués sdo Vicente 225, Rio de Janeiro, 22451-900, Brazil

Abstract

This paper explores the growing relevance of using ontologies to represent time series data for effective knowledge
management across various domains and for different purposes. Time series data, fundamental in fields like
statistics, econometrics, and healthcare, are typically stored without semantic context. Ontologies address
this gap by providing a structured way for integrating time series data with contextual knowledge, improving
semantic interoperability and enabling more accurate analysis and predictions. In this paper we revisit two
well-established extensions of the Smart Applications REFerence Ontology (SAREF) standard. We describe how
each extension addresses different types of requirements on time series representation for e-health and aging
well (SAREF4ehaw) and for energy flexibility (SAREF4ener). In this paper we provide a comparison analysis
between these approaches through a discussion on their trade-offs. Through case studies on electrocardiogram
data exchange and energy forecasting, we compare their advantages and limitations, and we recommend further
research to enhance semantic interoperability for time series analysis.
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1. Introduction

The use of ontologies to represent time series data is increasingly relevant due to the growing need for
effective knowledge management across various domains [1]. Fields such as healthcare, and energy
flexibility demonstrate a critical need to integrate and combine time series data across organizations to
enable effective knowledge management and interoperability. Time series, which consist of sequences
of data points recorded at regular intervals, are fundamental in such fields where they are used to
uncover patterns or forecast future trends [2]. Traditional data formats and specialized time-series
databases are commonly used for storing such data, but they lack the ability to provide semantic context.
Ontologies offer a structured approach to bridge this gap by enabling the formal representation of time
series within a broader knowledge framework [3]. This enhances interoperability, allowing data to
be shared, interpreted, and reused across different systems and disciplines. By integrating time series
data with ontologies, numerical models can be connected with relevant contextual information and
reused across organizational boundaries if needed, ensuring accurate interpretation and explanation,
and supporting more reliable predictions [4].

In this paper we discuss some existing initiatives on ontology engineering for time series analysis,
highlighting the importance and the rise of research results in this topic in recent years. We give
emphasis for extensions of the Smart Applications REFerence (SAREF) ontology', which is standardized
by the European Telecommunications Standards Institute (ETSI). We discuss how two extensions
address different types of requirements for time series representation in the domains of e-health and
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aging well (SAREF4ehaw)” and energy flexibility (SAREF4ener)’. In SAREF4ehaw we emphasized
the non-functional requirements on IoT data exchange performance motivated by an use case on
electrocardiogram data, where we measured the verbosity of messages sent from field to cloud gateways
along with its associated costs. In SAREF4ener we emphasized the functional requirement on demand-
side flexibility, using time series data to track and predict variations in energy consumption over time.
The main contribution of this paper is the comparison analysis of these approaches through a discussion,
highlighting their trade-offs in terms of their advantages and limitations. In addition, we provide a
set of recommendations on the adoption of the time series concept in ETSI SAREF, proposing further
research to enhance semantic interoperability for time series data analysis.

This paper is structured as follows. Section 2 motivates the research on knowledge representation
of time series data, discussing existing work. Section 3 describes how time series is designed in the
SAREF4ehaw ontology for electrocardiogram data exchange. Section 4 describes how time series is
designed in the SAREF4ener ontology for demand-side flexibility analysis. Section 5 discusses the com-
parison between both approaches, highlighting the lessons learned, limitations and recommendations.
Section 6 concludes this paper.

2. Knowledge representation of time series data

2.1. Time series analysis

A time series is a sequence of data points ordered in time, typically recorded at regular intervals, i.e.
within a frequency [5]. It is commonly visualized using run charts and analyzed in fields like statistics,
econometrics, and weather forecasting to uncover patterns or predict future values. Time series analysis
involves methods to extract meaningful patterns and statistics from time-ordered data, often modeled as
a stochastic process. Time series forecasting predicts future values based on past observations. Unlike
regression analysis, which tests relationships between different series, time series analysis focuses on
relationships within a single series over time. It differs from cross-sectional and spatial analysis due to
its natural temporal order, where data points closer in time are more related. Models typically reflect
this by expressing current values as influenced by past (not future) observations [6].

In practice, the most common data formats for time series analysis include CSV, spreadsheets (e.g.,
Excel files), besides JSON and Database Management Systems (DBMS). CSV is widely used due to
its simplicity and compatibility with most data analysis tools. JSON is popular for web-based data
exchanges and can represent nested time series data. DBMSs, particularly time-series databases like
InfluxDB and TimescaleDB, are optimized for handling large-scale time-stamped data, allowing efficient
storage and querying. These formats are chosen for their ease of use, flexibility, and integration with
various time series analysis software [7].

Demand forecasting is one of the most common real-world applications for time series, forecasting
is paramount since it is the main input of sales and operations planning, (S&OP) [8] and therefore
forecasting plays a pivotal role in inventory management. Nevertheless, demand forecasting as an
activity is typically treated separately from the decision-making processes that derive from it, often
affecting inventory management [9]. The critical nature of forecasting calls for an integrated approach
as criticized by [2] in a recent systematic literature review, the fully integrated approach suggested
as a framework would require a good comprehension of the demand-generating process, therefore
associating explanatory events and context to the event log represented by the time series.

Kolassa et al. [10] proposed an ideal forecaster framework, establishing that forecasters must under-
stand the statistical models applied to the time series and the business goals surrounding the demand for
the products represented by the time series. This is a challenge since managers typically do not have the
statistical knowledge to understand the models, leading to overconfidence bias and poor adjustments
[11]. These judgmental adjustments, defined by [12] as altering the output of a computer-generated
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forecast by an expert with domain knowledge, can have widespread consequences within the decision-
making process of the entire organization. Therefore an appropriate standardized ontological structure
for time series is the first step to conciliate both aspects, providing managers with the necessary sta-
tistical knowledge, and making explicit the context and consequences of adjustments, thus leading to
improvements in S&OP.

Representing time series data with ontologies is mostly relevant for effective knowledge management,
as it provides a structured way to organize, share, and reuse data across different systems and domains.
Ontologies can enable the connection of numerical modeling with the context of the data, ensuring that
time-dependent measurements are properly interpreted and integrated. This is particularly important
in fields that rely heavily on complex datasets, such as climate science or healthcare, where numerical
models are applied to predict trends or behaviors. By using ontologies, time series data becomes more
interoperable, enhancing the accuracy of modeling, the reliability of measurement, and the efficiency of
knowledge management across various applications [1].

2.2. Ontologies of time series

This section explores some related work on the use of ontologies to represent time series data. We
give emphasis to standardized ontologies, but we acknowledge the relevance of other non-standardized
ontologies that cover gaps of existing standards.

The first effort to represent time series in the context of SAREF was done in 2017-2020 in the health
domain to express electrocardiogram data [3]. The need for time series originated since SAREF could
only represent individual measurements (data points) that would result in too large and redundant
messages and thus poor performances in real-time exchange of large amounts of measurement data.
We will elaborate on this approach in Section 3 of this paper. This work resulted in an extension coined
SAREF4health, which was afterwards used as basis by ETSI to create the official extension of SAREF for
the E-Health and Aging Well domain, called SAREF4ehaw and published in 2020 as TS 103 410-8 V1.1.1.

Subsequent efforts in the H2020 InterConnect large-scale pilot* (2019-2024) aimed at extending the
time series proposed in SAREF4ehaw to the energy domain for the purpose of representing forecasts
and expressing power curves with corresponding prices in the data exchange between energy users
and suppliers. This work was incorporated into the SAREF framework and resulted in the publication
by ETSI of a new version of SAREF4ener in 2023 (TS 103 410-1 V1.2.1) which also covers a time series
representation. We will revisit this approach in more details in Section 4 of this paper.

Recently, ETSI has published the technical specification on SAREF covering time series for urban
digital twins (ETSI TS-103-828) [13]. It leverages on reusing existing ontologies such as the W3C Time
and the OneM2M ontologies to cover the concepts of time series and service. The W3C Time Ontology
is based on Allen’s algebra of binary relations and provides a vocabulary for representing qualitative
temporal information and reasoning about time. The temporal predicates for times series proposed
by ETSI TS-103-828 overlaps with the ones covered by SAREF4ehaw since they are both based on the
same theoretical foundations, i.e., perdurantism and Allen’s algebra.

Other ontology-driven initiatives also cover the representation of time series data. For example, an
ontology for time series provenance is introduced in [4]. It presents a domain ontology developed
by modular design for time series provenance, which adds semantic knowledge and contributes to
the choice of appropriate statistical methods for trend extraction (detrend) within time series analysis.
Trend is an interesting time series component that can reveal deterministic features, e.g., statistical
measures of mean and variance, used to ensure that correlations become independent over time. In a
similar way, a time series core ontology is also introduced in [14], with emphasis on the integration of
this core ontology with domain specific ontologies. There is a clear rise on the interest of ontologies for
time series data representation. This is shown from the results of the search in Google Scholar for the
terms “time series data” and “ontology”: 537 results from 2000-2005, 1.770 from 2005-2010, 2.980 from
2010-2015, 4.990 from 2015-2020, and 7.300 from 2020-2024 (present day). This also drives to the need
of a systematic literature review on ontologies to represent time series, which is out of the scope here.

*https://cordis.europa.eu/project/id/857237
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Figure 1: Example of time series data represented with FHIR (left) and with SAREF (right), from [3]

3. Time series data exchange in SAREF for E-Health Ageing Well

In recent years, several ontology-driven e-health solutions supported by IoT technologies have been
proposed. In our previous research [3, 15, 16] we exploited knowledge representation of time series
driven by a use case on detecting accident risks with truck drivers’ vital signs with electrocardiogram
(ECG) medical wearable, using the drivers’ mobile phones as field gateway. Tracking cardiac-related
data is a common necessity in healthcare solutions. We focused on IoT-driven ECG devices that can
provide the necessary programming support, e.g., via API or SDK, to allow the connection of the ECG
device and real time transmission of high-frequency data to a cloud environment.

3.1. Time series data exchange for loT applications

Enabling the exchange of lightweight messages among medical devices and cloud infrastructure is
crucial for IoT solutions. However, message verbosity can hinder data exchange performance and
increase cloud costs. For example, with Microsoft Azure, each IoT hub (message broker) is allocated
units within a specific tier, which along with the number of units, establishes the maximum daily
message quota. Message size plays a role in calculating this quota, as well as throttling, which is the
rate limit imposed by the cloud infrastructure to prevent abuse on message publishing, and is influenced
by traffic shaping. Examples of throttles are direct methods, measured in total size (KB) per second per
hub unit, identity registry operations (CRUD) and twin updates, which are both measured in number of
messages per second per hub unit.

A common solution to minimize the costs associated to throttling is to aggregate measurement data at
the field gateway level, periodically (in a lower frequency) transmitting aggregated time series data to the
cloud. However, this approach results in the loss of metadata for individual measurements, for example
specific timestamps, measurement units, and related properties, which diminishes the ontological
richness of the messages. Figure 1 illustrates this difference between the aggregated approach, shown
in the left using the Fast Healthcare Interoperability Resources (FHIR) standard, to the individual-based
approach, shown in the right using SAREF. The data are serialized in JSON (SAREF particularly in
JSON-LD) and reflect an ECG time series, where FHIR represents the aggregation within the data field
as a sequence of float numbers, while SAREF represents each individual measurement.

In [3], we introduced the SAREF4health extension, a preliminary version of SAREF4ehaw, which
was designed to address the aforementioned verbosity problem. Our study emphasizes four key
characteristics of semantic models: quality, message size, [oT orientation, and standardization, ultimately
combining ontology-driven conceptual modeling with other initiatives. We investigated a number of
alternatives, and used a well-founded ontology for Electronic Health Record (EHR) that focused cardiac-
related data, which was developed through an analysis of existing health standards and supported by
the ontology-driven conceptual modeling practice.



3.2. Extending SAREF for data exchange of ECG time series measurements

As discussed in the previous section, instantiating ECG data with SAREF results in significantly larger
message sizes compared to other standardized alternatives . For instance, our experiments of a JSON-LD
message comparing SAREF individual measurement to FHIR aggregated approach showed that the
SAREF message was fifty times larger. We generated real data with an ECG device at 256Hz, and 1280
measurements every 5 seconds in our experiments. As a result, the message size is 5MB with SAREF,
while with FHIR the message size is 100KB [3]. This size discrepancy increases exponentially with the
number of measurements. Consequently, we conclude that the core SAREF ontology is unsuitable for
exchanging IoT-based ECG time series data due to its excessive message size. We examined a number
of semantic models, assessing their strengths and weaknesses considering characteristics of ECG data,
including the components involved in ECG recordings. Our study indicated that SAREF is one of the
most fitting IoT ontologies, and we concluded that there was a gap in standardized IoT ontologies
that adequately balance quality and payload for representing ECG time series data. This realization
prompted the development of SAREF4Health as an extension of SAREF to address these needs.

We introduced the term Time Series Measurements in SAREF4Health to reflect the concept of “sample
sequence” or “sampled data” that existing standards refer to time series data. This element can be used
to represent ECG data, i.e., an array of electric potential measurements related to heart activity. We
classified Time Series Measurements as a type of Measurement in SAREF, adhering to definitions and
reusing existing structures for properties like hasTimestamp and isMeasuredIn, and introducing the
hasValues property to accommodate multiple float values as an ordered sequence, inspired by the notion
of Lists in JSON-LD . Additionally, we incorporated frequency information by reusing the frequency
measurement property from SAREF4envi extension. The frequency of an ECG device can typically
be set via an AP], reflecting the sampling frequency of each ECG sample sequence collected during a
recording session. This helps to differentiate the device’s current frequency from those used in previous
sample sequences.

Therefore, we define the Time Series Measurement® term as a sequence of data in a successive
equally spaced points in time. The OM ontology (ISO 19156) defines Time Series Observation as an
“observation whose result is a time-series”, while standards like HI7 aECG and DICOM define the Series
element as “a sequence of data sharing a common frame of reference”. Here this concept is termed as
Time Series Measurements since this sequence of data refers to time series measured by an IoT device.
We validated this approach first by responding to competency questions on a simple ECG data exchange
use case[3], and through a working prototype executed in a number of test cases [16]. The results show
that the trade-off between ontology quality and lightweight data serialization is a relevant aspect on
the design of the time series ontology. From this research outputs, the ETSI SAREF4ehaw task force
incorporated the main elements of SAREF4health into the standard®.

4. Forecasting time series in SAREF for Energy Flexibility

The representation of time series for monitoring, forecasting and optimizing power consumption
and production of energy related devices, like Heating, Ventilation, and Air Conditioning systems,
Photovoltaic (PV) panels and Electric Vehicles (EV), is a complex topic that requires modeling of
sequences of data points linked to contextual data about grid capacity, storage capabilities (e.g., batteries)
and weather conditions. Forecasting plays a major role in this context, for example (1) to predict when
the sun will be shining in the coming hours or days and, therefore, significant production from PV
panels is expected with a consequent low usage of the power grid; (2) to forecast prices in the energy
market; and/or (3) to predict behavioral patterns of consumers, such as when most people will be likely
to charge their EVs, use hot water, do their laundry, or use air conditioning. From a conceptual point
of view, a forecasted data point can be modelled as a “measurement” or an “observation”. The OGC

*https://saref.etsi.org/sarefdehaw/v1.1.1/#s4ehaw: TimeSeriesMeasurement
®It is relevant to highlight that while in SAREF4health we introduced the property hasValues with a range of an array of
xsd:float, in SAREF4ehaw the range was set as xsd:decimal
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O&M takes the position that the term “measurement” can be reserved for numerical values, but that
both “measurement” and “observation”can be applied on forecasted values, as long as there is metadata
available to indicate the specific usage [17].

4.1. Time series data for energy forecasting

Europe leads the digital energy transition, aiming for climate neutrality by 2050 through emissions cuts,
green tech investments, and environmental protection. Key priorities include affordable energy access,
energy independence, local renewable energy production, and data integration across stakeholders to
drive this transformation. The H2020 Interconnect project was carried out in this context with the aim
to develop and demonstrate energy services for connecting and converging digital homes and buildings
with the electricity sector, using SAREF as main pillar. To be able to model these services and support
the unambiguous exchange of measurement and prediction data across different platforms, systems and
countries, a number of extensions of SAREF have been developed in the project in close collaboration
with more than fifty industry and research stakeholders in various workshop over two years’. The
results were then validated, tested and deployed in seven connected large-scale test-sites in Portugal,
Belgium, Germany, the Netherlands, Italy, Greece and France. Given that the majority of the services
involved monitoring, forecasting and optimizing energy usage, extensions of SAREF for data points
and time series® and for forecasts’ have been created.

These extensions define the following main concepts: (1) a data point as an atomic piece of information
about a certain observable quantity in nature that can contain a numerical value and a corresponding
unit of measure; (2) a time series as an ordered sequence of data-points of a quantity that is observed
at spaced (not necessarily equally spaced) time intervals; and (3) a clear characterization of the most
common forecasting data that reuses data points and time series !°. When designing forecasts, we
incorporated the need to distinguish between point forecasts versus stochastic forecasts, as well as the
various ways to express stochastic forecasts. We also consulted standardization bodies such as ETSI
and CEN/CENELEC, and the result was a commonly agreed new version of SAREF4ENER that was
published in 2023 that allows to model data points, time series and forecasts'!.

4.2. Extending SAREF for demand-side flexibility analysis

The SAREF4ener standard resulted from the InterConnect project is based on two energy flexibility
standards, EN 50631 [18] and EN 50491-12-2 [19]. The EN 50631 on “Performance of household
and similar electrical appliances” defines the information exchange between smart appliances and
energy management systems in homes and buildings. The EN 50491-12-2 on “General requirements
for Home and Building Electronic Systems and Building Automation and Control Systems” defines a
communication standard for energy flexibility and energy management, which helps to optimize the
use of energy of smart devices in homes and buildings. Both [18, 19] require the modelling of time
series for the actual energy monitoring of a device and also for forecasting functionalities. The design
of this time series incorporates these definitions, which are illustrated in Figure 2. Besides SAREEF, it
also follows the design choices made in the extension to the SSN ontology [20].

A DataPoint is modeled in [22] as a subclass of saref:Measurement and, as such, inherits the saref:has-
Value and saref:hasTimestamp properties. Therefore, if the combination of a numerical value and
timestamp is sufficient to represent a DataPoint, then the SAREF concepts for measurement can be
directly reused and the time series is modeled as a container and the measurements are its elements.
We highlight these additional properties to represent forecasts as TimeSeries of DataPoints:

"https://gitlab.inesctec.pt/groups/interconnect-public/-/wikis/home#interconnect-ontology

8https://gitlab.inesctec.pt/interconnect-public/ontology/-/wikis/ic-data

*https://gitlab.inesctec.pt/interconnect-public/ontology/-/wikis/ic-fc

19An OWL example to model an instance of an energy forecast with corresponding price is available at https://gitlab.inesctec.
pt/interconnect-public/ontology/-/blob/master/examples/flex_offer example.owl

""The detailed distinction of different forecasts was not included in the standard for the purpose to stimulate further validation
and discussion in the community


https://gitlab.inesctec.pt/groups/interconnect-public/-/wikis/home#interconnect-ontology
https://gitlab.inesctec.pt/interconnect-public/ontology/-/wikis/ic-data
https://gitlab.inesctec.pt/interconnect-public/ontology/-/wikis/ic-fc
https://gitlab.inesctec.pt/interconnect-public/ontology/-/blob/master/examples/flex_offer_example.owl
https://gitlab.inesctec.pt/interconnect-public/ontology/-/blob/master/examples/flex_offer_example.owl

<<rdf:type>>
sdenerlUsage [€--=—-=----"-------------=--
sdener:hasUsage A sdener:baseline sdener:setPoint |

4ener:producedBy >

saref:Device

sdener:lowerLimit |

1 sdener:upperLimit |
saref:makesMeasurement

s4ener:producedBy | sdener:minimum l I sdener:maximum |

s4ener:consumption sdener:production

sdener:TimeSeries I saref:Measurement

saref:hasValue (1..1)

s4ener:hasUpdateRate (0..1) xsd:dDuration (all) saref:hasTimestamp xsd:dateTime

s4ener:hasTemporalResolution (0..1) xsd:duration
s4ener:hasEffectivePeriod (1..1) time:Interval
s4ener:hasCreationTime (0..1) time:Instant

s4ener:hasDataPoint (0..N)

| sdener:DataPoint

s4ener:hasUpdateRate (0..1) xsd:duration
f s4ener:hasTemporalResolution (0..1) xsd:duration |
s4ener:hasEffectivePeriod (1..1) time:Interval 1
s4ener:hasCreationTime (0..1) xsd:dateTime
s4ener:hasQuantile (0...1) xsd:decimal
i sdener:hasStandardDeviation (0...1) xsd:decimal

Figure 2: Chowlk [21] diagram of the main SAREF4ENER V1.2.1 time series classes

Creation time: The time instant in which a data point or time series has been created. The creation time
differs from the time at which the quantity is in effect, which is expressed by the hasEffectivePeriod
property. For example, if a temperature is forecasted on 19-11-2024 at 12:30 (i.e., the creation time of the
forecast) for the following day between 14:45 and 15:45 (i.e., the time when the temperature is expected
to be in effect), then the creation time is 12:30 of 19-11-2024.

Effective period: This connects to the temporal entity which describes when (time interval) the quantity
of this data point was, is, or will be in effect. This is the time interval which is covered by the forecast
that in our example begins on 20-11-2024 at 14:45 and ends at 15:45.

Temporal resolution: The distance between two data points measured at different times, which makes
sense if the measured data points in a time-series are equidistant in time. For example, the temporal
resolution of the forecasted temperature example is 1 hour, i.e., the difference between the end time
(15:45) and start time (14:45) of the effective period of each data point in the time-series.

Update rate: The rate at which a data point or time-series or forecast is being updated.

Usage: The purpose (usage) for which the data-point or time-series is used, for example as an upper
limit, lower limit or a baseline (i.e., expected value), a maximum versus minimum value, or an energy
consumption versus an energy production value.

Produced By: the origin (or provenance) at which the datapoint or timeseries are produced.

5. Discussion

The first point for discussion, on which SAREF4ener and SAREF4ehaw take different approaches, is
how to model the ordering of time series elements. The ordering of elements could be left to the specific
RDF serialization, as SAREF4ehaw does, by expecting to use the JSON-LD serialization format. RDF
implements ordered lists by linking anonymous nodes with rdf:first and rdf:rest, ending with rdf:nil to
represent order, requiring a precise (but verbose) way to represent ordered lists [23]. JSON-LD offers a
shortcut for ordered lists trough the @list annotation. The SAREF4ener extension expects a user to
explicitly include a timestamp for each data point associated to the time series. This ensures the validity
of the data, but it remains computationally expensive to query for immediately following or preceding
elements, in particular on high-frequency time series.



Capturing the timestamp of time series elements is done implicitly with SAREF4ehaw by recomputing
the timestamp from the list index, starting time, and measurement frequency. By using explicit
timestamps, as SAREF4ener does, data can be shared more reliably across systems where consistency in
time-based data alignment is necessary. This explicit approach can be advantageous to mitigate the risk
of misinterpreting temporal data sequences — a significant consideration for energy or health-related
infrastructures. On the other hand, the implicit timestamp approach taken by SAREF4ehaw prioritizes
storage efficiency, which may be beneficial for systems that do not expect variations on the time intervals
between data points, and with limited storage and/or bandwidth capacity or where the overhead of
recomputing timestamps is manageable.

From a business management perspective, each approach also aligns with different operational priori-
ties. The explicit timestamping method of SAREF4ener may be preferable in applications where real-time
data accuracy is crucial, as seen in energy management systems where accurate decision-making can
drive cost savings and system resilience. Conversely, the implicit timestamping of SAREF4ehaw may
be more suitable for applications focused on long-term data retention at minimal cost, making it a
potentially viable option for budget-constrained analytics platforms. Therefore, the choice between
these approaches has implications not only for technical implementation but also for aligning with the
broader business goals and resource constraints of the organization deploying these models.

From a standardization perspective, it would be beneficial to harmonize the various efforts existing
in ETSI on time series not to hinder adoption by stakeholders. To that end, validation and testing of the
chosen time series representation in operational environments with real data is essential. This was
done on different scales for SAREF4ener and SAREF4ehaw. However, no validation nor testing of the
representation suggested in TS-103-828 has been reported and, therefore, it should be addressed. We
also suggest to take other alternatives in consideration, and that these are driven by end users’ purposes
and their associated (functional and non-functional) requirements. We also argue that, in a standard, a
trade-off should be reached to keep the time series representation simple and ease of use for industry
practitioners, who are typically not ontology experts, while still capturing its essential aspects. As
mentioned in Section 2, several research proposed ontologies to represent time series, and, therefore, a
systematic literature review should be performed to learn and reason on general characteristics of them.

Given the importance of time series and their wide-spread usage in the IoT industry, we finally
encourage ETSI, who has been at the forefront of semantic modeling of time series, to actively engage
in public consultations with stakeholders and other interested standardization bodies for the validation
of (intermediate) results on an ontology for time series, in the same iterative, open and inclusive fashion
that characterized the development of the first version of SAREF [24]. The support of the European
Commission in facilitating this process for SAREF has already been proven as greatly beneficial and
could benefit once again the development of a shared consensus on the representation of time series.

6. Conclusion

In this paper, we have highlighted the increasing relevance of ontologies for representing time series data,
particularly in fields where accurate data interpretation is crucial as healthcare and energy management.
By comparing two standardized ontology-based approaches — SAREF4ehaw and SAREF4ener — we
discussed their potential for improving semantic interoperability in time series analysis. Our research
shows that, although both ontologies offer valuable contributions, they also have limitations, particularly
regarding message verbosity and handling complex time series datasets.

The main lessons learned from this research underscore the importance of balancing ontology
quality with practical concerns, which are typically described as non-functional requirements, like data
transmission efficiency, especially in systems that use IoT technologies. While SAREF4ehaw offers a
way for representing time series for real-time IoT data exchange with cloud environments, it is clear that
the lack of expressiveness of each data point in the time series poses a challenge in knowledge-intensive
applications. The SAREF4ener extension takes the opposite approach of including all data elements in
the model, but this may bloat the triple store or harm computational efficiency.



Future work should focus on addressing these challenges by further reusing and refining ontologies.
This includes exploring new ways to reduce message size without sacrificing the semantic richness
necessary for complex applications. We discuss these and other recommendations, such as improving
standardization through stakeholder consultations from different domains, which should be taken into
account by standardization bodies to create consensus on time series representation. Additionally,
conducting a systematic literature review on ontologies for time series representation would provide a
deeper understanding of emerging trends and gaps in the field.

Finally, many machine learning models have been developed based on time series data, requiring
proper explanations for improved trust, which is one of the main topics within explainable AT (XAI).
Integrating ontology-driven XAI techniques into this research could also enhance the interpretability
of machine learning models, making it easier to explain temporal relationships and model decisions to
end-users. By prioritizing explainability, researchers can ensure that these advanced ontologies support
transparent decision-making, especially in critical domains like energy and healthcare.
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