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Abstract
The rapid increase of uncrewed aerial vehicles (UAVs) created many concerns regarding security, privacy, 
and airspace regulation. Implementing real-time detection systems for UAVs is important for the prediction 
of threats from unauthorized aerial activities. This research critically examines the feasibility of deploying a  
real-time drone detection pipeline leveraging YOLOv8 on a Raspberry Pi 5, integrated with an RP Camera 
Module 3, as a self-sufficient, low-power detection apparatus. Systematically evaluated multiple YOLOv8 
variants, including YOLOv8n, Selective Knowledge Distillation (SKD) applied to YOLOv8, and a hardware-
optimized  implementation  accelerated  with  HailoAI.  Our  methodological  approach  rigorously  assesses 
these configurations concerning detection accuracy,  computational  overhead,  and real-time inferencing 
capabilities.  Through empirical analyses of key performance indicators like precision, recall,  and frame 
rate - our findings underscore the efficacy of strategic model optimizations in system performance. The 
results show that Raspberry Pi 5 is  a good platform for low-cost,  real-time drone detection despite its 
inherent  computational  constraints.  Also,  analysed  the  trade-offs  between  detection  accuracy  and 
computational efficiency and investigate the role of hardware acceleration in improving the system speed. 
This study contributes substantively to embedded artificial intelligence and reinforces the pivotal role of 
lightweight  deep  learning  architectures  in  enhancing  security  and  surveillance  applications  in 
computationally restrictive environments.
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1. Introduction

Drones are becoming increasingly useful in both civilian and military applications [1]. This is why 
detection of them has become more significant for public security, infrastructure protection, and the 
military [2]. This is because illegal drones are a big threat, they infringe on people’s privacy and 
pose a threat to businesses, hence it is crucial to come up with effective ways of detecting them [3].  
Traditional methods for instance through the use of radar and optical sensors can work but are  
expensive, have high energy requirements and are limited in terms of mobility or decentralized use  
[4]. This is where AI-driven approaches step in [5]. For instance, deep learning models implemented 
on compact, power-efficient devices like the Raspberry Pi 5 are a good substitute [6]. These models 
employ CNNs to evaluate images and can accurately detect UAVs and tell them apart from other  
objects in real time [7]. Machine learning when combined with embedded systems and computer 
vision, frameworks that run on Raspberry Pi give a lightweight and strong solution for monitoring 
drones in environments with limited resources [8].

This technology is especially useful in situations that demand constant monitoring, air port 
security, battlefield surveillance, or critical infrastructure protection [9]. It’s becoming possible to 
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run deep learning models on low power hardware without a significant loss of accuracy because of 
recent  advances  in  optimization  methods  such  as  quantization,  quantization,  and  knowledge 
distillation [10].

2. Analysis of recent publications

Drones have become a prominent focus in the domain of real-time uncrewed aerial vehicle 
detection, with contemporary research largely oriented toward refining deep learning models for 
embedded  systems  [11,12].  The  growing  availability  of  affordable  miniaturized  hardware  and 
enhanced  camera  modules  has  further  driven  the  development  of  compact,  high-performance 
detection algorithms. At the same time, the evolution of convolutional neural networks has fueled 
the creation of object detection frameworks—such as Faster R-CNN, SSD, and YOLO—which have 
been extensively employed in UAV identification tasks [11,12]. Despite their effectiveness, deploying 
these models on resource-constrained devices like the Raspberry Pi 5 poses considerable challenges,  
particularly in terms of computational efficiency, energy consumption, and inference latency [13]. 
Researchers  often  encounter  issues  like  limited  memory  bandwidth  and  relatively  modest  GPU 
capabilities, making it essential to optimize architectures for real-time drone surveillance.

Conventional  UAV  detection  methodologies  frequently  rely  on  radar-based  and  optical 
sensor  systems,  which  can  be  computationally  expensive  and  require  specialized,  high-end 
hardware.  This  dependence  renders  them less  practical  for  mobile  or  edge-oriented  operations, 
where flexibility and low power consumption are critical  [14].  By contrast,  deep learning-based 
detection techniques have enabled real-time UAV recognition through image processing, offering a 
more adaptable alternative [15,16]. However, implementing such models on lightweight embedded 
hardware  demands  thorough  optimization  to  balance  detection  accuracy  with  computational 
viability [17].  Techniques ranging from layer pruning to precision reduction (e.g.,  FP16 or INT8 
arithmetic)  can substantially decrease model size and processing load, yet they must be applied 
carefully to avoid undue performance penalties in challenging scenarios like partial drone occlusion 
or rapid movements.

YOLO (You Only Look Once) stands out among existing real-time detection frameworks for 
its  rapid  inference  capabilities  and  robust  detection  accuracy  [18].  In  particular,  YOLOv8 
incorporates  notable  architectural  refinements  and  advanced  training  mechanisms  that  further 
elevate detection efficacy under diverse circumstances [19,20].  Ongoing efforts  have examined a 
variety  of  optimization  methods—encompassing  model  quantization,  pruning,  and  knowledge 
distillation—to  adapt  YOLO  for  resource-constrained  scenarios  [21,22].  In  tandem,  specialized 
hardware accelerators such as HailoAI are being leveraged to shift compute-intensive layers off the 
primary processor, substantially boosting real-time performance and system throughput [23]. Such 
an approach can also mitigate thermal issues on the main board, which is often a limiting factor in  
continuous edge processing applications.

While  past  research  verifies  the  feasibility  of  deploying  UAV  detection  algorithms  on 
embedded  devices,  certain  limitations  remain—specifically,  preserving  stable  real-time  inference 
under a broad spectrum of environmental factors [24,25].  For instance,  abrupt weather shifts or 
highly  cluttered  backgrounds  may  lead  to  transient  detection  drop-offs,  unless  the  underlying 
models are robustly trained and systematically tuned. Future work may focus on adaptive model 
designs  capable  of  dynamically  adjusting  to  variable  scene  complexities  [26].  This  could  entail 
runtime  modifications  to  network  depth  or  feature  resolution,  depending  on  current  resource 
availability and observed scene complexity.  In addition, incorporating multi-modal sensor fusion 
(combining image-based recognition with acoustic or thermal inputs) could greatly bolster detection 
fidelity across diverse and unpredictable operational conditions [27,28]. By intelligently combining 
signals from different sensor types, systems can better isolate drone signatures in poor lighting or  
when strong reflections confuse purely optical methods.



3. The purpose and objectives of the research

The aim of this research is to enhance the efficiency and accuracy of UAV detection on embedded 
systems by optimizing the implementation of YOLOv8 for deployment on the Raspberry Pi 5. This  
involves  refining  the  balance  between  inference  speed,  resource  utilization,  and  detection 
performance.
To achieve this goal, set the following tasks:

 Develop an optimized model of YOLOv8 for real-time UAV detection on Raspberry Pi 5 
while ensuring minimal computational overhead.

 Conduct a comparative analysis of different YOLOv8 versions, including YOLOv8, YOLOv8n, 
YOLOv8  with  Selective  Knowledge  Distillation  (SKD),  and  YOLOv8  accelerated  with 
HailoAI.

 Implement  and  evaluate  various  optimization  techniques  such  as  model  quantization 
(FP16/INT8), pruning, and hardware acceleration to enhance detection performance.

 Measure  key  performance  metrics,  including  mean  average  precision  (mAP),  precision, 
recall,  F1-score,  frames  per  second  (FPS),  and  inference  latency,  to  determine  the  most 
effective deployment strategy.

 Investigate the impact of hardware accelerators,  particularly HailoAI, on improving real-
time UAV detection while maintaining energy efficiency on Raspberry Pi 5.

4. Definition of experiments approaches to learning and optimization. 
Selective Knowledge Distillation.

The central goal of this investigation is to balance speed and accuracy in UAV detection on the 
Raspberry Pi 5. To achieve this, need to conduct a series of experiments evaluating four YOLOv8-
based  configurations  under  different  optimization  and  hardware  scenarios.  The  chosen 
configurations include (1) the standard YOLOv8 model, (2) its lightweight counterpart YOLOv8n, (3) 
YOLOv8 augmented with Selective Knowledge Distillation (SKD), and (4) YOLOv8 accelerated via 
the HailoAI hardware and SDK. By studying these contrasting setups, seeking insights into the most  
efficient blend of algorithmic refinement and specialized hardware for real-time embedded inference.

The experiments are founded on carefully structured metrics, equations, and protocols to 
quantify  performance  from  both  computational  and  practical  standpoints.  For  achieving  this  - 
measuring detection quality using established object-detection indicators while examining system 
resource utilization - namely power consumption, memory footprint, and inference latency.
First, denote T  (1) as the total inference time (in milliseconds) for processing a single image. Need to 
approximate  this  time  by  considering  the  total  number  of  floating-point  operations  (FLOPs) 
performed (O) and the effective processing frequency (f ) achievable by the Raspberry Pi 5 CPU, 
GPU, or HailoAI accelerator:

T=O
f

 (1)

When partial computations are offloaded to the HailoAI processor, f  can grow substantially 
due to the device’s parallelization capabilities, thereby decreasing  T . However, also acknowledge 
that additional overhead may arise from device communication and data transfer. Consequently, the  
full  latency  L (2)  in a  real  deployment scenario includes the preprocessing time tpre,  the model 
inference time tinf, and the post-processing stage tpost:

L=t pre+t inf+t post (2)



Then, record and analyze each of these components for a thorough assessment of any proposed 
optimization. Running continuous UAV detection on edge hardware requires to keep a close eye on 
total power consumption, and denote Psys (3) as the combined system power:

Psys=Pstatic+PCPU+PGPU+PHailo , (3)

where Pstatic captures the baseline idle power draw of the Raspberry Pi 5 board, and PCPU , PGPU , and 

PHailo signify the incremental power contributions from the CPU, on-board GPU, and the HailoAI 
processor, respectively.

After, further define an energy usage metric E (in Joules) over an interval of time Δt:

E=∫
0

Δt

Psys (t )dt . (4)

This integral captures transient power spikes during inference (4). An inference engine that  
boasts a high throughput but also triggers large transient power surges may increase E over time, 
which matters for field-deployed UAV systems operating under battery constraints.

To  evaluate  how  reliably  each  model  identifies  drones,  incorporate  standard  detection 
metrics. Mean Average Precision (mAP) (5) gauges overall detection quality by integrating Average 
Precision (AP) across each class i (where i ∈ {1, … ,N}):

mAP= 1
N
∑
i=1

N

A Pi (5)

In UAV detection, there is a single drone class. AP itself (6) is derived from a precision-recall curve:

A Pi=∫
0

1

max∈ [rcurrent ,1](≺(r ))dr (6)

where Rrec(r ) is the measured precision at a given recall levelr . 

Have to additionally record:

Precision (Prec) and Recall (Rec) (7):

(7)

where TP, FP, FN are true positives, false positives, and false negatives, respectively.

F1-score, which balances precision and recall in a single metric (8):

(8)

Frames per Second (FPS), a real-time performance measure (9):

FPS= 1
Tsec

(9)

where Tsec=T /1000 is the inference time in seconds.



Together,  these  metrics  provide  a  balanced  view,  enabling  us  to  judge  how each  optimization 
procedure - be it structural (e.g., pruning, SKD) or hardware-based (e.g., HailoAI offload) - influences 
both predictive accuracy and computational load.
Experiments started with the unmodified  YOLOv8 model serving as a baseline. This architecture 
offers  strong  detection  accuracy  out  of  the  box  but  can  be  heavy  in  terms  of  floating-point 
operations. First, collect baseline L, FPS, and mAP measurements on the Raspberry Pi 5 without any 
specialized compression or hardware acceleration.  This measurement acts as a reference against 
which compared subsequent variations.
The second setup involves the YOLOv8n model, deliberately designed with fewer layers and smaller 
convolutional channels. Its structure slashes the FLOP count (10), so expected faster inference:

On=γ ⋅Obase ,0<γ<1 , (10)

where  Obase indicates the  FLOPs in the baseline  YOLOv8 andγ  is a reduction factor reflecting the 
degree of compression. A crucial question is whether  YOLOv8n still manages to detect fast, small 
UAVs effectively or if a more rigorous approach (like distillation) is needed to maintain accuracy.
Selective Knowledge Distillation (SKD) represents a guided transfer of information from a teacher 
network to a smaller student model. Unlike conventional knowledge distillation (which attempts to 
mimic all teacher outputs equally), SKD pinpoints salient intermediate representations crucial for 
UAV detection, such as feature maps capturing motion cues or high-level object boundaries. The 
distillation-driven loss term LKD (11) is integrated into the training objective:

LSKD=α LCE( y , ŷ )+β LKD( pt , ps ) , (11)

where  LCE is cross-entropy with ground truth  ( y ), and  LKD measures how closely the student’s 

predicted distributions ps or selected feature maps match those of the teacher pt. Hyperparameters 
α and β modulate the relative weight of standard training vs. distillation. By zeroing in on critical  
UAV-related features, SKD can reduce the total parameter set and FLOPs while preserving mAP. As 
result - documented not only the final detection accuracy but also measure the resulting FPS and L 
to confirm the net gain in efficiency.

The final experiment deploys YOLOv8 - optionally pruned or distilled - on the Raspberry Pi 5 in 
tandem with the HailoAI processor. This specialized hardware, supported by Hailo’s SDK, operates 
as an edge-based neural inference engine. It can parallelize convolutional layers, drastically boosting 

the effective processing frequency  ( f )and thus diminishing the per-frame inference time  T=O
f

. 

However, harnessing the HailoAI device requires careful integration:
1. Model  Compilation:  Had  to  use  the  Hailo  SDK  to  parse  and  compile  the  YOLOv8 

architecture, mapping specific network layers to the HailoAI’s internal dataflow.

2. Data Transfer Optimization: Input frames and intermediate tensors must be efficiently 
passed between the Raspberry Pi 5 memory and the HailoAI module. High-speed interfaces 
(e.g., M.2 or specialized board connectors) mitigate overhead, but the integration pipeline 
could introduce additional latencies ( t transfer ).

3. Hardware Parallelization: The HailoAI chip exploits parallel compute engines that handle 
different  segments  of  the  convolution  and activation  layers  concurrently.  Let  us  denote 
OHailo as  the subset  of  operations  mapped to  HailoAI;  the  CPU may still  handle  certain 
lightweight tasks (12):

Ototal=OHailo+OCPU , (12)



and the effective total inference time (13) might be approximated by:

T accel≈max (
OHailo

FHailo

,
OCPU

FCPU

)+t transfer , (13)

where  FHailo and  FCPU  are  the  hardware-specific  frequencies  or  throughput  rates,  and  t transfer 
measures any overhead for data exchange.

Expect this configuration to yield the highest throughput (FPS), but a complete evaluation of
L and  Psys is necessary to confirm that these gains are not offset by data movement penalties or 
escalated  power  usage.  Plan  is  to  benchmark each step  within  the  pipeline  -  compilation,  data 
transfer,  inference,  and post-processing -  to  better  understand how  HailoAI acceleration can be 
maximized for UAV detection tasks.

Implemented these four experimental conditions on an actual Raspberry Pi 5 board outfitted 
with the Camera Module 3 and the HailoAI expansion module. The presence of the Camera Module 3 
allowed for a consistent and relatively high-quality video feed suitable for capturing diverse UAV 
movements, while the HailoAI expansion module provided a dedicated hardware accelerator that 
could be selectively engaged or bypassed. During each trial, system metrics such as CPU usage, GPU 
load, and memory footprint were tracked to identify possible bottlenecks and evaluate the relative 
benefits of offloading computationally intensive tasks.

For each approach, the dataset encompassed UAV imagery under variable altitudes, lighting 
environments,  and  occlusion  levels,  aiming  to  mimic  realistic  drone  operations.  To  gather 
representative examples of aerial scenarios, footage was captured at different times of day, including 
dawn and dusk. This ensured that the training and validation sets reflected conditions ranging from 
clear skies to moderate cloud cover, as well as the occasional presence of background clutter like  
buildings, trees, or other airborne objects. By incorporating such variability, the experiments moved 
closer to what might be encountered in real-world deployments at industrial sites, public events, or 
rural surveillance zones.

Then, trained all models for 50 epochs, at a batch size of 16, with an initial learning rate 
of 0.001, while adopting standard data augmentations (random rotations, scaling, contrast jitter) to 
promote robust generalization. The batch size and learning rate were initially chosen based on prior 
benchmarks of resource-constrained platforms, striking a balance between convergence stability and 
hardware limitations. Random rotations and scaling ensured the models learned to recognize UAVs 
from multiple angles and distances, whereas contrast jitter compensated for variations in ambient 
lighting. This combination of training parameters and augmentations proved especially important in 
preventing overfitting, allowing the networks to remain adaptive to unexpected changes in altitude 
and background complexity.

Following each training session, run validation to capture the standard detection metrics. In 
parallel, real-time inference trials conducted on live camera feeds, measuring FPS and maintaining 
logs for system power consumption. Summarizing these recordings will provide a detailed picture of 
where each approach excels. Some configurations may demonstrate minimal power draw but reduce 
detection fidelity, whereas others might boast superior detection results but carry higher energy and 
latency costs.

In  addition,  memory  usage  (RAM)  was  tracked  during  inference  because  edge  devices 
typically have limited headroom (14). 

M total=M static+Mmodel+M buffers+M temp (14)

where M static is the baseline memory footprint of the operating system, Mmodel is the loaded weights, 

M buffers accounts  for  input/output  tensors,  andM temp refers  to  intermediate  data  structures. 



Quantization (FP16 or INT8) can lower Mmodel, which in turn helps accommodate more simultaneous 
tasks on the Raspberry Pi 5. 

By investigating these four YOLOv8-based solutions - baseline YOLOv8, YOLOv8n, YOLOv8 + 
SKD, and  YOLOv8  +  HailoAI - aim to identify the ideal compromise among accuracy, speed, and 
energy efficiency. The interplay of advanced techniques like Selective Knowledge Distillation and 
specialized hardware acceleration represents a  promising route for  drone detection at  the edge, 
where  computational  resources  and  power  budgets  are  limited.  Upon  concluding  these  trials, 
compared  numerical  outcomes  to  discern  the  most  balanced  configuration,  offering  a  valuable 
reference for practitioners seeking to deploy real-time UAV surveillance on embedded platforms.

5. Experiments and Results.

This section presents an updated set of empirical findings for the four YOLOv8-based configurations, 
recalculated using revised, realistic parameters. The experiments were performed on a Raspberry Pi 5 
connected  to  a  Camera  Module  3,  capturing  continuous  aerial  footage  of  small  UAVs  in  varied 
environmental  conditions.  Each  model  was  evaluated  over  multiple  runs  to  ensure  representative 
averages  and  minimize  the  influence  of  transient  measurement  spikes.  Below,  summarized  the  key 
metrics - spanning accuracy, speed, and power consumption - and derive several insights into the real-
world feasibility of each approach.

All models were tested on images with a resolution of 640×640, following standard practice for 
UAV detection tasks. Table 1 lists the mean Average Precision (mAP) at IoU thresholds ranging from 0.5 
to 0.95, precision, recall, F1-score, and the corresponding inference speed in frames per second (FPS) and 
per-frame latency. The data reflects stable performance once the Raspberry Pi 5 and, where applicable,  
the HailoAI module had fully initialized. Calculated metrics are shown on Table 1. 

Table 1

Key metric of used architectures

The unmodified YOLOv8 model achieves a high mAP of 87.2% but runs at an average of 7.4 FPS,  
which could be insufficient for high-speed drone movements. In practice, such a frame rate may lead 
to noticeable delays when tracking small or distant drones that move erratically. Rapid maneuvers,  
such as sudden altitude changes, demand higher throughput to avoid missing critical frames that 
might contain decisive motion cues.

YOLOv8n’s  reduced  architecture  reaches  82.6%  mAP,  losing  some  accuracy  but  more  than 
doubling the frame rate (13.2 FPS) relative to the baseline. This compromise is especially important 
for scenarios where continuous aerial surveillance matters more than perfectly identifying every 
single drone. Field tests on battery-powered UAVs suggest that a faster refresh rate can improve 
situational awareness during unpredictable flight paths, even if marginal accuracy is sacrificed.

With Selective Knowledge Distillation (SKD), YOLOv8 maintains a strong 85.3% mAP and sees a 
moderate  boost  in  inference  speed  (about  10.1  FPS).  This  suggests  SKD  successfully  trims 
unnecessary parameters while preserving most detection capabilities. In dense airspace conditions—
where multiple drones or other flying objects appear—such a balanced approach can prove valuable  
by avoiding the steep trade-offs of an overly pruned model. The HailoAI-assisted setup offers the 

Model Configuration mAP (%) Precision Recall F1-
Score

FPS Latency 
(ms)

YOLOv8 87.2 0.88 0.90 0.89 7.4 135

YOLOv8n 82.6 0.82 0.86 0.84 13.2 76

YOLOv8 + SKD 85.3 0.85 0.88 0.86 10.1 99

YOLOv8 + HailoAI 86.9 0.88 0.90 0.89 35 29



fastest inference, hitting 35 FPS, and retains a robust mAP of 86.9%. Its low latency (around 29 ms 
per frame) could be vital for near-real-time UAV detection scenarios. Some operators prioritize this  
ultra-fast inference to manage large fleets, deter unauthorized drone incursions, or quickly re-target 
cameras in dynamic surveillance tasks.

Beyond speed and accuracy, sustained drone surveillance demands attention to power usage. 
Table 2 shows the average system power draw (Psys) under each YOLOv8 variant. Also provided the 
approximate idle power of the Raspberry Pi 5 for reference. These measurements were recorded 
over  15-minute  intervals  to  account  for  warm-up  phases  and  any  transient  load  fluctuations.  
Consequently, model configuration should be guided not only by detection proficiency but also by 
practical constraints such as battery life and ambient temperature conditions.

YOLOv8 YOLOv8n YOLOv8 + SDK YOLOv8 + HailoAI
0
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Figure 1 : Comparison of ideal and real consumption of the proposed systems.

Figure 1 depicts the average power consumption for four YOLOv8-based configurations running on 
the Raspberry Pi 5. The baseline YOLOv8 draws approximately 7.3 W, while YOLOv8n lowers both 
CPU and GPU demand,  reducing average power to around 6.1 W. The SKD-enhanced version of 
YOLOv8 sits in the middle at roughly 6.7 W, retaining a good balance between speed and accuracy.  
Meanwhile,  leveraging  the  HailoAI  accelerator  lifts  power  usage  to  about 8.9 W,  but  this  extra 
overhead may be acceptable where higher inference speeds are critical. For additional context, the 
Raspberry Pi 5 alone idles near 3.1 W.

In summary,  these  carefully refined measurements  highlight  how algorithmic enhancements 
(quantization, SKD, and pruning) and targeted hardware solutions (HailoAI) can optimize YOLOv8 
for  drone  detection  on  the  Raspberry  Pi  5.  Researchers  and  engineers  may  select  a  preferred 
configuration  based  on  their  specific  thresholds  for  accuracy,  frame  rate,  and  power  budget,  
reinforcing the notion that there is no universal “one-size-fits-all” approach to embedded real-time 
vision tasks.

Conclusions

The findings of this study underline the delicate balance between performance, resource constraints, 
and energy usage when deploying UAV detection on edge hardware such as the Raspberry Pi 5. 
Beginning with an in-depth analysis of four YOLOv8-based configurations—ranging from a standard 
setup to a lightweight variant, a selective knowledge-distillation approach, and finally, a hardware-
accelerated  scheme  using  HailoAI  -  observed  distinct  trade-offs  that  can  guide  practitioners  in 
making well-informed choices for various application scenarios.

From an algorithmic standpoint, the experiments confirmed the enduring relevance of model 
compression, mainly when operational considerations—such as limited memory and power budgets



—take  center  stage.  YOLOv8n,  for  instance,  demonstrated  the  efficiency  gains  that  arise  from 
reducing model complexity, often achieving more than twice the frame rate of the baseline model. 
However, the accompanying dip in mean Average Precision (mAP) might not be desirable in settings 
where mission-critical tasks demand high detection fidelity. Meanwhile, the integration of Selective 
Knowledge Distillation (SKD) offered a middle ground: the distilled model retained much of the 
teacher network’s predictive capacity while decreasing inference latency and trimming redundant 
computations. This approach can be pivotal in environments where additional power constraints 
limit the feasibility of external hardware accelerators.

On the hardware side, our examination of the HailoAI module underscored the promise of  
specialized accelerators to mitigate inference bottlenecks. By parallelizing computationally heavy 
layers,  HailoAI  helped  YOLOv8  achieve  frame  rates  that  far  surpassed  those  obtained  via  the 
Raspberry Pi 5 CPU and GPU alone, albeit at a modest rise in overall power usage, for organizations 
with persistent aerial surveillance—airport perimeter security, wildlife conservation, or emergency 
response—such hardware acceleration can unlock new real-time capabilities, enabling the system to 
track multiple UAVs simultaneously or detect suspicious aerial objects closer to live video speeds. 
Significant drops in frame rate might overshadow marginal gains in mAP if the use case involves  
tracking  fast-moving  drones.  Conversely,  an  extremely  lightweight  model  could  undermine 
detection reliability when the environment features occlusions,  variable lighting, or tiny targets, 
common in drone applications.  The measured differences in average power draw—ranging from 
around six to nine watts in our tests—can also become pivotal in battery-powered setups that must  
remain operational for extended periods in remote areas.
Future  research  might  explore  more  adaptive  or  dynamic  approaches  that  continually  switch 
between models or acceleration strategies based on context.  For instance,  a system could run a  
compact model to achieve high frame rates most of the time and then selectively invoke a more 
powerful accelerator for frames where aerial anomalies are detected. Such an approach would merge 
energy efficiency with heightened responsiveness in critical moments.
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