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Abstract
Large Language Models (LLMs) have been applied to a wide variety of ontology engineering tasks. Building
on initial progress, further research is needed to explore potential effects of variation over model-specific and
ontology-specific factors. We perform a preliminary study on the ability of an LLM to perform term typing using
only its own knowledge through concept retrieval and analyse the effect of domain contextualisation, ontology
structure and popularity of ontologies on performance. Our findings suggest that LLMs are reasonably adept at
identifying correct individual to concept assertions but are less capable of inferring concept hierarchies when
used in a zero-shot setting. Domain contextualisation can enhance performance for structurally complex and
less-popular ontologies. Our analysis furthers hints at ontology popularity improving concept retrievability while
complexity in terms of structural depth and dispersion makes it difficult for LLMs to identify assertions.
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1. Introduction

Large language models (LLMs) have access to substantial factual knowledge [1, 2] and are widely used
for several natural language tasks including knowledge-based tasks [3]. Their ability to "understand"
complex texts and perform reasoning tasks at scale has led to the wide experimentation with LLMs
for ontology enhancement [4, 5, 6, 7, 8]. Interest in leveraging LLMs for various ontology learning
tasks [9, 10, 11, 12] has also been growing. However, there is still a lot to learn about the nature of the
interaction between LLMs and ontologies. Whereas LLMs are trained on massive data including freely
available ontologies from the Web, recent works highlight that such presence of information does not
translate into strong performance on various ontology learning and knowledge tasks [13, 14].

While LLM-driven ontology enhancement has been gaining traction, more attention needs to be
paid to exploring the possible effects of variability within LLMs and ontologies on the potency of
such enhancement. The interplay of factors like prompt domain contextualisation, ontology structure
and ontology popularity can significantly affect the ability of LLMs to perform ontology-related tasks.
Understanding the effects of variation in these underlying variables and their interaction can help
identify optimal strategies for LLM-supported ontology development.

This paper describes a preliminary study on the ability of an LLM to perform term typing in a
zero-shot setting and presents an analysis of the observed performance depending on a small subset of
potentially important LLM-specific and ontology-specific factors. Term typing is an ontology learning
and enrichment task of mapping new individuals to concepts within an ontology. It requires a model
to "understand" (or at least to recognize) the features of concepts within an ontology to make new
individual to concept assertions. The paper addresses the following research question: How capable
are LLMs at ontology term typing through concept retrieval? As a part of the study, we also look
into the LLMs’ ability to implicitly identify concept hierarchies. We investigate performance variation
over prompt domain contextualisation, ontology structure, and ontology popularity on an ontology
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learning task. Throughout the study, we outline the importance of identifying critical factors to be able
to explain variation exhibited by LLMs over different ontology development and learning tasks.

2. Related Work

Research on the application of LLMs in ontology development range from techniques to enhance existing
ontologies, to approaches focused on engineering ontologies from scratch, to evaluation frameworks
for assessment of performance of LLMs in various ontology learning tasks.

Several studies focused on using LLMs for automated ontology development to reduce human
intervention [15]. Dong et al. [8] approached the task of concept placement with a three-step strategy
of edge search, formation and selection using various models. Their results highlight that fine-tuned
BERT-based [16] models outperform larger decoder-only models used in a zero-shot setting. Focusing
on decoder-only LLMs, Giglou et al. [12] modeled ontology alignment as a paired-sentence classification
task by prompting LLMs to answer questions of equivalence of concepts given their immediate parents or
children. He et al. [7] evaluated the ability of LLMs to perform concept matching as a binary classification
task to find that zero-shot decoder-only models do not perform as well as their encoder-only counterparts.
Snijder et al. [17] compared different methods for ontology alignment in the application domain of
the labour market. Chen et al. [10] addressed the task of subsumption inference as a paired-sentence
classification task by fine-tuning a BERT model on an ontology entity-based paired-sentence dataset.

The ability of LLMs to perform complex tasks and provide formatted outputs prompted their use
in the development of ontologies from the ground up using natural language guidelines or ancillary
tasks. Kommineni et al. [18] used LLMs to generate ontologies and knowledge graphs by tasking the
model to generate competency questions, an ontology and, subsequently, a knowledge graph from
the human-verified questions. Using an LLM to parse natural language sentences into OWL syntax,
Mateiu and Groza [6] were able to create a tool that is capable of generating and populating simple
ontologies from basic sentences. However, the applicability of such a tool for more complex requirements
has not been tested. Funk et al. [5] leveraged natural language as well, adopting a repeated prompt
strategy to identify child concepts and their optimal placements to create a hierarchy. Domain ontology
development requires significant knowledge about the domain itself thereby posing a more nuanced
problem for LLMs. Doumanas et al. [19] investigated the use of LLMs to develop domain ontologies
for the Search and Rescue domain. Their findings highlight impressive capabilities of LLMs to fit new
factual information into an ontology framework and affirm LLMs as capable ontology engineers.

The lack of clarity behind the mechanisms responsible for the observed performance of language
models necessitates development of evaluation frameworks for various ontology-related tasks. Investi-
gating LLM hallucinations over simple information about well-known ontologies, Bombieri et al. [13],
probed models for concept labels from the Gene Ontology [20] and the Uberon Ontology [21] using only
their IDs. Their findings show low rate of hallucinations but poor performance in general highlighting
some degree of memorisation proportional to the popularity of the ontologies on the Web. He et al.
[11] provided a framework for evaluation of LLMs for subsumption inference. Modelled as a natural
language inference task, their study found decoder-only models to be quite adept at identifying simple
and complex subsumptions. Looking into term typing, taxonomy discovery and relation extraction
performance, Babaei Giglou et al. [22] evaluated models in a zero-shot settings on nine different datasets.
Mai et al. [23] gauged reasoning and learning capabilities of language models to find prediction incon-
sistencies suggesting that such models tend to fall back to their pre-learnt lexical senses as opposed to
using the provided semantic meanings of concepts in ontologies.

Despite the growing interest and the considerable progress made over the last few years in application
of LLMs for ontology development and evaluation methods for these techniques, there is one important
aspect that has not been sufficiently addressed in literature. We need to obtain a better understanding
of performance variability arising from the underlying model-specific and ontology-specific factors.
The interplay of these factors can be quite significant as suggested by variation in reported performance
across studies.



3. Variation Analysis

While there are many LLM-specific and ontology-specific factors that can contribute to performance
variability on an ontology learning task, we focus on a specific subset for our study on term typing. We
briefly outline some of these factors contributing to the form and analysis of our experimentation.

LLM-based Variability: When used without fine-tuning, LLM-based variability (apart from the
choice of different LLMs) is primarily driven by prompt variability. We consider the following
elements of a prompt as variables of interest for probing LLMs for our present study:

• Nature of the task: An ontology learning task can be structured in different ways e.g. classifi-
cation, summarization, retrieval, etc. Prompting an LLM to perform an ontology learning task
using different output strategies allows for analysis of the suitability of a particular task to each
performance objective.

• Prompting strategy: Various prompting strategies like zero-shot, few-shot and retrieval-
augmented-generation allow assessment of the amount of example data required by an LLM to
perform an ontology learning task. It indicates the relevancy of the pre-learnt knowledge of an
LLM to perform the task.

• Domain contextualisation: Defining the role of an LLM as an ‘assistant’ or ‘expert’ on a
particular domain or topic in addition to the type of task to be performed e.g. classification,
retrieval, etc. is a powerful tool that encourages LLMs to derive the correct context from the user
input data. In the space of an ontology learning task, this domain in itself is multi-faceted and
can take on any of the following forms:

– Generic: The LLM is not given any role other than that based on the task to be performed.
– General domain of ontologies: The LLM is defined as an expert in ontologies.
– Topic of an ontology: The LLM is defined as an expert in the topic of an ontology e.g.
‘You are a wine expert’ for an LLM as a wine expert for the Wines Ontology [24]

– Combination of a general ontology and a topic: The LLM is defined as an expert in
ontologies and an expert in the topic of a particular ontology.

The degree of contextualisation provided by the domain specification in the prompt helps assess
the optimal level of specificity for an LLM to perform an ontology learning task.

Data Variability: The heterogenity of ontologies modelling different domains introduces variability
based on their structure and content. We investigate variability along the following variables:

• Ontology Structure: Ontology structure is driven by the nature of the underlying topic. Metrics
for measuring the structural complexity such as depth, breadth, dispersion and tangledness [25]
can help categorise ontologies and reason over similarities and differences in performance of
LLMs across ontologies and ontology learning tasks based on their structure.

• Popularity: LLMs are capable of memorizing their training data [26] and their performance on
ontology learning tasks is affected by the popularity of the ontology on the Web [13]. Analysing
the effect of the popularity of the topic of an ontology provides insight into the ability of
LLMs to leverage pre-learnt information and their capability to override it as required.

4. Term Typing Ranked Retrieval

We present a preliminary study on term typing by LLMs as a ranked retrieval problem and analyse
the effect of variation based on the following three variables: domain contextualisation, ontology
structure and ontology popularity on the task.

Following a similar investigation of term typing in Giglou et al. [12], we model the task as a retrieval
problem and prompt OpenAI’s GPT-4o [27] model in a zero-shot setting with a modified task of
generating a ranked list of concepts of length up to the depth [28] of the ontology. The choice of



zero-shot prompting forces the model to utilise only its own knowledge of the concepts and individuals
that it is prompted with (using only their labels) in order to make the correct assertions. This choice
highlights the relevancy of an LLM’s world knowledge to a basic ontology learning task. Modelled
as a retrieval task with a retrieval length greater than one provides insight into the LLM’s ability to
accurately identify and infer concept hierarchies on its own when given only the concept labels.

We compute the standard information retrieval (IR) metrics: R-Precision, Mean Average Precision
(mAP) and Normalized Discounted Cumulative Gain (nDCG) with mAP and nDCG computed at depth
𝑘 of the ontology (i.e. mAP@k and nDCG@k). R-Precision and mAP provide insight into the general
ability of the model to identify relevant concept assertions and transitive ancestor relations with the
latter laying greater emphasis on the order of retrieval based on the hierarchy. nDCG lays greater
emphasis on retrieving the relevant concepts and parents in the correct hierarchy and acts as an indicator
of the understanding LLMs have of concept hierarchies from just their labels. We define the relevance
of an ancestor concept 𝐴 for an individual 𝐼 according to Equation 1 where 𝐶𝐼 is the directly asserted
concept of the individual 𝐼 and 𝑑(·, ·) is the edge distance between 𝐴 and 𝐶𝐼 . For all non-ancestor
concepts, we set the relevance to 0.

Relevance(𝐴, 𝐼) =
1

1 + 𝑑(𝐴,𝐶𝐼)
(1)

We conduct experiments over two ontologies of varying size, complexity and popularity. The Wines
Ontology [24] is a well-known ontology that is relatively small and structurally-simple, and enjoys
significant popularity by itself and in terms of the domain it represents. The CASE Ontology [29] is
a larger, more complex and newer ontology focused on accurately capturing the lifecycle of digital
evidence. We inject individuals into the CASE Ontology using the Owl Trafficking example provided
on the CASE Ontology website1 and also include concepts from the closely related UCO Ontology
[29]. Hereafter, we refer to this composite constructed ontology as the CASE Ontology itself. Table 1
highlights the relevant structural metrics of the two ontologies to highlight their differences.

Metric Wines Ontology CASE Ontology
Classes (#) 76 434
Individuals (#) 131 161
Depth (#) [28] 4 8
Breadth (#) [28] 62 228
Dispersion (#) (max.) [28] 3 118

Table 1
Ontology Metrics for Wines Ontology and CASE Ontology

We design prompts for the both ontologies based on the four types of domain contextualisation.
Domain contextualisation is achieved by specifying the role of the LLM as an expert in a domain
following one of the four types outlined in Section 3. We also specify the task of generating a ranked
list of the most relevant concepts of length equal to the depth of each ontology. For each type of prompt,
we provide a flat list of all the concept labels from the ontology from which the LLM is to generate its
responses2.

4.1. Results and Discussion

Table 2 provides the retrieval-based metrics for both ontologies. We observe better performance on the
Wines Ontology across all IR metrics. The simpler structure of the ontology, its general popularity, and
the popularity of its domain could be major contributors to the LLM’s ability to retrieve the correct
concepts. This line of reasoning is supported by significantly lower performance on the CASE Ontology.
A smaller and more shallow ontology could contribute to the reduction in difficulty of retrieving
concepts in a correct hierarchy resulting in higher nDCG scores on the Wines Ontology. Consequently,
lower nDCG values for the ontology of greater depth reaffirms this notion.
1https://caseontology.org/examples/
2The exact prompts used can be found at GitHub.

https://caseontology.org/examples/
https://github.com/upalbhattacharya/llm_ontology_awareness/tree/dev/run_args/term_typing/ranked_retrieval/zero_shot/wines-ontology/gpt-4o


Domain Context Wines Ontology CASE Ontology
R-Precision mAP@4 nDCG@4 𝜌 R-Precision mAP@8 nDCG@8 𝜌

Generic 0.7873 0.8192 0.7736 0.4418 0.2743 0.2611 0.5609 0.5496
Ontology 0.7491 0.7855 0.7401 0.4431 0.3169 0.3155 0.5970 0.3095
Topic 0.7196 0.7603 0.7116 0.5004 0.2417 0.2326 0.5222 0.0375
Ontology and Topic 0.7681 0.7998 0.7552 0.5742 0.3001 0.3113 0.5096 0.4474

Table 2
IR Metrics and Pearson Correlation (𝜌) between retrievability and dispersion [28] for Wines Ontology and CASE
Ontology. Correlation values in italics are significant at a p-value of 0.05. Values in bold indicate the maximum
values for that particular metric.

We observe that a general ontology contextualisation of an LLM results in better performance
than contextualising LLM as a topic expert. Optimal prompt engineering of this contextualisation
may improve performance but simple prompts highlight that a topic-based domain contextualisation
is not improving the results of term typing (at least for GPT 4.o as the chosen LLM). The generic
prompt performs the best on the smaller and more popular Wines Ontology. The simpler structure and
popularity of the ontology coupled with the best performance suggests that popularity can dominate
other variables of interest thus marginalising the need for carefully considered domain contextualisation
in prompt engineering.

We measure the Pearson correlation between the retrievability of a concept and its dispersion [28]
to analyse the effect of ontology structure on performance. Dispersion is a measure of ontological
structural complexity defined for a concept as the number of child concepts it has. We define the
retrievability of a concept as the number of times it is predicted as a relevant concept by the LLM, across
all queries. Our observations suggest that domain contextualisation influences structural considerations
during retrieval. Column 𝜌 in Table 2 outlines the correlation between dispersion and retrievability.
The domain contextualisations involving ontologies show moderate correlation between dispersion and
retrievability. Concepts with high dispersion have several child concepts and represent conceptually
‘broader’ formalisations. Such concepts are possibly semantically wider in their scope and thus could
be easier for LLMs to retrieve using their own knowledge when contextualised to consider hierarchies.
Similar correlation between all contextualisations for the Wines ontology (max. dispersion: 3) indicates
that in simpler ontologies, where dispersion is not well-pronounced, performance is not affected. Future
studies with more ontologies of varying degrees of dispersion would help corroborate this better. We
do not observe statistically significant correlation between the depth of a concept and its retrievability.

5. Conclusion

We present a preliminary study on the ability of LLMs to perform term typing in a zero-shot setting.
An LLM is tasked with retrieving a ranked list of the most relevant concepts given an individual by
leveraging its own knowledge about the entities from their labels. We summarize the findings of our
study as follows:

• LLMs have reasonable capability in performing term typing using their own world knowledge
but this does not help them identify concept hierarchies, particularly in less popular domains.

• Popularity of domains seems to play an important role in a zero-shot setting and can override
other variables of interest.

• For less popular domains, domain contextualisation can improve performance. Considering
structural experts over topic experts may yield better performance.

• Concepts with greater dispersion may be semantically broader and can therefore be easier for an
LLM to retrieve.

Future works will focus on investigating the task of term typing over different prompting strategies
and conducting an exhaustive analysis of all relevant factors. Extension of the work to other ontology
tasks will lead to the creation of a comprehensive and robust analysis system that can be utilised to
ensure optimal performance for any ontology development task using LLMs.
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