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Abstract
In this work, we study the problem of producing a delegation of verifiable presentations derived from verifiable
credentials to enable a credential holder (the delegator) to securely authorize another party (the delegatee) to
present a credential on their behalf. We define the notion of a verifiable presentation delegation scheme, with the
core algorithms for delegation issuance, delegated presentation, and presentation verification, and formalize the
security properties that such a scheme must satisfy, namely correctness and unforgeability. Then, we design a
verifiable presentation delegation scheme that can be applied to the verifiable credentials used in the European
Digital Identity Wallet Architecture Reference Framework (EUDI ARF) and we prove that our scheme satisfies
the security properties under the assumption of a secure digital signature scheme. Finally, we briefly discuss
and provide some insight on how to instantiate our scheme in the context of the European Blockchain Services
Infrastructure (EBSI) and EUDI frameworks.
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1. Introduction

The eIDAS 2.0 regulation [1] aims to regulate electronic identification and trust services in the EU’s
internal market and to improve cross-border interoperability across Europe. One of the main tools used
to achieve these goals is the adoption of verifiable credentials (VC), which will be stored in a digital
wallet called the EUDI Wallet [2]. VCs are the digital analogue of physical credentials, and their security
relies on the use of cryptographic techniques. VCs are issued by issuers who sign them and deliver
them to the credential holders. The holder of a VC stores it and can use it to prove specific claims (or
statements) about their identity to a verifier by creating a verifiable presentation (VP). In general, roles
are dynamic and context-dependent, allowing a user to function as a holder, verifier, or issuer based on
the specific operations they wish (or are allowed) to perform. For example, an organization acting as a
verifier in one transaction can assume the role of an issuer in a subsequent transaction. The structure
and policies for managing Verifiable Credentials, including the specification of credential attributes and
trust models, are detailed in frameworks such as EBSI [3] or EUDI ARF [2].

One of the main advantages of using VCs over their physical counterparts is the ability to selectively
disclose a subset of the attributes included in a credential. This operation minimizes the amount of data
shared with third parties, in accordance with the privacy principles required by the GDPR [4]. Current
discussions on the design of the EUDI Wallet and the types of VCs it should support have highlighted
two main approaches [5]. The first approach relies on hiding commitments and standard signatures
[6], while the second utilizes anonymous credentials based on signature schemes that support Non-
Interactive Zero-Knowledge Proofs (NIZKPs) following the framework of Camenisch and Lysyanskaya
[7]. Both approaches enable VCs to support selective disclosure of attributes and are described in detail
in [8].
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1.1. Delegation of VPs

An important extension of VC schemes that would improve their usability is the ability to support
delegation of VPs. In this context, a credential holder (the delegator), using its VC, can create a delegation
that instructs another holder (the delegatee) to act on its behalf to execute a specific and predetermined
operation while interacting with a verifier. VP delegation is developed as a mechanism allowing one
to cover use cases such as: someone authorizes a family member to pick up a prescription from the
pharmacy, an elderly person authorizes their adult child to represent them in a public online service, or
a person delegates an intermediary to perform financial operations on its behalf.

For simplicity in this work, we consider a system in which every user is provided a “main credential”,
like an ID card, by a trusted issuer that every holder can use to delegate other holders. Our definition
of a VP delegation scheme builds on top of such a VC scheme. In particular, we describe a delegation
mechanism that allows a delegator to generate delegations that must specify:

• the scope for which the delegation is being created. This might include a period of validity, an
identifier of the verifier to which it must be presented, and an identifier of the operation that the
delegatee must perform;

• the delegatee identifier, a statement that the identity (or the VC) of the delegatee must satisfy. For
example, the delegatee identifier could be “the delegatee is over 18”, then any over 18 holder would
be allowed to present such delegation, or more specific statements such as “the delegatee name is
Name and their surname is Surname”, in such a case only a holder named Name Surname would
be allowed to present such delegation. This identifier is sent by the delegatee to the delegator
before the latter produces the delegation;

• the delegator payload, a statement about the delegator’s identity that contains (at least) the
information the verifier would request from any holder to perform the operation specified in the
scope;

• a proof that the delegator identity (or VC) satisfies the delegator payload.

The delegatee, with the delegation, interacts with the verifier to present the delegation and to execute
the operations specified in the scope. The delegatee proves to be an authorized delegatee by showing,
using its own VC, that it satisfies the delegatee identifier information specified in the delegation. Finally,
the verifier checks that the delegation and the presentation of the delegation are valid and accepts (or
rejects) the delegated presentation, allowing the delegatee to perform (or preventing the delegatee from
performing) the operation specified in the scope.

1.2. Motivation, related works and contribution

With the upcoming enforcement of the eIDAS 2.0 regulation, the ability to delegate presentations
has gained significant importance. This is confirmed by its inclusion in the EUDI Wallet Reference
Implementation Roadmap 1. In fact, EU citizens will soon be issued verifiable credentials that will be
used to securely prove statements about their identity. In addition to that, VCs can be used to enhance
the security of how users delegate specific, predetermined tasks to others, providing a more secure
alternative to the paper-based methods too often used today.

A related problem, which has received significantly more attention in the literature, is the delegation
of the issuance of anonymous credentials while concealing the delegation chain and revealing only
the root issuer. This problem was firstly approached by Chase and Lysyanskaya [9] and since then
many constructions have been proposed: some are [10, 11, 12, 13]. The use of anonymous credentials,
combined with the ability to anonymously delegate the issuance of credentials, allows users to enjoy
a very high level of privacy while lightening the workload on issuers. An interesting use case of
delegatable anonymous credential is the issuance of ID cards to European citizens: the European
authority delegates the member states to issue ID cards on its behalf, so that it does not have to carry
out this burdensome operation on its own. The member states, using their delegated credentials, issue
1See the Delegation Attestation in the “Future” section at https://github.com/orgs/eu-digital-identity-wallet/projects/24
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the ID cards to their citizens. With these credentials, the citizens can prove to verifiers to be European
citizens without revealing the authority who issued their credential, and therefore their country.

The same problem applied to non-anonymous credentials [6] can be trivially solved (losing most of
the privacy-preserving features) using standard digital signature schemes by instructing the issuer to
sign the public key of its delegatee, as is well explained in [12, Section 1].

In this work instead, we focus on the delegation of VPs, a problem surely related but with different
applications from the delegation of VCs. In both cases the delegatee takes charge of carrying out
operations on behalf of the delegator: for what concerns the delegation of VCs, such an operation is the
issuance of VCs to users, and in our case such an operation is the showing of VPs to verifiers.

To the best of our knowledge, delegation of VPs has not been formalized in the existing literature,
and for this reason, we fill this gap laying the ground to formalize the notion of VP delegation scheme.
We do that by giving a formal definition of a VP delegation scheme and the security properties it must
satisfy, namely correctness and unforgeability. Then, we describe a natural VP delegation scheme that
is compliant with the VC schemes specified in the EUDI ARF, and we prove its security. Finally, we
discuss the compatibility of our scheme in the context of the EBSI and EUDI frameworks.

1.3. Notation

Let 𝜆 denote the security parameter. The issuer’s private and public keys are denoted as skIss and pkIss,
respectively. The set of messages or attributes is denoted by a = (𝑎𝑖)𝑖∈[𝑙], where [𝑙] represents the set
{1, . . . , 𝑙}. When presenting a VC supporting selective disclosure, a subset of attributes, whose indices
are denoted by Hid, can be hidden, while the set of indices of the disclosed attributes is Rev = [𝑙] ∖ Hid.
We denote by stmt the set of revealed attributes, and with 𝒮 the set of possible statements. The delegator,
delegatee, and verifier are indicated by 𝐷, Δ, and 𝑉 , respectively. Each party is provided with a single
VC. The delegator’s credential is represented as credD, and the delegatee’s credential is denoted as
credΔ. The delegatee identifier is indicated by ΔID, the delegator payload is denoted as DP, while the
delegation scope is referred to as scope. In the security definitions, we will define the following tables: a
credential table CT, a presentation table PT, and a delegation table DT. Finally, we consider a function
𝑓 : N→ R to be negligible if, for every 𝑐 > 0, there exists an integer 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0, it
holds that 𝑓(𝑛) = 𝑂(1/𝑛𝑐). This notation will be used throughout the paper to formalize the schemes
and algorithms presented.

2. Verifiable Credential Schemes

A verifiable credential scheme is defined by a set of algorithms and protocols that establish secure
processes to issue, present and verify digital credentials [8].

Definition 1 (Verifiable Credential Scheme). A verifiable credential scheme is defined by the following
algorithms:

• Issuer Setup (IssuerSetup(𝜆) $−→ pp, (skIss, pkIss)): this algorithm is executed by the issuer, and it
generates the public parameters pp for the verifiable credential scheme together with the issuer key
pair.

• Credential Issuance (CredIssuance(skIss, {𝑎𝑖}𝑖∈[𝑙])
$−→ cred): The issuer executes this algorithm

to generate a verifiable credential cred for the attributes {𝑎𝑖}𝑖∈[𝑙].

• Credential Presentation (CredPresentation(cred, stmt)
$−→ pres): This algorithm is executed by

the holder to generate a proof (the presentation pres) that it possesses a credential cred that satisfies
a statement stmt2.

2The presentation can allow the holder to selectively disclose the attributes of the credential, revealing only the attributes
necessary to prove stmt.
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• Presentation Verification (PresVer(pres, stmt)
$−→ {0, 1}3): The verifier executes this algorithm

to verify the validity of the presentation provided by the holder, ensuring that it satisfies stmt.

In this work, we focus on the class of VCs schemes that are currently adopted in the EUDI Wallet
Architecture Reference Framework (ARF) [2, Annex 2, Topic 12]. The VC schemes considered in the
EUDI Wallet ARF must have one of the following formats: mDOC, described in [14, 6], SD-JWT,
described in [15], or W3C VCDM, described in [16]. These different verifiable credential formats are
based on the same cryptographic mechanism that we abstract in this section. The cryptographic
primitives used are (1) hiding commitments based on hash functions and (2) digital signature schemes
𝒟𝒮 = (Setup,KeyGen, Sign,Vf).

The hiding commitment based on a hash function 𝐻 is defined as follows: to commit to a message

𝑚, sample a random salt
$←− {0, 1}𝜆 and compute com = 𝐻(𝑚||salt). To open a commitment com, it

is necessary to reveal the message-salt pair (𝑚||salt), and the verifier can check if com = 𝐻(𝑚||salt).
The digital signature scheme 𝒟𝒮 can be any UF-CMA secure digital signature scheme 4.
In the rest of this work, we omit the public parameters pp in the inputs of most of the algorithms
described. Even pkIss is omitted, since we assume for simplicity that there is only one issuer in the
system.

Definition 2 (ARF-Compliant Verifiable Credentials). Let 𝒟𝒮 = (Setup,KeyGen, Sign,Vf) be a digital
signature scheme and𝐻 a cryptographic hash function. The verifiable credentials which are ARF-Compliant
can be described as follows:

• Issuer setup: pp, (skIss, pkIss)
$←− IssuerSetup(𝜆)

The issuer executes the issuer setup algorithm which consists in executing the Setup and KeyGen
algorithms of the underlying digital signature scheme 𝒟𝒮 .

• Credential issuance: cred $←− CredIssuance({𝑎𝑖}𝑖∈[𝑙], skIss)
The issuer executes the following operations:

– sample uniformly at random salts salt1, . . . , salt𝑙
$←− {0, 1}𝜆;

– compute com𝑖 ← 𝐻(𝑎𝑖||salt𝑖)∀𝑖 ∈ [𝑙];
– generate (skcred, pkcred)

$←− KeyGen(pp);
– sign the commitments and the public key of the credential ({com𝑖}𝑖∈[𝑙], pkcred) computing

𝜎
$←− Sign(({com𝑖}𝑖∈[𝑙], pkcred), skIss);

– set cred← ((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {𝑎𝑖}𝑖∈[𝑙], {salt𝑖}𝑖∈[𝑙], skcred)5.

• Credential presentation: pres $←− CredPresentation(cred, stmt, nonce)
The statement stmt = {𝑎𝑖}𝑖∈Rev is given by the set of attributes that the holder wants to reveal
Rev ⊆ [𝑙], and the nonce nonce is sent by the verifier to the holder to guarantee the freshness of the
presentation. The holder performs the following operations:

– compute pres′ ← ((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {salt𝑖}𝑖∈Rev, {𝑎𝑖}𝑖∈Rev, nonce);
– sign pres′ computing 𝜎′ $←− Sign(pres′, skcred);
– set pres← (pres′, 𝜎′).

• Presentation Verification: {0, 1} $←− PresVer(pres, stmt)
The verifier performs the following operations:

– parse pres→ (pres′, 𝜎′) and then pres′ → ((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {salt𝑖}𝑖∈Rev, {𝑎𝑖}𝑖∈Rev);
– verify the signature of the issuer: 1← Vf(𝜎, ({com𝑖}𝑖∈[𝑙], pkcred), pkIss);
– check that com𝑖 = 𝐻(𝑎𝑖||salt𝑖),∀𝑖 ∈ Rev;
– verify the signature of the holder: 1← Vf(𝜎′, pres′, pkcred).

If the previous checks are satisfied, the verifier accepts and outputs 1, otherwise it outputs 0.
3In this context, 1 = success, indicating that the presentation satisfies the statement, while 0 = fail, indicating it does not.
4UF-CMA is a standard security model for digital signature which stands for “unforgeability under chosen message attacks”.
5To ensure a secure binding between a credential and the device storing it, the secret key of the credential (skcred) is stored
within a hardware security module (HSM) or a trusted execution environment (TEE) embedded in the device.
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3. Verifiable Presentation Delegation Scheme

In this section we define the notion of VP delegation scheme which is built on top of a VC scheme
according to Definition 1. A VP delegation scheme must define the algorithms (1) to allow the delegator
D to create a delegation del, (2) to allow anyone to verify del, (3) to allow the delegatee Δ to present del
to a verifier generating a presentation pres and (4) to verify the delegated presentation pres.

We define the input-output specifications of each algorithm that defines a VP delegation scheme.

Definition 3 (VP delegation scheme). A VP delegation scheme 𝒱𝒫𝒟𝒮 is defined by the the following
algorithms:

• Delegation issuance: DelegIssuance(credD,DP, scope,ΔID)
$−→ (ΔID, scope,DP, 𝜋DP)⏟  ⏞  

del

where:

– DP is the delegator payload containing the information that the delegator must disclose about
its identity (e.g. it is entitled to withdraw a specific drug);

– scope is the delegation scope, describing the operation that can be performed by the delegatee
interacting with specified verifiers 6;

– ΔID is the delegatee identity which is a statement that must be satisfied by the delegatee
presenting del (and its credential);

– 𝜋DP is a proof that the holder knows a credential credD for the claims in DP. The proof must
be bound to scope and ΔID.

See Section 1.1 for a better intuition about the semantic meaning of these fields.

• Delegation verification: DelegVer(del) $−→ {0, 1}
This algorithm is executed by a delegatee (or by a verifier) to verify the validity of the delegation.

• Delegated presentation: DelegPres(del, credΔ, nonce)
$−→ (del, 𝜋del)⏟  ⏞  

pres

The delegator contacts the verifier to which it wants to present the delegation. The verifier sends to the
delegatee a random noncewhich is used to guarantee the freshness of the delegated presentation. After
parsing del as (ΔID, scope,DP, 𝜋DP), the delegatee computes 𝜋del which is a proof of knowledge of
a credential credΔ satisfying the delegatee identity ΔID included in del.

• Delegated presentation verification: DelegPresVer(pres) $−→ {0, 1}
This is the verification algorithm executed by the verifier. Parse pres as (del, 𝜋del). Upon receiving
the proof 𝜋del and the delegation del, the verifier checks that

– DelegVer(del)→ 1;
– 𝜋del is a valid proof for the value ΔID in del;
– scope included in del, which is part of pres, is satisfied.

If these checks pass, the delegated presentation is accepted, and the algorithm outputs 1.

Figure 1 describes the interaction flow between the delegator 𝐷, the delegatee Δ and the Verifier 𝑉 .

4. Security Notions for VP Delegation Schemes

Correctness Property. The correctness property specifies that a delegation algorithm always allows
a honest delegator (who generates a delegation for a DP consistent with its identity), to generate a
delegation del and delegate another user. Then, if the user is a honest delegatee (its identity satisfies
ΔID) it can always present del to a verifier satisfying scope.

6Note that these information must be encoded using a dictionary or schema which subsequently allows verifiers of delegated
presentations to verify it. A more detailed analysis of this aspect is out of scope and will be treated in a future work.
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Interaction framework among Delegator, Delegatee, and Verifier

Delegator D(credD) Delegatee ∆(cred∆) Verifier V

∆ID ∈ S
∆ID

del← DelegIssuance(credD,DP, scope,∆ID)

del

nonce
$←− {0, 1}λ

nonce

pres← DelegPres(del, cred∆, nonce)

pres

DelegPresVer(pres)
$−→ {0, 1}

Figure 1: Interactions between the delegator 𝐷, the delegatee Δ, and the Verifier 𝑉 .

Definition 4 (Correctness of VP delegation scheme). Given a VP delegation scheme

𝒱𝒫𝒟𝒮 = (DelegIssuance,DelegVer,DelegPres,DelegPresVer),

we say that the scheme is correct if DelegPresVer(pres)→ 1 whenever:

• del
$←− DelegIssuance(credD,DP, scope,ΔID) where credD satisfies the statements contained in

DP (which is contained in del);

• pres
$←− DelegPres(del, credΔ, nonce), where credΔ satisfies the statements contained in ΔID.

Unforgeability Property. We consider two notions of unforgeability: the unforgeability of the
delegation algorithm DelegIssuance, which means that an adversary cannot forge a delegation from a
credential it does not possess, and the unforgeability of the delegation presentation algorithm DelegPres,
which means that an adversary cannot present a delegation that is not issued to its identity (i.e., its
identity does not satisfy ΔID). We capture these two notions of unforgeability in a single experiment.

The experiment captures that an adversary 𝒜, after receiving the public key of the issuer pkIss,
the public parameters pp, and performing a training, cannot forge a delegation presentation. The
training considers an adversary that can learn information from the system in the following ways: it
can (1) corrupt a polynomial number of users, (2) receive a polynomial number of delegations from
users it does not control, and (3) verify a polynomial number of delegated presentations (i.e., receive
a polynomial number of presentations of its choice). These operations are modeled by allowing 𝒜 to
query a polynomial number of credentials to the oracle Oiss, of delegations to the oracle Odel and of
presentations of delegations to the oracle Opres.

Note that in a system supporting the delegation of VPs the adversary can see not only dele-
gated presentations, but also presentations of verifiable credentials (generated using the algorithm
CredPresentation(cred, stmt)). However, we omit the queries for credentials presentations because we
assume that credentials presentations can be seen as delegated presentations associated to an empty
delegation (del, nonce) = (⊥,⊥).

Experiment 1 (ExpDelPresUnforgeability
𝒜 (1𝜆)). The experiment is given by the following phases.

Setup phase 𝒜 receives from the challenger of the experiment the public key pkIss of the issuer and the
public parameters pp of the underlying VC scheme.
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Training phase 𝒜 can interact with random oracles Oiss,Odel and Opres, to which it can send a polyno-
mial number of issuing queries, delegation queries, and delegated presentation queries, respectively.
Each query has the following input-output specification:

1. Issuing queries to Oiss: 𝒜 can query for the issuance of a credential for a set of attributes
{𝑎𝑖}𝑖∈[𝑙] of its choice; the oracle computes a credential cred← CredIssuance({𝑎𝑖}𝑖∈[𝑙], skIss),
adds cred to the credential table CT and sends it to 𝒜.

2. Delegation queries to Odel: 𝒜 can query Odel for the issuance of a delegation for
(ΔID, scope,DP) of its choice; the oracle computes a delegation del← (ΔID, scope,DP, 𝜋DP),
stores del in a delegation table DT and sends it to 𝒜.

3. Delegated presentation queries to Opres: 𝒜 can query for the presentation of a delegation for
the values (del, nonce); the oracle Opres generates a presentation pres for (del, nonce), adds
pres to a presentation table PT and sends it to 𝒜.

Forgery phase 𝒜 eventually outputs a delegated presentation pres⋆ = (del⋆, 𝜋del⋆).

Winning conditions Parse pres⋆ = (del⋆, 𝜋del⋆) as (ΔID
⋆, scope⋆,DP⋆, 𝜋DP⋆ , 𝜋del⋆).

The adversary wins the experiment if DelegPresVer(pres⋆)→ 1 and one of the following conditions
is satisfied:

• forgery of the delegation: del⋆ is forged, i.e.
– it is not a delegation queried by 𝒜 to Odel, i.e. del⋆ ̸∈ DT;
– del⋆ was not generated using the credentials issued to 𝒜.

• forgery of the delegated presentation: 𝜋del⋆ is forged, i.e.
– ∀pres ∈ PT, pres ̸= pres⋆;
– 𝜋del⋆ was not generated using the credentials issued to 𝒜.

Definition 5 (Unforgeability of VP delegation scheme). We say that a VP delegation scheme is unforgeable
if for any PPT adversary 𝒜 executing ExpDelPresUnforgeability

𝒜 (1𝜆),

Pr
[︁
𝒜 wins ExpDelPresUnforgeability

𝒜 (1𝜆)
]︁
≤ 𝜈(𝜆),

where 𝜈(𝜆) is negligible in the security parameter 𝜆.

In this security model, we assume that every interaction between holders/delegatees and verifiers is
identified by a unique session identifier. This prevents an adversary from replaying messages exchanged
during different sessions. When the protocol is instantiated, the protocol designer must take care of
issues related to the creation of the communication sessions between the parties involved. To test the
security of the approach used, it is advised to use automated tools like Tamarin or ProVerif; nonetheless,
addressing this issue is beyond the scope of this paper.

5. Our Construction

We create an instance of a VP delegation scheme according to Definition 3 that is built on top of
verifiable credential schemes supporting selective disclosure which are compliant with the EUDIW ARF
[2], as described in Definition 2. Note that in this particular case all the proofs introduced in Definition
3 are digital signatures.

Definition 6 (ARF-Compliant VP Delegation Scheme). Given a verifiable credential scheme as defined
in Definition 2, which uses the digital signature scheme 𝒟𝒮 and the hash function 𝐻 , we can define the
following delegation scheme (see Definition 3).
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• Delegation issuance: DelegIssuance(credD,DP, scope,ΔID)
$−→ (ΔID, scope,DP, 𝜋DP)⏟  ⏞  

del

On input (credD,DP, scope,ΔID)with credD =
(︀
(𝜎, {com𝑖}𝑖∈[𝑙], pkcredD), {𝑎𝑖}𝑖∈[𝑙], {salt𝑖}𝑖∈[𝑙], skcredD

)︀
,

the delegator D computes 𝜋DP as a variant of a presentation of credD which is bound to DP but also
to scope and ΔID:

– pres′ ← ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredD), {salt𝑖}𝑖∈DP,DP, scope,ΔID);

– 𝜎′ $←− Sign(pres′, skcredD) and 𝜋DP ← (pres′, 𝜎′);
– return del← ((ΔID, scope,DP, 𝜋DP)).

• Delegation verification: DelegVer(del) $−→ {0, 1}
To verify the delegation, parse:

del→ (ΔID, scope,DP, 𝜋DP), 𝜋DP → (pres′, 𝜎′),

pres′ → ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredD), {salt𝑖}𝑖∈DP,DP, scope,ΔID).

Then, perform the following checks:

– Verify the signature of the issuer: 1 ?←− Vf(𝜎, ({com𝑖}𝑖∈[𝑙], pkcredD), pkIss). This means that
the delegation is created from a valid VC issued by pkIss;

– Check that com𝑖 = 𝐻(𝑎𝑖||salt𝑖), ∀𝑖 ∈ DP. This means that the delegation has a DP consistent
with the credential used to generate it;

– verify the signature 𝜎′ of pres′ using the public key pkcredD : 1 ?←− Vf(𝜎′, pres′, pkcredD). This
means that the delegation (for scope and ΔID) was created by the holder of the associated
credential.

• Delegated presentation: DelegPres(del, credΔ, nonce)
$−→ (del, 𝜋del)⏟  ⏞  

pres

After parsing del→ (ΔID, scope,DP, 𝜋DP), the delegatee computes 𝜋del as a presentation of ΔID

using credΔ which is bound to del:

– compute pres′′ ← ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredΔ), {salt𝑖}𝑖∈ΔID
, del, nonce);

– the delegatee signs pres′′ computing 𝜎′′ $←− Sign(pres′′, skcredΔ), sets 𝜋del ← (pres′′, 𝜎′′) and
returns pres← (del, 𝜋del).

• Delegated presentation verification: DelegPresVer(pres) $−→ {0, 1}
Parse pres → (del, 𝜋del), where 𝜋del → (pres′′, 𝜎′′) and pres′′ →
((𝜎, {com𝑖}𝑖∈[𝑙], pkcredΔ), {salt𝑖}𝑖∈ΔID

), del, nonce). The verifier checks that

– the delegation is valid, i.e. DelegVer(del)→ 1;
– 𝜋del is a valid presentation of credΔ for the attributes in ΔID specified in del, i.e.:

1. the signature 𝜎′′ of pres′′ is valid using pkcredΔ : 1← Vf(𝜎′′, pres′′, pkcredΔ);
2. com𝑖 = 𝐻(𝑎𝑖||salt𝑖) ∀𝑖 ∈ ΔID;
3. the signature of the issuer is valid: 1← Vf(𝜎, ({com𝑖}𝑖∈[𝑙], pkcredΔ), pkIss).

– the value scope included in del is satisfied according to the associated verification procedure.

If these checks pass, the delegated presentation is accepted, and the algorithm outputs 1.

6. Security Analysis

In this section we prove that the VP delegation scheme described in Definition 6 satisfies the security
properties of correctness (Definition 4) and unforgeability (Definition 5).
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6.1. Correctness

We prove the following theorem.

Theorem 1. The delegation scheme described in Definition 6 instantiated using the digital signature 𝒟𝒮
is correct, assuming that the digital signature 𝒟𝒮 is correct and that 𝐻 is modeled as a random oracle.

Proof. It is easy to see that the VP delegation scheme is correct, in fact the delegator always computes a
proof 𝜋DP to include in del, and since the digital signature 𝒟𝒮 is correct del is a valid delegation. Then,
if the delegation is presented by a delegatee whose identity matches with the identity ΔID included in
del, the delegatee can always successfully present the delegation, again because 𝒟𝒮 is correct.

6.2. Unforgeability

In the security proof of the unforgeability, we must introduce a technicality which simplifies the
description of our reduction. In particular, we show that the adversary 𝒜 to the unforgeability of
the VP delegation scheme can be used to build a reduction to a variant of the unforgeability under
chosen message attacks (UF-CMA) of the digital signature 𝒟𝒮 . In this variant, which we refer to as
v-UF-CMA, the reduction can open a polynomial number of sessions of standard UF-CMA experiments
(each associated with a different public key with the same public parameters pp), and the reduction
wins the v-UF-CMA experiment if it produces a forgery for at least one of the public keys it is provided
by the challenger of the experiment. Informally, the queries that the adversary can make are queries for
the opening of a new session 𝑖, for which it receives a public key pk𝑖, and signing queries specifying a
message and one of the public keys it has previously received (𝑚, pk𝑗), for which it receives a valid
signature 𝜎 of 𝑚 under the public key pk𝑗 .

It is easy to see that an adversary who can win the UF-CMA experiment can turn into an adversary
of the v-UF-CMA experiment, and the success probability remains the same. However, it is also easy to
see that an adversary of v-UF-CMA of 𝒟𝒮 can be used as a subroutine for a reduction to the UF-CMA
of 𝒟𝒮 with a loss in the probability of success proportional to the number of sessions the adversary of
v-UF-CMA can open.

6.2.1. Unforgeability Proof

Theorem 2. The delegation scheme described in Definition 6 is unforgeable according to Definition 5
assuming that the digital signature 𝒟𝒮 is (v-UF-CMA) unforgeable, that 𝐻 is modeled as a random oracle
and that the commitment scheme is binding.

We provide a description of the reduction omitting some details, for example the way the random
oracle is programmed. Moreover, since we prove the security in the random oracle model and the
commitment is binding 7, the adversary cannot open a commitment to two different values because this
would imply that it has found a collision, which happens with negligible probability.

Proof Sketch. We prove that if there exists an adversary𝒜 of Experiment 1 who can win the experiment
with non-negligible probability, then we can use𝒜 to build a reductionℬ to the v-UF-CMA experiment of
the underlying digital signature scheme𝒟𝒮 , which wins the experiment with non-negligible probability.
The reduction ℬ interacts with the challenger 𝒞 of the v-UF-CMA experiment and simulates the
challenger of Experiment 1.

Setup ℬ sends a query for a new public key in the v-UF-CMA experiment. 𝒞 sends to ℬ a public key
pk and public parameters pp. ℬ sets pkIss ← pk, and forwards (pp, pkIss) to the adversary 𝒜.

Training phase We show how ℬ answers to the queries 𝒜 can send during the training phase.

7The output in bits of the random oracle is sufficiently large
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• Queries to Oiss: 𝒜 sends in input a set of attributes {𝑎𝑖}𝑖∈[𝑙]. ℬ performs the following
operations:

1. it generates a key pair (skcred, pkcred), the salts {salt𝑖}𝑖∈[𝑙], computes a commitment
com𝑖 = RO(𝑎𝑖||salt𝑖) (where RO is a random oracle programmed by ℬ) to 𝑎𝑖, ∀𝑖 ∈ [𝑙];

2. it sends a signing query to 𝒞 with input (({com𝑖}𝑖∈[𝑙], pkcred), pkIss): 𝒞 returns a signa-
ture 𝜎 of ({com𝑖}𝑖∈[𝑙], pkcred) using skIss.

3. sends to 𝒜 the credential cred← ((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {𝑎𝑖}𝑖∈[𝑙], {salt𝑖}𝑖∈[𝑙], skcred)
and adds cred to CT.

• Queries to Odel: 𝒜 can query for a delegation for the values (ΔID, scope,DP) of its choice.
Upon receiving a query ℬ performs the following operations:

1. generates a set of random attributes {𝑎𝑖}𝑖∈[𝑙] which satisfies DP and computes the
commitments com𝑖 as before generating the salts and programming the random oracle;

2. opens a new session with of UF-CMA with 𝒞 from which it receives a public key pkcred
and sends a signing query (({com𝑖}𝑖∈[𝑙], pkcred), pkIss) for a signature with skIss of
({com𝑖}𝑖∈[𝑙], pkcred), and receives from 𝒞 the signature 𝜎;

3. sends a signing query (pres′, pkcred) to 𝒞 for a signature with skcred of pres′ =
((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {salt𝑖}𝑖∈DP,DP, scope,ΔID). 𝒞 returns the signature 𝜎′;

4. ℬ sets 𝜋DP = (𝜎′, pres′) sends to 𝒜 the delegation del = (ΔID, scope,DP, 𝜋DP) and
adds del to DT.

• Queries to Opres: 𝒜 can query for a delegated presentation giving in input (del, nonce) of
its choice. Upon receiving a query ℬ performs the following operations:

1. ℬ generates a credential with the help of 𝒞 as it is done for queries to Odel up to Item 2,
but instead of choosing the attributes that satisfy DP, they satisfy ΔID included in del
received in input. The credential is associated to the public key pkcred, whose secret
counterpart is not known to ℬ;

2. ℬ sends a query (pres′′, pkcred) to 𝒞 for a signature of pres′′ =
((𝜎, {com𝑖}𝑖∈[𝑙], pkcred), {salt𝑖}𝑖∈ΔID

, del, nonce) using skcred. 𝒞 returns 𝜎′′.
3. ℬ sends pres = (del, (𝜎′′, pres′′), nonce) to 𝒜 and stores pres in PT.

Note that ℬ knows only the secret keys associated to the credential issued to 𝒜 that can not be
used in the generation of the forgery.

Forgery Phase 𝒜 sends to ℬ a delegated presentation pres⋆ = (del⋆, 𝜋del⋆) as its forgery.

We argue that this presentation is a forgery, i.e. it satisfies at least one of the winning conditions
of Experiment 1.

Instantiation and analysis of the winning condition of Experiment 1 We now focus on the
winning condition of Experiment 1, and we rewrite it considering the experiment instantiated with the
ARF-Compliant VP delegation Scheme in Definition 6.

The adversary’s output is a presentation pres⋆ = (del⋆, 𝜋del⋆), with del⋆ =
(ΔID

⋆, scope⋆,DP⋆, 𝜋DP⋆). We recall the structure of the proofs 𝜋DP⋆ and 𝜋del⋆ .

1. 𝜋DP⋆ is a presentation of a credential for the attributes specified in DP⋆ containing also scope⋆

and ΔID
⋆ :

𝜋DP⋆ =

(︂
𝜎′ = Sign(pres′, skcredD), ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredD), {salt𝑖}𝑖∈DP⋆ ,DP⋆, scope⋆,ΔID

⋆)⏟  ⏞  
pres′

)︂
,

with 𝜎′ being the signature of pres′ using the secret key associated to pkcredD and 𝜎 is the signature
of ({com𝑖}𝑖∈[𝑙], pkcredD) (part of credD) using skIss.
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2. 𝜋⋆
del is a presentation of a credential credΔ for the attributes in ΔID bounded to del⋆ and nonce⋆,

in particular:

𝜋del⋆ =

(︂
𝜎′′ = Sign(pres′′, skcredΔ), ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredΔ), {salt𝑖}𝑖∈ΔID

⋆ , del⋆, nonce⋆)⏟  ⏞  
pres′′

)︂

with 𝜎′′ being the signature of pres′′ using the secret key associated to pkcredΔ and 𝜎 is the
signature of ({com𝑖}𝑖∈[𝑙], pkcredΔ) (part of credΔ) using skIss.

We make the following observation.

Remark 1. The challenger of the unforgeability experiment (Experiment 1) generates public keys pkcred
and signs them (together with a set of commitments {com𝑖}𝑖∈[𝑙]) using skIss as a consequence of:

1. issuing queries: in this case, the challenger also gives to the adversary the associated secret key and
adds the credential to CT;

2. delegation queries (delegated presentation queries): in this case, the issuer also signs pres′ in 𝜋DP

(pres′′ in 𝜋del) using the secret key skcred associated to pkcred, adds the delegation to DT (PT), and
does not reveal skcred to the adversary.

Note that the challenger of Experiment 1 never signs public keys it has not generated 8

The adversary wins the experiment if DelegPresVer(pres⋆)→ 1 and one of the following conditions
is satisfied:

• forgery of the delegation: del⋆ is forged, i.e.

– it is not a delegation queried by 𝒜 to Odel, i.e. del⋆ ̸∈ DT;
– del⋆ was not generated using the credentials issued to 𝒜.

Remark 2. The public key pkcredD in del⋆ has been generated either by the challenger or by 𝒜.
If it is generated by the challenger, since the delegation del⋆ does not correspond
to any credential issued to 𝒜, then 𝒜 does not know the secret counterpart skcredD .
Also, since del⋆ ̸∈ DT, the challenger has never signed with skcredD the message
((𝜎, {com𝑖}𝑖∈[𝑙], pkcredD), {salt𝑖}𝑖∈DP⋆ ,DP⋆, scope⋆,ΔID

⋆), therefore 𝜎′, included in 𝜋DP⋆ , is a
forgery of pkcredD

9. If pkcredD is generated by 𝒜 (who would know the value skcredD), then the
signature 𝜎 of ({com𝑖}𝑖∈[𝑙], pkcredD) must be a forgery of pkIss.

• forgery of the delegated presentation: 𝜋del⋆ is forged, i.e.

– it is not a presentation queried by 𝒜, i.e. pres⋆ ̸∈ PT;
– 𝜋del⋆ was not generated using the credentials issued to 𝒜.

Remark 3. The public key pkcredΔ is created either by the challenger or by 𝒜. If it is created
by the challenger, 𝒜 does not know the associated secret key since 𝜋del⋆ is not generated using a
credential issued to 𝒜. But also pres⋆ ̸∈ PT, therefore it means that the issuer has never signed the
message ((𝜎, {com𝑖}𝑖∈[𝑙], pkcredΔ), {salt𝑖}𝑖∈ΔID

⋆ , del⋆, nonce⋆), therefore 𝜎′′ (in 𝜋del⋆) is a forgery
of pkcredΔ . If pkcredΔ is generated by 𝒜, then ({com𝑖}𝑖∈[𝑙], pkcredΔ) must be a forgery of pkIss.

This means that at least one of the public keys that ℬ has received by 𝒞, corresponding to the sessions
opened in the v-UF-CMA experiment, has been forged. Therefore, ℬ would also win the v-UF-CMA
experiment, and this concludes the security proof.
8For the sake of clarity, note that in the security proof, the challenger of Experiment 1 is the reduction ℬ. The reduction
does not know the secret key skIss but can ask for signatures of messages of its choice using skIss sending queries to 𝒞, the
challenger of the v-UF-CMA experiment. Again, the public keys pkcred that get signed using skIss have been generated by ℬ.

9Also 𝜎 might be a forgery of pkIss (because the adversary might have changed the set of commitments), but even if it is the
case, 𝜎′ would be a forgery of pkcredD .

36



7. Instantiation in EBSI and EUDI Frameworks

The protocol we have described and analyzed can be integrated into existing ecosystems such as EBSI
or in the EUDI Wallet context without defining new data structures, only new verification procedures.
We sketch some considerations describing possible solutions for integrating our scheme into the
aforementioned VC frameworks.
The delegation del can be a VC issued by the delegator that has as attributes the components we have
described, namely scope,ΔID,DP and 𝜋DP. The delegator signs this credential (as an issuer) using
the same secret key used to generate the 𝜋DP as specified in Definition 6. This additional signature
on the whole delegation is needed for compatibility reasons, because every VC must be signed by the
issuer, in this case the delegator. This special credential, which does not require the use of a key pair
(pkcred, skcred) to guarantee the binding to the device that receives it, will be fully disclosed by the
delegatee when the time comes to present the delegation.

When the delegatee creates a delegated presentation, it presents del (which is structured as
a VC) disclosing all its attributes, namely, scope,ΔID,DP and 𝜋DP; the delegatee then creates a
verifiable presentation 𝜋del using its own VC, revealing the attributes included in ΔID. The outcome
of the delegated presentation is derived from the combination of these two presentations. The only
modification to the verification protocol is that the verifier must check that 𝜋DP is indeed a valid
presentation of the statement DP and that the presentation 𝜋del created by the delegatee using creddel
is a valid presentation of ΔID.

In EBSI, the only entities entitled to issue credentials are legal persons whose DID (a reference to, at
least, their public key) is registered in the Trusted Issuer Registry (TIR)10. This means that credential
holders who are physical persons are not allowed to issue credentials and therefore cannot generate the
delegation as we have mentioned above. If the delegator is only a physical person we must consider
two cases:

• the delegatee is a legal person: in this case, the delegator can generate the attributes for the
delegation VC scope,ΔID,DP and 𝜋DP and sends them to the delegatee who generates the VC
containing this information and signs it in turn. Note that this signature is only useful to guarantee
the compatibility and create a VC issued by an entity registered in the TIR. The delegatee can
choose not to sign it, which is perfectly fine, but cannot change the information sent by the
delegator because 𝜋DP is cryptographically bound to scope,ΔID and DP.

• if the delegatee is also only a physical person, the delegator must have the delegation VC signed
by a third party registered in the TIR, which may be the issuer of the credential used to generate
the delegation or a third party with this specific role.
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