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Abstract

Toponym resolution plays a crucial role in geoparsing. While recent approaches leveraging lightweight LLMs,
such as Mistral 7B, have shown promise, they still suffer from inefficiency and suboptimal accuracy. In this
work, we propose an improved method that enhances both inference speed and resolution accuracy. Instead of
processing toponyms individually, our approach resolves multiple toponyms simultaneously within the same
text, leveraging contextual relationships among toponyms to refine predictions while reducing inference time.
Furthermore, we integrate Retrieval-Augmented Generation (RAG) to incorporate candidate locations retrieved
from GeoNames during inference, providing additional geographic context and improving disambiguation. To
further accelerate processing, we adopt vLLM as an optimized inference engine. Experimental results on seven
public datasets with 83,365 toponyms demonstrate that our solution increases accuracy from 0.90 to 0.93 and is
seven times faster than previous LLM-based methods using the same base model.
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1. Introduction

Unstructured texts, such as news articles, historical documents, and social media posts, contain valuable
geographic information. Geoparsing, the process of extracting this information, is crucial for appli-
cations like spatial humanities [1], geographic search [2], and disaster management [3]. It consists of
two main tasks: toponym recognition (identifying toponyms) and toponym resolution (determining
their geographic coordinates or spatial footprints). While toponym recognition has made significant
strides in accuracy[4, 5, 6], toponym resolution remains challenging. The resolution of toponyms
has been approached through two distinct methodologies. The first, traditional toponym resolution,
focuses specifically on toponyms or location entities, which can be further classified into several cate-
gories. These include rule-based ranking methods [7, 8, 9], which search gazetteers to identify potential
candidates for a toponym and then rank or score these candidates through manually defined rules;
statistical learning-based ranking approaches [10, 11, 12], which resemble rule-based methods but
differ in that the rules are not explicitly defined but instead learned from annotated examples; and
statistical-based classification methods [13, 14, 15], which partition the Earth’s surface into discrete
cells and subsequently assign toponyms to specific cells. The second are entity linkers [16, 17], which
extend beyond the resolution of toponyms to link broader entities—such as persons, organizations, and
locations—with corresponding entries in knowledge bases (KBs).

To address the limitations of individual methods, we proposed an ensemble approach [18] that
integrates seven approaches using a voting mechanism. Inspired by recent advances in LLMs, we
investigated their effectiveness for toponym resolution. Specifically, we fine-tuned lightweight models,
such as Mistral-7B [19], to generate unambiguous toponym references, which are then geocoded
using GeoNames and Nominatim[20]. This approach improved accuracy by 8% over the previously
best-performing voting-based method.
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However, the LLM-based approach still has two key limitations. First, it processes each toponym
individually, even when multiple toponyms appear in the same text, which may cause the LLM to over-
look important contextual relationships between the toponyms. Additionally, geographic knowledge is
utilized only after inference, leaving the LLM without crucial disambiguation cues in inference. Second,
resolving toponyms individually requires multiple inference passes, which increases computational
cost.

To address these issues, we propose a parallel inference approach that resolves multiple toponyms
simultaneously, enhancing both accuracy and computational efficiency. We further integrate RAG to
incorporate candidate locations for toponyms from GeoNames during inference, and utilize vLLM [21]
to accelerate processing.

2. Proposed Approach

Our approach, illustrated in Figure 1, consists of two phases: training (fine-tuning) and inference.
For training, we use the LGL dataset [22], the same as in our previous work [20], which is the Local-
Global Lexicon (LGL) corpus. This corpus contains 588 human-annotated news articles with 5,088
toponyms from 78 local newspapers. We employ Mistral-7B-v0.2 as the base model and apply Low-Rank
Adaptation (LoRA) [23] for model fine-tuning.

Figure 3 in the Appendix presents a training example. In Instruction, we specify the toponyms
to be resolved. The char_index in «<START:char_index» indicates the starting character index of the
toponym in the text, which helps distinguish between multiple occurrences of the same name. Candidate
locations for each toponym are retrieved from GeoNames and ranked in two steps: first grouped into
exact (matching the primary or alternative names) and non-exact matches, then ranked by population
within each group. The top candidates from the exact group are selected first; if fewer than 17 are found,
the highest-ranked non-exact matches are added to complete the Top-17. They are then included in
Instruction. In Input, the target toponyms are marked within the original text. The Output consists
of unambiguous references for all the toponyms.

During inference, candidate locations are queried and ranked using the same strategy, and the Top-17
candidates are retained. Given the context that includes the target toponyms and their candidate
locations, the model generates an unambiguous reference for each toponym. This reference consists
of the toponym’s full name along with its higher-level administrative divisions (e.g., country, state,
or province) necessary to uniquely identify the location. Each reference is sequentially queried in
GeoNames and, if necessary, in Nominatim to obtain geographic coordinates. GeoNames is deployed
locally, while Nominatim is queried online as a fallback, mainly for fine-grained locations such as points
of interest. Most references are resolved by GeoNames, with only a small fraction requiring Nominatim.
A caching mechanism is also employed to ensure fast query performance.
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Figure 1: Workflow of the proposed approach.



3. Experiments and Evaluation

3.1. Experimental Settings

For LoRA, we set the attention dimension, scaling parameter, and dropout rate to 16, 16, and 0.1,
respectively. We used the AdamW optimizer for fine-tuning with a learning rate of 0.003, over 300
epochs, and a batch size of 16. This fine-tuning process was performed on an NVIDIA Tesla V100 GPU,
utilizing approximately 14 GB of GPU memory.

For testing, we employed the seven public datasets: TR-News [24], GeoWebNews [13], GeoCorpora
[25], WikToR [26], WOTR [27], CLDW [28], and NCEN [29], which together contain a total of 83,365
toponyms. The geographical distribution of the toponyms in the test datasets is shown in Figure 4 in
the Appendix. We evaluated the accuracy using Accuracy@161km [30], which measures geocoding
precision within 161 km (100 miles).

We compared our approach with 10 representative methods, including transformer-based entity
linkers (BLINK [31], GENRE [17]), rule-based toponym resolution approaches (CLAVIN', CHF [24]),
deep learning-based classification (CamCoder [13]), and the voting-based ensemble method [18] that
integrates seven individual approaches. We also included our previous LLM-based solution [20], which
infers each toponym independently and does not incorporate candidate locations during inference. This
solution was applied across four models, including Mistral (7B), referred to as FT-Mistral (7B).

3.2. Experimental Results

Figure 2 demonstrates that the new solution based on the Mistral-7B-v0.2 model improves the accuracy
of the previous solution [20] using the same base model from 0.9 to 0.93. This performance matches
that of the previous solution using the Llama2-70B model. Compared with non-LLM-based approaches,
the new method improves the voting ensemble by 11% and GENRE, the best individual approach, by
15%. Moreover, the new solution is seven times faster than our previous implementation using the same
base model, achieving performance that is comparable to—or even exceeds—that of traditional deep
learning— and rule-based methods such as CHF and CamCoder.

BLINK - 0.74 BLINK - 344
GENRE- 0.78 GENRE- 19.34
CLAVIN - 0.4 CLAVIN- 0.02
CHF- 0.52 CHF- 1152
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Figure 2: Evaluation of accuracy and speed across various approaches.

4. Conclusion

In this work, we presented an improved approach for toponym resolution based on a light-weight LLM,
leveraging parallel inference, RAG, and faster inference engines to enhance both accuracy and efficiency.
Our experiments on seven public datasets demonstrate that the proposed solution outperforms previous
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LLM-based methods, achieving higher accuracy and significantly faster processing times. One limitation
of the approach lies in the candidate ranking algorithm, which currently considers only string similarity
and population. This may result in the correct candidate being excluded from the Top-17 list. In future
work, we will propose a more robust ranking strategy that considers the spatial relationships among
toponyms within the same text.
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A. Additional Figures

Instruction: Given the following toponyms, marked with unique identifiers in the text, estimate their
full addresses or unambiguous references. The full address should include the toponym’s formal name
followed by its higher-level administrative units, such as city, state/province, and country.

Input Toponyms:  ‘Hurricane’ marked with «START:23»«END»; ‘Hurricane’ marked with
«START:372»«END»; ‘Putnam County’ marked with «START:398»«END»

Reference Information: Below are candidate addresses for each toponym. While these are valid options,
the correct address might not be included among them. Use your geographic knowledge, along with
these candidates, to infer the most accurate address.

Partial candidate locations of ‘Hurricane’:

1. Hurricane, Washington County, Utah, United States;

2. Hurricane, Putnam County, West Virginia, United States;

17. Lac Hurricane, Mauricie, Quebec, Canada;

Partial candidate locations of ‘Putnam County’:
1. Putnam County, New York, United States;
2. Putnam County, West Virginia, United States;

17. Putnam County, Indiana, United States;

Input: Sheriff’s deputies and «START:23» Hurricane «<END» police found the two.The guys were down
in the area for about 10 minutes when they found them near the tracks, the dispatcher said. Neither of
the teenagers were hurt and both are safe, the dispatcher said. Keya Phillips and Seth Pettry, both 14,
were found Monday after a tip came in that the two were hiding under a railroad bridge in «START:372»
Hurricane «END» , according to a «<START:398» Putnam County «END» dispatcher.

Output: («START:23»Hurricane, Putnam County, West Virginia, United States «<END»)
(«<START:372»Hurricane, Putnam County, West Virginia, United States «<END»)
(«START:398»Putnam County, West Virginia, United States «<END»)

Figure 3: Training example illustrating unambiguous reference estimation for multiple toponyms at one time.
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Figure 4: Geographical distribution of 83,365 toponyms from the seven datasets.
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