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Abstract
This paper proposes a methodology to automatically extract spatial information from itinerary descriptions in

French. We compare three models: BiLSTM-CRF, CamemBERT, and GLINER, focusing on the recognition of

nested spatial entities, motion verbs, spatial relations and spatial condition, and measures. Preliminary results

demonstrate the potential of these models in accurately identifying and classifying spatial elements necessary for

the annotation of movement actions evoked in textual descriptions.
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1. Introduction

The aim of this paper is to present the first results obtained in the feasibility study of deep learning

methods for annotating and categorising geospatial expressions in narrative texts. In particular, in the

case of descriptions of the various stages to be completed during a hike. A fundamental step in this

process is the identification and labeling of spatial entities, offsets, and movement actions embedded

within these texts. This task partially aligns with the well-established Named Entity Recognition (NER)

problem [1], which aims to detect and classify specific entities in a text such as person, organization and

location (i.e. spatial entity core). However, standard NERs need to be adapted to meet our fundamental

need to extend the category of location. Firstly, by including the extraction of weak spatial entities.
More generally, and according to [2], it is appropriate to differentiate between two categories of named

entities, strong named entities and weak named entities. Secondly, the objective set also requires us to

integrate, beyond the basic entities (weak or strong), a more complex category emerges by combining

multiple basic entities, the Nested Named Entity (NNE) [3]. In addition to NNE, actions and relations or

conditions are fundamental in interpreting text descriptions of the various stages of a route.

2. Related Work

Probabilistic models such as Conditional Random Fields (CRF) [4] have been widely used for structured

sequence prediction tasks. When combined with recurrent neural networks such as Long Short-Term

Memory (LSTM) networks [5], these models effectively capture local and contextual dependencies while

improving the accuracy of named entity recognition (NER) [6].

Transformer-based language models [7] have significantly advanced the modeling of linguistic struc-

tures through large-scale pre-training on extensive text corpora. Among these, BERT [9] introduced a

bidirectional transformer architecture that substantially improved performance across various NLP

tasks and can be further specialized for NER through targeted fine-tuning. Additionally, newer ap-

proaches such as GLiNER [10] exploit pre-trained language models as backbone, such as Deberta v3
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[11] in the original paper, to develop low-resource NER systems that require minimal or no fine-tuning

with state-of-the-art performance in zero-shot learning NER. Transformers have also been adapted for

domain-specific applications, such as place name extraction from unstructured text [8].

Although recurrent neural networks offer moderate computational efficiency, their inherently se-

quential training and inference can limit parallelization and make it difficult to capture long-range

dependencies. In contrast, transformer-based architectures leverage self-attention to process entire

sequences in parallel, facilitating more effective modeling of distant context and exploiting modern

GPU resources efficiently. However, transformers can become computationally demanding for very

long inputs, as the self-attention mechanism scales quadratically with sequence length.

For these models, a labeled training corpus is required. Texts are first tokenized into word or subword

units using various approaches, after that they are transformed into numerical vector representations

[12, 13]. A classification layer is then applied to predict the token labels.

3. Method

In location category, strong named entity, hereafter simply called Named Entities (NE), is built from

a toponym (i.e. a proper name, such as in Figure 1: "Saint-Ybars", "Porte de Mazet"). As weak spatial

named entity is built from noun phrase describing the feature of the object to be referenced such as

building, river, or path (e.g., "medieval street", "church tower"); for ease of reference, it is henceforth

termed nominal entity (NoE). As mentioned earlier, the combination of the first two categories of spatial

entities make up the category of spatial Nested Named Entity (NNE). For instance, in Figure 1, the

phrase "hôtel de ville de Saint-Ybars" (’Saint-Ybars city hall’) exemplifies an NNE, where the NoE "hôtel

de ville" functions as the feature and the NE "Saint-Ybars"; the same applies to the NNE "le chocher de

l’église" (’the church bell tower’), where the first NoE "clocher" acts as a feature for the second NoE

"église".

In addition to NNE, movement verbs or movement verbal phrases such as in Figure 1: "traversez"

(’cross’) or "tourner pour descendre" (’turn down’) delineate a moving action. Finally expressions like "à

gauche" (’left’), "au bout" (’at the end of’), "à côté" ( ’next to’), and/or "200 m" provide fine grain spatial

context, these expressions while be called hereafter Offsets or Measures.

(1) [. . . ] Traversez la route en diagonale et montez dans la rue de la Porte de Lezat . Après 200 m ,

tournez immédiatement à gauche vers le clocher de l’église au bout de cette rue , la rue de Dessous .

Admirer l’imposante façade de l’hôtel de ville de Saint-Ybars sur la place , puis tourner pour descendre

la rue Porte de Mazet à côté de la pharmacie . [. . . ]

Translation:[. . . ] Cross the road diagonally and go up Porte de Lezat street . After 200 m , turn immedi-

ately left towards the church bell tower at end of this street , de Dessous street . Admire the imposing facade of

Saint-Ybars city hall in the square , then turn down Porte de Mazet street next to the pharmacy . [. . . ]

Named Entity (NE) Nominal Entity(NoE) Offset Measure Verb of Movement (Motion) Nested Named Entity (NNE)

Figure 1: Excerpt from a hike around Saint-Ybars, with annotations of key spatial information.

Rule-based approaches such as the Perdido system [14] have traditionally been employed for

structured spatial tagging by combining morpho-syntactic and semantic constraints. Although effective

for predefined structures, these methods are inherently limited in adaptability, often failing to detect

variations in nominal entities and their relationships. This rigidity underscores the necessity for more

flexible methodologies capable of dynamically learning entity representations and dependencies.

To address these challenges, deep-learning-based approaches offer a promising alternative. These

models, trained on annotated corpora, exhibit strong generalization capabilities, allowing them to

classify and extract spatial entities even in previously unseen contexts. Unlike rule-based systems,



deep learning models learn implicit representations of spatial languages and capture hierarchical

dependencies and context-aware entity relationships.

The aim of this study is to evaluate three models for recognizing NNE and their contextual references.

These models were selected based on their significance in Named Entity Recognition (NER) research,

each representing a distinct approach to structured sequence prediction:

1. Bidirectional Long Short-Term Memory with a Conditional Random Field Layer
(BiLSTM-CRF): A well-established standard in NER using recurrent neural networks (RNNs).

2. Pre-Trained Bidirectional Transformer (CamemBERT): A transformer-based bidirectional

language model (BiLM) with a classification head for token labeling.

3. Generalist Named Entity Recognition Using Bidirectional Transformers (GLiNER): An

innovative zero-shot and few-shot learning model introducing a new paradigm for NER.

Each selected model represents a different paradigm in NER, providing a comparative analysis of

their performance on structured sequence prediction tasks.

BiLSTM-CRF This model [6, 5, 4] is a widely adopted architecture for Named Entity Recognition

(NER) and structured sequence labeling. It integrates a BiLSTM network with a CRF layer to efficiently

capture contextual dependencies while enforcing valid label transitions.

The BiLSTM component processes input sequences in both forward and backward directions. Given

a sequence of tokens x = {𝑥1, 𝑥2, . . . , 𝑥𝑛}, two LSTM networks generate forward hidden states

−→
ℎ𝑡 and

backward hidden states

←−
ℎ𝑡 for each token. The final representation is obtained by concatenating these

states, yielding ℎ𝑡 =
[︁−→
ℎ𝑡 ;
←−
ℎ𝑡

]︁
with a total hidden state dimension 𝑑. This bidirectional encoding allows

the model to incorporate context from both past and future tokens.

A dense layer projects each hidden representation ℎ𝑡 into a score vector 𝑠𝑡(𝑦) ∈ R𝐿
, where 𝐿 is the

number of possible labels. Instead of predicting labels independently, the CRF layer models dependencies

between adjacent labels. The probability of a label sequence y = {𝑦1, ..., 𝑦𝑛} is defined as:

𝑃 (y|x) = 1

𝑍(x)

𝑛∏︁
𝑡=1

exp(𝐴𝑦𝑡−1,𝑦𝑡 + 𝑠𝑡(𝑦𝑡)). (1)

where 𝐴𝑦𝑡−1,𝑦𝑡 is the transition score from label 𝑦𝑡−1 to 𝑦𝑡, and 𝑠𝑡(𝑦𝑡) is the BiLSTM emission score

at position 𝑡. The partition function 𝑍(x) normalizes over all possible sequences:

𝑍(x) =
∑︁

y′∈𝒴(x)

𝑛∏︁
𝑡=1

exp(𝐴𝑦′𝑡−1,𝑦
′
𝑡
+ 𝑠𝑡(𝑦

′
𝑡)). (2)

The model is optimized by minimizing the negative log-likelihood loss:

ℒ = −
𝑛∑︁

𝑡=1

(𝐴𝑦𝑡−1,𝑦𝑡 + 𝑠𝑡(𝑦𝑡)) + log𝑍(x). (3)

During inference, the CRF layer selects the most probable label sequence by considering both emission

scores from the BiLSTM and transition scores from the CRF. Figure 2 presents an overview of the model

architecture.

CamemBERT This model [15] is a transformer-based model designed specifically for the French

language. Unlike BiLSTM-CRF, which processes sequences token by token, CamemBERT employs

self-attention mechanisms that allow all tokens in a sequence to be processed in parallel, capturing

long-range dependencies more efficiently.

Given an input sequence x = {𝑥1, 𝑥2, ..., 𝑥𝑛}, CamemBERT encodes each token using multiple

transformer layers. At the core of its architecture is the self-attention mechanism, which computes



Figure 2: Schematic overview of the BiLSTM-CRF architecture for NER. Input tokens are first converted into
word embeddings, then processed by a bidirectional LSTM to capture contextual information in both forward
and backward directions. The resulting hidden states are projected into a label space through a dense layer, and
finally, a CRF layer enforces valid label transitions during decoding.

contextualized representations by attending to all tokens in the sequence. The attention score between

token 𝑖 and token 𝑗 is computed as 4 and the output representation is then obtained as 5:

𝛼𝑖𝑗 =
exp(𝑒𝑖𝑗)∑︀𝑛
𝑘=1 exp(𝑒𝑖𝑘)

, 𝑒𝑖𝑗 =
q𝑖 · k𝑗√

𝑑
(4)

ℎ′𝑖 =
𝑛∑︁

𝑗=1

𝛼𝑖𝑗v𝑗 , v𝑗 = 𝑊𝑣ℎ𝑗 (5)

where q𝑖 = 𝑊𝑞ℎ𝑖, k𝑗 = 𝑊𝑘ℎ𝑗 , and 𝑑 is the head dimension, and 𝑊𝑞 , 𝑊𝑘, and 𝑊𝑣 are learnable

projection matrices.

Unlike BiLSTM, which encodes sequential dependencies using recurrence, self-attention allows each

token to directly incorporate information from all other tokens in a single operation.

For Named Entity Recognition (NER), CamemBERT employs a classification head that assigns labels

to tokens. A dense layer maps the final hidden representation into logits z𝑡 ∈ R𝐿
, where 𝐿 is the

number of entity labels.

Figure 3: High-level overview of CamemBERT applied to token classification. Each token is first embedded,
then fed into multiple transformer layers employing self-attention to capture contextual information across the
entire sequence. A dense layer projects the contextual embeddings to produce token-level class probabilities,
enabling the model to assign named entity labels.

The model is trained using the cross-entropy loss. Compared to BiLSTM-CRF, which explicitly models



label dependencies via a CRF layer, CamemBERT implicitly learns contextual relationships through

self-attention. Figure 3 presents the overview of model architecture.

GLiNER This third and last model [10] is a transformer-based NER model that introduces span-based

classification with zero-shot learning capabilities. By modeling spans instead of tokens, it allows more

flexible boundary detection and can better handle nested structures. The token encoder processes

a unified input consisting of both entity type tokens and the input text, generating contextualized

representations. Let p = {𝑝𝑖}𝑀−1
𝑖=0 ∈ R𝑀×𝐷

denote the entity type representations, where 𝑀 is

the number of entity types and 𝐷 is the dimensionality of each representation. Similarly, let h =
{ℎ𝑖}𝑁−1

𝑖=0 ∈ R𝑁×𝐷
represent the contextual embeddings for each token in the input text, with 𝑁 being

the number of tokens. The entity representations are refined through a two-layer feedforward network,

producing q = {𝑞𝑖}𝑀−1
𝑖=0 ∈ R𝑀×𝐷

.

The representation of a span from position 𝑖 to 𝑗 is computed as S𝑖𝑗 = FFN(ℎ𝑖 ⊗ ℎ𝑗), where ⊗
denotes concatenation. To determine whether a span (𝑖, 𝑗) corresponds to entity type 𝑡, a matching

score is computed as:

𝜑(𝑖, 𝑗, 𝑡) = 𝜎
(︀
S⊤
𝑖𝑗𝑞𝑡

)︀
, (6)

where 𝜎 is the sigmoid activation function. This score represents the probability that the span (𝑖, 𝑗)
belongs to entity type 𝑡.

During training, the model distinguishes between positive pairs (spans correctly labeled with type 𝑡)
and negative pairs (incorrect associations) using a binary cross-entropy loss:

ℒ𝐵𝐶𝐸 = −
∑︁

𝑠∈𝒮×𝑇

[I𝑠∈𝒫 log 𝜑(𝑠) + I𝑠∈𝒩 log (1− 𝜑(𝑠))] , (7)

where I is the indicator function. This loss encourages high matching scores for correct span-type

pairs while penalizing incorrect associations.

Figure 4: High-level depiction of the GLiNER architecture, illustrating its span-based approach to Named Entity
Recognition. A unified input of both entity type tokens (e.g., NE, NoE) and the text is encoded by a bidirectional
transformer to produce contextual embeddings. A feedforward network then derives embeddings for entity
types and text spans, and a similarity matrix identifies which spans match each entity type, enabling flexible
boundary detection and nested entity handling.

GLiNER differs fundamentally from BiLSTM-CRF, which explicitly models sequence dependencies

via a CRF layer, and CamemBERT, which performs token-level classification. By employing span-based

prediction and textual entailment-style classification, GLiNER enhances generalization across domains

and under certain conditions, it enables entity recognition in low-resource and zero-shot settings.

Figure 4 presents an overview of the model architecture.



By comparing these approaches, this study provides insights into the effectiveness of different NER

paradigms in extracting spatial movement actions from descriptive texts.

4. Experiments

An initial pilot study aimed to assess the performance of these 3 models
1

in accurately annotating text

segments with six predefined labels.

Training Dataset and Annotation Process

The dataset
2

consists of 1,897 french hiking descriptions, totaling 27,083 sentences and 569,214 tokens.

Spatial expressions are categorized using the annotation labels given in Figure 1: strong named entities

Named Entities (NE), weak named entities Nominal Entities (NoE), motion verbs or verbal phrases

(Motion), expressions evoking spatial relation or condition (Offset), and numerical expressions
followed by a unit of measurement (Measure) and finally, Nested Named Entities (NNE). These

labels are inspired by previous rule-based approaches [16].

It is well known that producing an annotated dataset is a cumbersome and time-consuming task. It

was therefore decided to use Perdido [14] as the annotator for this first study. But Perdido was not

designed to be able to annotate nominal entities directly, and it would be a real challenge to integrate

it. It was decided that this annotation would go through two stages (Figure 5). Firstly, following the

result of the annotation carried out by Perdido, all the words or phrases involved in the annotation of

a spatial named entity and having received the part of speech label "Noun" were extracted. A dictionary

was created from these words or phrases, which then enabled all occurrences of the lexical entries in

this dictionary to be labelled in the dataset as NoE.

The result is a silver-standard corpus—potentially containing errors due to fully automated annotation.

Figure 5: Training Dataset Annotation Flow

All models were trained and tested on an identical dataset extracted from the silver-standard corpus.

Evaluation metrics include Precision, Recall, and micro F1-score, as summarized in Table 1.

Tokenization Tokenization is a crucial preprocessing step that can significantly affects model per-

formance. In our experiments, each model uses a distinct strategy. The BiLSTM-CRF model employs

rule-based, word-level tokenization with TreeTagger [17], configured for French. Camembert-base uses

subword tokenization based on Byte Pair Encoding (BPE) [18, 19] as implemented by SentencePiece [20]

to decompose rare and compound words. GLiNER, which leverages a multilingual DeBERTa backbone,

adopts a unigram-based subword tokenization strategy [21] via SentencePiece.

Models Parameters

For each model, the following parameter settings were used without applying additional hyper-

parameter tuning techniques:

1

Model implementation: https://git.univ-pau.fr/atafer/sner

2

Dataset: https://git.univ-pau.fr/atafer/hiking-dataset

https://git.univ-pau.fr/atafer/sner
https://git.univ-pau.fr/atafer/hiking-dataset


BiLSTM-CRF The BiLSTM-CRF model employs two LSTM cells (one for the forward and one for the

backward direction) with an embedding size of 300 and a hidden dimension of 512 (256 per cell). The

model is trained using a learning rate of 0.001.

Camembert-base Camembert-base is configured with an embedding/hidden size of 768, utilizes 12

transformer layers, and is trained with a learning rate of 2× 10−5
.

GLiNER GLiNER utilizes the mDeBERTa-v3-large backbone—a multilingual variant of DeBERTa-

v3—with an embedding/hidden size of 1024 and 12 transformer layers. The model is optimized using a

learning rate of 5× 10−6
.

Overall Analysis

Camembert-base achieved the highest overall performance with an F1-score of 0.9534, followed closely

by GLiNER with an F1-score of 0.9355. The superior performance of Camembert-base Could perhaps

be explained by its pre-training on French-language data [15], which enhances its ability to capture

fine linguistic nuances inherent in the corpus. In contrast, GLiNER employs a backbone pretrained on

the CC100 a multilingual corpus [22] where French comprises only about 3% of the tokens; this may

partially explain its slightly lower performance on French-language data.

Interestingly, despite the absence of a dedicated pre-trained language model, the BiLSTM-CRF model

effectively captured the specific characteristics of the hiking description corpus, achieving an F1-score

of 0.9269 while maintaining a moderate number of parameters and lower computational cost.

Table 1
Overall model performance on the NER task.

Model Precision Recall F1-score
BiLSTM-CRF 0.9425 0.9118 0.9269
Camembert-base 0.9464 0.9605 0.9534
GLiNER 0.9282 0.9428 0.9355

Label-Level Analysis

Table 2 indicates that the transformer-based Camembert-base model consistently outperforms the

BiLSTM-CRF and GLiNER models across all six categories, particularly for NE. The BiLSTM-CRF model,

however, performs poorly on NE due to its low recall. We hypothesize two main factors underlying

this result. First, the model’s reliance on word-level tokenization may exacerbate out-of-vocabulary

(OOV) issues, especially for toponyms or alphanumeric place names that do not appear in the training

vocabulary. For example, in one instance, “D218D” was misclassified, presumably because it did not

match any known token from the training set. Second, the silver-standard dataset itself may contain

annotation inconsistencies or errors, which can propagate into all models’ outputs but disproportionately

affect a model that already struggles with OOV tokens.

Table 2
Token-Level Model Performance for Named Entity Recognition (NER).

Label BiLSTM-CRF Camembert GLiNER
Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

MEASURE 0.9586 0.9980 0.9779 0.9856 0.9982 0.9919 0.8041 0.9333 0.8639
MOTION 0.9933 0.9901 0.9917 0.9906 0.9975 0.9940 0.9882 0.9972 0.9927
NE 0.7987 0.4683 0.5904 0.8320 0.8702 0.8507 0.7893 0.7571 0.7729
NNE 0.8350 0.8188 0.8268 0.9039 0.9043 0.9041 0.8502 0.8862 0.8678
NoE 0.9787 0.9847 0.9817 0.9809 0.9900 0.9854 0.9705 0.9826 0.9765
OFFSET 0.9649 0.9504 0.9577 0.9549 0.9825 0.9685 0.9378 0.9746 0.9559



Model Memory Footprint, Parameter Count, and Efficiency

Despite its compact architecture of approximately 8.73 million parameters and a minimal GPU memory

allocation of 53.82 MB along with only 8.98 MB CPU memory during inference, the BiLSTM-CRF model

demonstrates competitive performance relative to more complex transformer-based models. In contrast,

CamemBERT-base, with 110.05 million parameters, requires substantially greater computational re-

sources (430.07 MB allocated on the GPU and 324.73 MB on the CPU), achieving enhanced performance

through richer language representations. The GLiNER model, which leverages a large multilingual

DeBERTa backbone, comprises approximately 288.95 million parameters and incurs the highest memory

demands (2206.75 MB allocated on the GPU and 1709.67 MB on the CPU).

These results highlight that small, specialized architectures such as BiLSTM-CRF can yield near-

comparable performance with significantly lower memory and parameter footprints, making them

particularly advantageous for deployment in resource-constrained settings, while the choice of a larger

model backbone in GLiNER underlines the trade-off between resource investment and the potential for

improved cross-lingual generalization. In addition, although our evaluation does not formally assess

cross-lingual transfer performance, preliminary examples in English suggest that GLiNER’s multilingual

pretraining enables effective transfer of learned representations in french to other languages. Moreover,

the GLiNER framework is inherently modular, allowing for the replacement of its resource-intensive

multilingual DeBERTa backbone with alternatives such as CamemBERT, which offers a lower memory

footprint. This flexibility provides a promising avenue for optimizing the balance between computational

efficiency and performance in Named Entity Recognition tasks.

5. Conclusion and Perspectives

In this study, we compared three deep learning models—our specialized BiLSTM-CRF model,

CamemBERT-base, and GLiNER—for the extraction of spatial entities (nested or not, strong or weak)

and movement actions from French itinerary descriptions. The experimental results indicate that

transformer-based models, such as CamemBERT, effectively capture complex spatial patterns, while our

specialized BiLSTM-CRF model, designed specifically for this task, offers a competitive alternative with

substantially lower computational requirements. The efficiency of the BiLSTM-CRF model makes it well

suited for resource-constrained environments, and incorporating subword tokenization could further

enhance its ability to handle out-of-vocabulary terms—an issue highlighted by the misclassification of

certain named entities.

The GLiNER model, which utilizes a large multilingual DeBERTa backbone, was not subjected to

a detailed cross-lingual transfer analysis; however, its design suggests that multilingual pretraining

may support transferring representations learned on French data to other languages. Moreover, its

modular architecture permits the substitution of its resource-intensive backbone with alternatives such

as CamemBERT, potentially reducing memory usage while hoping to maintain good performance.

Future work will focus on several key directions. First, the development of a gold-standard corpus

(especially for the test dataset) with manually corrected annotations is essential to overcome the

limitations of our current silver-standard dataset and to provide a more reliable benchmark. Second,

integrating higher-level structural annotations—particularly syntax-semantic dependencies linking

spatial entities with their contextual elements—could refine the extraction process. Lastly, we will

continue to investigate and refine model architectures to optimize the automated extraction and

categorization of spatial entities and movement actions from descriptive texts.

Declaration on Generative AI

During the preparation of this work, the authors used GPT-4 to Grammar and spelling check. After

using these tool, the author reviewed and edited the content as needed and take full responsibility for

the publication’s content.
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