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Abstract 
The nuclear industry, characterized by its large-scale projects and intricate processes, requires robust 
knowledge management (KM) strategies. Traditional KM approaches, such as training, documentation, and 
expert networks, have been employed to address this need . Documentation, though, has challenged by its 
volume, the outcome of this approach. However, the advent of AI and Large Language Models (LLMs) has 
opened new avenues for KM innovation. This paper explores the integration of CurieLM, a domain-specific 
LLM, with a  nuclear ontology to improve the quality of knowledge retrieval and answers generation. By 
automatically expanding the input context through ontology-driven enrichment, our approach aims to 
address the shortcomings of existing KM methods, offering a scalable and efficient solution for the nuclear 
industry's unique challenges. 
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1. Introduction 

Nuclear power plants are highly knowledge-intensive facilities [1] structured by long-term projects 
involving multiple disciplines and complex technologies. Alongside this growing complexity, the 
nuclear domain is facing actual challenges of growing decarbonization demand and replacement of 
the aging nuclear fleets [2].   The lifespan of power plants also stresses the importance of integration 
of heterogenous knowledge means, which can go back to 50 years. In order to meet the resulting 
high expectations and requirements of this critical domain, capturing and capitalizing on knowledge 
plays a crucial role. In fact, Knowledge Management (KM) has been identified as one of the key 
enabling discipline for distributed engineering enterprises such as nuclear power plant projects in 
the 21st century [1].  

Knowledge Management is defined by [3] as the practice of selectively applying knowledge from 
previous experiences of decision making to current and future decision-making. To successfully 
achieve this knowledge capitalization and application in the future decisions, it is essential to 
consider the capture, storage, retrieval, and reuse of knowledge [3]. One of the main KM’s objectives 
is providing appropriate information for the appropriate resource at the right time [1][4] which 
makes it essential in the context of the nuclear project. 

Recent advancements in data-related digital technologies, particularly Artificial Intelligence (AI) 
led to the development of Large Language Models (LLMs). Training LLMs on numerous, diverse texts 
results in the integration  of extensive knowledge, interpretation of complex information, general 
reasoning and aiding knowledge-intensive decision-making [5]. The recent evolution of LLMs have 
enabled the creation of Generative AI, a technology can understand and generate human-like text. 
Few experiments have been made in the nuclear domain, NukeBERT [5] is a pre-trained language 
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model based on BERT [6] that has exhibited significant performance improvements over the original 
BERT. Another is NuclearQA [7] that introduced a human-made benchmark aimed at assessing 
language models in the nuclear domain.    

2. LLM limitations in Knowledge Management 

Despite their undeniable benefits, the responses generated by LLMs present two main limitations: (i) 
outdated information potentially originating from the model's training date, and (ii) inaccuracies in 
factual representation, also known as “hallucinations” [8]. LLM ‘hallucinations’ designates the LLM’s 
generation of incorrect results and answers. It is either due to the fact that the requested information 
has not been retrieved, or the fact that LLM tries to provide a creative answer.  

Additionally, hardware is also an important limitation regarding LLM, especially in the nuclear 
industry where, most of the time, a local  LLM is required so that the confidentiality and the security 
of the sensitive information is guaranteed. This constraint induces  purchasing and installing 
Graphics Processing Unit (GPU) to specific servers. These GPU are rather expensive due to their use 
of more electrical resources than a regular computer. It also echoes on the IT infrastructure, such as 
installing GOPUs. 

These limitations must be addressed to achieve a KM tool with a reliable and energy-efficient 
LLM developed for use in the nuclear industry. 

3. Addressing LLMs limitations 

This work aims to mitigate the previously described limitations through the following approaches. 
LLM generated answers quality: 

1. Larger LLM could prevent LLM hallucinations since it has much more trained parameters 
and could also better “understand” the questions and the overall context. 
Larger LLM also need more computer power to operate and, sometimes, the necessary power 
can only be provided by third party companies (ex: OpenAI, Microsoft, AWS, etc.).  

2. Retrieval-Augmented Generation (RAG) architecture is expected to provide precise context 
to the LLM when the documentary corpus quality is adequate. RAG architecture can work 
with “small” LLM (7b to 14b parameters) and can provide an equivalent quality of generated 
answer as larger LLM. 

3. Fine tuning a LLM enables improvement of the generated answers in a specific domain. In 
this case, training instructions related to nuclear domain has been provided to a LLM for its 
fine tuning. 

4. Increasing the context sent to the LLM; The more the LLM has context, the better. This 
context can be increased by prompt engineering 

This last aspect is the one addressed in our proposal. The idea is to use ontology-enriched request, 
or in other words, on the basis of an ‘elementary’ request, expand it using ontology. This means on 
the basis of the concepts used in the request, use the closest concepts in the ontology as concept to 
further enhance quality of the answers. This approach has not been implemented for the generation 
of the results below. 

LLM energy efficiency: 

1. The best way to reduce the energy consumption is to get a “tiny” LLM (<7b parameters). But 
this solution also comes with a downside; Smaller LLM are in fact less “intelligent” and will, 
by definition, provide poorer quality responses. 

2. A common way to reduce energy consumption without drastically degrading the quality of 
the generated answer is to get a “small” LLM (7b to 14b parameters) and to quantize it. LLM 
quantization is a way of compressing LLM by changing the variables type of the parameters 
(ex: from float to int8) so it will need less memory to operate 



Those two approaches were successfully implemented in the previous version of CurieLM, 
enabling significant increase of the performance, most noticeably the time to generate an answer.  

3. Lastly, LLM are commonly used within Python projects. Some of the LLM have been 
redesigned so they can work on C++ program which is way more efficient. The major 
downside of this method is the integration within existing tools and larger projects since, 
nowadays, the community is mainly working on Python.  

These solutions highlight the fact that there is a trade-off between computer power and generated 
answers quality but some of the technical levers might be used to optimize this trade off to our need 
of efficiency. 

4. Methodology 

Our first approach consists in combining a fine-tuned “small” LLM (7b parameters) which is then 
quantized within a RAG architecture implemented in a Knowledge Management solution. We called 
this project CurieLM (which stands for Marie Curie ). This model has been fine-tuned over 25 000 
instructions from internal dataset and open-source dataset related to nuclear domain. 

Models have been compared on 5 main characteristics, which have been human-evaluated by a 
pool of experts. Those characteristics are described below: 

• Accuracy: Capability of the model to provide an accurate answer, without using vague words, 
or concepts 

• Synthesis: Capability of the model to provide a short answer, expressed as much as possible 
in the shortest way possible 

• Quality: Capability of the model to provide an answer using the relevant elements, up to date 
• Exhaustivity: Capability of the model to answer to the whole question, without shadowing 

or omitting some aspects of the question  
• Clarity: Capability of the model to provide structured and organised answer, easy to read and 

understand 

5. Results 

We tested GPT4 and our CurieLM RAG architecture through 56 technical questions related to nuclear 
safety. After human evaluation, we observed a significant augmentation of the quality of the answer 
(higher notes), and a constant consistency (lower standard deviation) with the RAG technology. This 
evaluation was specifically performed on the exhaustivity, accuracy, overall quality, clarity and 
synthesis of the answer (Figure 1) which were expert-evaluated. 

We also tested our fine-tuned CurieLM (with more than 23 000 instructions) model with a custom 
benchmark dataset related to nuclear domain to compare with Mistral 7b (our base model) and other 
models like GPT4. (Figure 2). This comparison will be evaluated thanks to evaluation dataset 
composed of questions and answers related to nuclear domain. Due to data safety and confidentiality 
constraints, this datasets cannot be disclosed in details but are described in [10]. Those datasets have 
been built under the form of Q/A sets defined by internal experts group. 



 
Figure 1: Score comparison between GPT4 and RAG architecture. 

Explanation for the KPI used in this chart is provided in paragraph 4. For each question of the 
dataset considered, every generated answer will be then compared to the correct answer in the 
dataset. The ratio between the correct and incorrect generated answer will give us the accuracy of 
the model in Figure 2. 

 

 
Figure 2: Model accuracies comparisons 

We can observe that GPT4 provided correct answers only with 35% of accuracy even though 
GPT4 is one of the largest LLM available on the market. We can also observe that Mistral 7b (our 
base model) provided correct answers with 16% of accuracy and, when fine-tuned, this accuracy is 
slightly better with only 17% of accuracy. 

These results highlight the fact that for very specific domains, LLMs have not great accuracy in 
terms of answers quality. We can draw another graphic if we define LLM efficiency as such: 
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Figure 3: Model efficiencies comparisons 
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We can now observe that our CurieLM model is far more efficient than GPT4 and significantly 
more efficient that Mistral 7b (our base model). Please note that for this chart we assume that GPT4 
have 200b parameters which is a low estimation. One key point in the explanation of this higher 
efficiency is to notice that even though GPT provides answer with higher accuracy, it does so using 
a much larger number of parameters, leading to an overall ratio being lower. In other words, CurieLM 
presents a higher ‘per parameter’ accuracy. We can go further in this improvement by increasing 
the input context sent to our CurieLM model. This input context can be dynamically modified with 
user information and with a nuclear ontology which will enrich the context of the question. This 
context enrichment by ontology will consist of extracting keywords from the question to filters 
relevant branch and nodes to a nuclear ontology (Table 1). 

Table 1 

This method will automatically increase the input context without changing the user’s 
experience. Larger input context will significantly improve the quality of the generated answer. 

6. Conclusion 

The CurieLM project has shown that operating a fine tuning of a “small” LLM, by using a RAG 
architecture and by extending the input context sent to a LLM might be an interesting way to 
optimize the trade-off between computer power and generated answers quality. In other words, in a 
computing resource-constrained paradigm which is often the case in engineering, using fine-tuning 

Question 
(CurieLM model) 

Question + RAG 
(CurieLM model + 

KG tool) 

Question + RAG + 
user information. 
(CurieLM model + 

KG tool) 

Question + RAG + 
user information + 

ontology 
enrichment. 

(CurieLM model + 
KG tool) 

What role does civil 
engineering play in 
the optimization of 

thermal efficiency in a 
nuclear power plant? 

What role does civil 
engineering play in the 
optimization of 
thermal efficiency in a 
nuclear power plant?  
Context: [document 1, 
document 2, document 

3] 

I’m a civil engineer 
working in nuclear 
industry for an 
electrical French 
provider. 
 
What role does civil 
engineering play in the 
optimization of 
thermal efficiency in a 
nuclear power plant?  
Context: [document 1, 
document 2, document 

3] 

I’m a civil engineer 
working in nuclear 
industry for an 
electrical French 
provider. 
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engineering play in the 
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nuclear power plant?  
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Heat Transfer 
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System Design, Waste 
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document 2, document 
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constitutes a way to further improve overall quality, and accuracy without increasing the computing 
power. 

The overall results of these earlier stage results are quite promising but can be improved by:  

1. Improving the fine-tuning of the CurieLM model to increase the accuracy and, by extension, 
the efficiency of the model. 

2. Improving the RAG architecture with a nuclear oriented Knowledge Graph. 
3. Improving the ontology enrichment of the input prompt so it can give more relevant context 

for the RAG architecture to find relevant documents. 
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