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Abstract

Machine maintenance poses significant challenges and costs in equipment manufacturing. A considerable portion
of the budget is dedicated to provide training materials (documentations) for service engineers to diagnose failure
causes, as well as to cover their salaries and provide spare parts. Additionally, breakdowns adversely impact
machine capacity, preventing customers from utilizing their equipment during downtime. The main reason
for all these challenges is the lack of efficiently utilizing training documentations. To address this and reduce
costs while mitigating the negative implications of machine breakdowns, we propose a two-phase framework
consisting of knowledge graph construction and diagnosis. In the first phase, an upper-level ontology based
on the requirements for fault diagnosis of Cyber Physical Systems is developed, by drawing inspiration from
the Industrial Domain Ontology (IDO) and the Industrial Ontology Foundry-Maintenance Reference Ontology
(IOF-MRO). In the second phase, SPARQL queries are executed on the knowledge stored in GraphDB, providing
valuable insights for diagnosing machine failures.
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1. Introduction

Maintenance tasks in equipment manufacturing encounter several challenges. There is a considerable
financial burden on both manufacturers and customers, stemming from expenses related to training
service engineers, their salaries, and spare parts. Additionally, downtime negatively impacts machine
capacity, preventing customers from utilizing their equipment during these intervals. Canon and Philips,
our industrial partners for this project, assist with maintenance tasks by training their service engineers
and providing them with documentation and occasional video resources. However, navigating extensive
documentation can be challenging, and the costs associated with producing training videos present
additional difficulties.

To address these challenges and enhance support for service engineers in fault diagnosis of Cyber-
Physical Systems (CPS), we are developing a framework based on qualitative knowledge-driven fault
diagnosis. It is important to highlight that our industrial partners are engaged in the production of
large-scale CPS, such as printers and MRI machines that comprise thousands of parts, sensors, actuators,
and computer interfaces, leading to a high level of complexity.

Figure 1 shows our proposed framework in which there are two main phases along with the input
sources and output results. The input consists of three categories of data and knowledge identified
through interviews conducted with authorities in the manufacturing field. In the first phase, we will
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Figure 1: Construction and application framework of the domain fault knowledge graph.

construct a Knowledge Graph (KG) based on the gathered input. This involves manually creating an
upper-level ontology, inspired by IDO [1] and IOF-MRO [2], which will serve as the foundation for the
KG. In the subsequent phase, service engineers will identify a symptom that needs to be translated
into a query for the KG reasoning. The KG will then support a root cause analysis and provide the
corresponding repair procedure, which will be presented to the service engineer as the output.

2. Related work

Various knowledge sources support service engineers in diagnosing failures, including machine log
data, documented knowledge, logbooks from engineers, and expert tacit knowledge. Researchers have
explored these sources and proposed methods for maintenance tasks, grouped into four categories:
(1) Model-based approach: Constructs a physical model to compare actual system output with pre-
dicted values, using consistency monitoring. This method is accurate but requires precise physical
models [3]. (2) Signal-based approach: Analyzes monitored signals to diagnose faults but is limited to
key sensor-equipped components [4]. (3) Quantitative knowledge-based method: Treats diagnosis as a
pattern recognition problem using historical data but requires substantial fault data [5]. (4) Qualitative
knowledge-based method: Uses a qualitative model and techniques like searching, matching, and
reasoning without needing physical models or extensive data, relying instead on a fault knowledge
base [6].

Given the need for system-level analysis and reasoning, the qualitative knowledge-based method is
ideal for this project. A key aspect of this method is the need for a model to represent fault knowledge,
with commonly utilized models including Rule-Based [7], Fault Trees [8], and Petri Nets [9]. However,
these models have limitations, such as requiring prior fault analysis and manual editing, making updates
difficult [6]. This paper proposes using knowledge graph technology to mine fault knowledge and
create a structured fault knowledge base.

3. Methodology

Figure 1 presents our proposed framework for fault diagnosis of Canon and Philips CPS. Below, we will
outline the framework in three main subsections.

3.1. Input Source

Following regular interviews with our partners, we have identified various maintenance sources and
categorized them into three groups: Data, Documented Knowledge, and Tacit Knowledge. Each of these
sources offers unique insights and information about the system, but they also have limitations.



« Data: This includes logbooks that provide insights into problems and the actions taken to resolve
them. However, this information can be incomplete, as service engineers might only record
’done” without detailing the action taken.

+ Documented Knowledge: This category encompasses three resources including (1) Bill Of Material,
which provides information about the physical structure of the system, but lacks details on
problems that may happen for each part of the system. (2) Failure Mode Effect Analysis, provides
insights into challenging failure modes and their potential effects, but it focuses solely on complex
issues. (3) Troubleshooting Manuals, offers information on the causes of failures and remedies
for them.

+ Tacit Knowledge: This refers to undocumented knowledge that resides in the minds of experts,
making it challenging to acquire.

These sources are complementary; by integrating them, we can leverage their strengths and compensate
their limitations.

3.2. Knowledge graph construction

The first phase involves knowledge graph construction, which encompasses two primary steps: upper-
level ontology construction and information extraction. The following subsections provide a detailed
explanation of these two steps.

3.2.1. Upper-level Ontology Construction

We manually developed an upper-level ontology as the foundational structure for organizing the schema
of the knowledge graph. This process involved thorough analysis of various input sources to pinpoint
the most valuable knowledge. We also formulated competency questions to highlight key queries for
the knowledge graph and conducted interviews with industrial partners to align their expectations
with the ontology. Our fault diagnosis ontology was also compared with the IDO and IOF-MRO. The
design of the ontology is depicted in Figure 2 , which comprises classes and relationships representing
the domain of interest. There is a class named “Component” that can represent a part, assembly, or
subsystem, each serving a specific “Function”. When a part encounter malfunction, it leads to the
occurrence of a “Problem”. The problem has cause(s), which can be considered as problem, result
in a certain “Effect”. To address these problems, there are two types of “Procedure” that can be
implemented. The first is a “Solution”, which directly solves the problem at hand. The second is a
“Workaround”, which aims to address the effects caused by the problem. Both procedures consist of
multiple “step”, with each step involving a specific part of the system. Due to space constraints, we are
unable to provide additional information on the definitions of these entities and their comparison with
the IDO and IOF-MRO ontologies.

3.2.2. Information Extraction

In this step, we employed various techniques including Regular Expressions, Named Entity Recognition,
and Large Language Models (LLMs), to extract the necessary entities from the identified sources. These
techniques allowed us to systematically identify relevant information, which we then organized into
structured tables. A key challenge in our current data sources was the lack of information regarding
functions, dependencies, and causes associated with the entities. To bridge this gap, we leveraged the
capabilities of LLMs by treating them as expert engineers. We provided the model with information
about the system’s structure and posed specific questions related to its functions, dependencies, and
causes. This approach enabled us to gather insights that were previously unavailable. Once we acquired
the necessary information, we transformed the structured tables into RDF (Resource Description
Framework) triples. This conversion facilitated the integration of our data into a graph database,
allowing for enhanced querying and analysis of the relationships between various entities within the
system.
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Figure 2: Zorro upper-level ontology; modeling physical and functional views as well as causal and dependency
relations.

3.3. Diagnosis

The next phase, diagnosis, illustrates the application of our proposed method, wherein service engineers
observe symptoms of a failure that need to be transformed into queries for knowledge graph-based
reasoning. This process will yield a diagnosis identifying the root cause of the issue, along with a
suggested procedure for repair. To achieve this, the knowledge extracted in the previous phase must be
organized and stored in a specific structure. In this paper, we utilize graphDB [10], one of the leading
graph database software, which is designed to store data in a graph structure based on the RDF model.
Once the data is stored in graphDB, we execute SPARQL queries over the knowledge graph. SPARQL, a
powerful query language for RDF data, enables us to retrieve and manipulate the data effectively. In
this setup, RDFS (RDF Schema) serves as the reasoning layer, providing semantic inference capabilities,
while SPARQL acts as the querying interface for accessing the knowledge graph.

4. Conclusion and Future work

In this study, we developed a framework for fault diagnosis based on Knowledge Graph. First, we
manually created an upper-level ontology to serve as the schema for the knowledge graph. We
then employed various techniques to extract knowledge and populate the graph according to this
ontology. Subsequently, we implemented a straightforward approach utilizing RDFS reasoning and
SPARQL queries to perform diagnosis. This allowed us to analyze the data within the knowledge graph
effectively. For the future work, we will focus on enhancing the reasoning capabilities of the framework
by integrating additional techniques, such as Bayesian Networks. This refinement aims to improve the
accuracy and depth of the diagnostic process.

Acknowledgments

This publication is part of the project ZORRO with project number KICH1.5T02.21.003 of the research
programme Key Enabling Technologies (KIC) which is (partly) financed by the Dutch Research Council
(NWO).



References

(1]

ISO, ISO 15926-14:2020(E), ISO 15926 Part 14: Industrial top-level ontology, Technical Report, ISO,
Geneva, CH, 2020.

M. Hodkiewicz, C. Woods, M. Selway, M. Stumptner, Industrial ontology foundry (iof) maintenance
reference ontology, 2024. doi:10.26182/chzp-vs60.

S.-H. You, Y. M. Cho, J.-O. Hahn, Model-based fault detection and isolation in automotive yaw
moment control system, International Journal of Automotive Technology 18 (2017) 405-416.
doi:https://doi.org/10.1007/s12239-017-0041-5.

K. Zhang, Y. Xu, Z. Liao, L. Song, P. Chen, A novel fast entrogram and its applications in
rolling bearing fault diagnosis, Mechanical Systems and Signal Processing 154 (2021) 107582.
doichttps://doi.org/10.1016/j.ymssp.2020.107582.

[5] J.Dong, D.Su, Y. Gao, X. Wu, H. Jiang, T. Chen, Fine-grained transfer learning based on deep feature

(6]

(7]

decomposition for rotating equipment fault diagnosis, Measurement Science and Technology 34
(2023) 065902. doi:https://doi.org/10.1088/1361-6501/acc04a.

X. Tang, G. Chi, L. Cui, A. W. Ip, K. L. Yung, X. Xie, Exploring research on the construction and
application of knowledge graphs for aircraft fault diagnosis, Sensors 23 (2023) 5295. doi:ht tps:
//doi.org/10.3390/s23115295.

Z. Wang, S. Li, W. He, R. Yang, Z. Feng, G. Sun, A new topology-switching strategy for fault
diagnosis of multi-agent systems based on belief rule base, Entropy 24 (2022) 1591. doi:https:
//doi.org/10.3390/e24111591.

K. Pan, H. Liu, X. Gou, R. Huang, D. Ye, H. Wang, A. Glowacz, J. Kong, Towards a systematic
description of fault tree analysis studies using informetric mapping, Sustainability 14 (2022) 11430.
doichttps://doi.org/10.3390/su141811430.

C. Xu, J. Li, X. Cheng, Comprehensive learning particle swarm optimized fuzzy petri net for motor-
bearing fault diagnosis, Machines 10 (2022). doi:ttps://doi.org/10.3390/machines10111022.
Ontotext, Graphdb - rdf triplestore semantic graph database, https://www.ontotext.com/products/
graphdb/, 2023. Accessed: 2024-09-13.


http://dx.doi.org/10.26182/chzp-vs60
http://dx.doi.org/https://doi.org/10.1007/s12239-017-0041-5
http://dx.doi.org/https://doi.org/10.1016/j.ymssp.2020.107582
http://dx.doi.org/https://doi.org/10.1088/1361-6501/acc04a
http://dx.doi.org/https://doi.org/10.3390/s23115295
http://dx.doi.org/https://doi.org/10.3390/s23115295
http://dx.doi.org/https://doi.org/10.3390/e24111591
http://dx.doi.org/https://doi.org/10.3390/e24111591
http://dx.doi.org/https://doi.org/10.3390/su141811430
http://dx.doi.org/ttps://doi.org/10.3390/machines10111022
https://www.ontotext.com/products/graphdb/
https://www.ontotext.com/products/graphdb/

	1 Introduction
	2 Related work
	3 Methodology
	3.1 Input Source
	3.2 Knowledge graph construction
	3.2.1 Upper-level Ontology Construction
	3.2.2 Information Extraction

	3.3 Diagnosis

	4 Conclusion and Future work

