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Abstract
This paper presents the results of a study of approaches to object detection for mobile platforms with lim-
ited computing resources. The research focuses on the development of software for real-time object iden-
tification using computer vision technologies optimised for embedded systems. The selected hardware 
platform is the ESP32-CAM, a low-power microcontroller with a built-in camera that allows for efficient  
video stream processing. The proposed approach involves the use of lightweight image processing meth-
ods and deep neural networks, in particular YOLO, adapted to work in resource-limited environments. Ex-
periments confirm that the system can be implemented for real-world applications such as automated 
monitoring, security, and autonomous navigation.
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1. Introduction

Nowadays, the development of software for object detection systems for mobile platforms with 
limited resources is driven by the growing demand for autonomous robotic systems in various 
industries, such as security [1, 2, 3, 4], logistics [5, 6], agriculture [7, 8, 9, 10], etc. In addition, such 
systems have a dual purpose, being used both in civilian and military applications [11]. 

In civilian purposes,  they can be used for emergency response,  agricultural  automation and 
intelligent surveillance. From a military perspective, autonomous platforms with limited resources 
play  an  important  role  in  reconnaissance,  target  detection  and  situational  awareness  on  the 
battlefield, where real-time data processing is critical [12]. Such mobile platforms equipped with 
cameras and sensors are increasingly used to perform complex tasks such as obstacle detection,  
mapping and environmental analysis [13, 14].  As these platforms often have limited resources, 
especially  in  terms  of  computing  power  and  energy  consumption,  it  is  important  to  develop 
software solutions that  allow for a sufficient level  of  object  identification and recognition at  a 
minimal cost.

The use of computer vision algorithms together with optimised software solutions ensures fast 
and accurate data processing in real time [15]. This approach enables mobile platforms with limited 
hardware resources to perform complex tasks such as object detection, obstacle recognition, and 
navigation [16]. Software optimization for low-power devices allows for efficient image processing, 
reducing CPU load and minimising power consumption.

This enables autonomous systems to operate in challenging conditions, increasing the accuracy 
and speed of performing various tasks. Therefore, the development of object detection software is a 
pressing task.
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The goal of the work is to research and implement object recognition algorithms for mobile 
platforms with limited resources,  allowing for real-time video stream processing with minimal 
computing resources and a high degree of reliability.

2. Materials and methods

2.1. Software architecture for mobile platforms

According to the conducted research, the software architecture for mobile platforms (e.g., wheeled 
robots, tracked or other autonomous vehicles) is usually built on a modular principle and consists 
of the following main components [17]:

 Hardware level that provides the interface with sensors, actuators and other physical com-
ponents of the platform (controllers, power modules, servo motors, etc.).

 The system level or middleware is responsible for the integration of hardware and soft-
ware,  providing  standardized  interfaces  and  data  transfer  (real-time  operating  system 
FreeRTOS, Zephyr, RTEMS, robotics frameworks ROS/ROS2 [18, 19]).

 Control  level  responsible  for decision-making and platform control  (PID controllers for 
movement, programming of the motion trajectory and obstacle avoidance).

 Localisation and navigation level, which provides platform location and trajectory planning 
(localisation algorithms, Simultaneous Localization and Mapping (SLAM) and navigation, 
such as algorithms A Star [20] and Dijkstra for route planning).

 Sensory data processing level - image processing using computer vision software solutions, 
data filtering using the Kalman filter [21], object recognition.

 Interaction level  - development of interfaces for monitoring and managing the platform 
(web or mobile applications, use of remote access interfaces, data exchange via MQTT pro-
tocols) [22]).

The generalised software architecture for mobile platforms is shown in Figure 1. This architec-
ture can be adapted to a specific mobile platform (ground drone, quadcopter, etc.).

The main software components for mobile platforms (in particular, ground drones), necessary 
for the implementation of autonomous navigation, detection and identification of objects, as well as 
real-time data processing, are the following [17]:

 The motion control system is responsible for controlling the platform's motor functions, in-
cluding speed, direction and manoeuvring control, namely: trajectory planning is the calcu-
lation of the optimal route based on set goals or received data; motion control is the control 
of manoeuvres using feedback from sensor.

 The image processing module is used to collect and analyse visual information from camer-
as installed on the platform in order to identify objects and detect possible obstacles.

 Sensor integration module, which includes processing of data from various sensors such as 
GPS, LiDAR, ultrasonic and inertial modules, to monitor and map the environment.

 User interaction module that allows operators to remotely control the platform or config-
ure autonomous modes and is implemented through web interfaces, mobile applications or 
specialised consoles.



Figure 1: Generalised software architecture for mobile platforms

2.2. Research on hardware aspects for mobile platforms with limited resources

Mobile platforms with limited resources are the basis for building compact and affordable computer 
vision systems. The comparative analysis of the most common platforms: ESP32-Cam, Raspberry Pi 
4, Arduino Nano RP2040, and NVIDIA Jetson Nano [23, 24, 25, 26] with limited resources is shown 
in Table 1.

Table 1
The comparative analysis of popular platforms with limited resources

Platform CPU Memory Connection Availability  of 
camera

Price

ESP32-Cam Tensilica 
LX6

520 KB RAM Wi-Fi, 
Bluetooth

OV2640 
(1600×1200)

$10-15

Raspberry Pi 4 ARM 
Cortex-

A72

2/4/8 GB 
LPDDR4

Wi-Fi, 
Bluetooth, 

GPIO

Raspberry Pi 
Camera (up to 

12 Mp)

$35-70

Arduino Nano 
RP2040

Dual 
Cortex-

M0+

264 GB 
SRAM

USB, GPIO Via additional 
modules

$10-20

NVIDIA Jetson 
Nano

Cortex-
A57, 128 
CUDA

4 GB 
LPDDR4

Ethernet, 
GPIO

MIPI CSI-2 $99

The analysis showed that additional modules are needed to connect the camera to the Arduino 
Nano RP2040 platform, so to simplify the task it is advisable to consider the ESP32-Cam, Raspberry 



Pi 4 and NVIDIA Jetson Nano platforms for further research. The comparison of the characteristics 
of the selected platforms [23, 24, 25, 26] with limited resources for implementing computer vision is 
given in Table 2. According to the criterion “TensorFlow, PyTorch, OpenCV support” from Table 2, 
the following conclusions can be made:

 ESP32-Cam has limited support as TensorFlow Lite Micro only works with simplified mod-
els while OpenCV is used for basic frame processing. This limitation is due to low comput-
ing power and limited memory.

 Raspberry Pi 4 fully supports TensorFlow, PyTorch and OpenCV, enabling the implementa-
tion of complex computer vision algorithms, including both training and inference.

 NVIDIA Jetson Nano is the optimal platform for TensorFlow, PyTorch, and OpenCV with 
its high pcomputing power and GPU hardware support for accelerating neural networks.

Table 2
The comparative characteristics of selected platforms with limited resources for computer vision 
implementation

Platform Video  stream-
ing support

Energy 
consump-
tion

TensorFlow,  Py-
Torch,  OpenCV 
support

Application areas

ESP32-Cam 160×120  - 
1600×1200,  up 
to 30 FPS

0.6-0.9 W TensorFlow  Lite 
Micro,  OpenCV 
(limited)

IoT  systems,  surveillance, 
portable  monitoring  sys-
tems

Raspberry Pi 
4

640×480  -  4К, 
up to 60 FPS

5-8 W TensorFlow,
PyTorch, OpenCV

Robotics, home automation, 
multimedia systems

NVIDIA  Jet-
son Nano

1080p - 4К, up 
to 30 FPS

10-15 W TensorFlow,
PyTorch, OpenCV

Computer  vision,  deep 
learning,  complex  robotics 
systems

As  is  known,  the  choice  of  platform depends  on  the  project  budget  and  requirements  for 
support machine learning algorithms.

In terms of price, the ESP32-Cam is the cheapest platform, making it an attractive choice for  
low-budget projects. The Raspberry Pi 4 is in the middle price range, offering flexibility and the 
ability to implement more complex projects. The NVIDIA Jetson Nano is at the higher end of the 
price range, but its high power justifies the cost for compute-intensive projects.

Thus,  ESP32-Cam is suitable for low-cost projects that require minimal image processing and 
remote control. Raspberry Pi is suitable for more complex tasks that require high computing power  
and the ability to work with large cameras. Jetson Nano is suitable for machine learning projects 
that require high performance and real-time video processing.

Therefore,  the  ESP32-Cam  platform  was  chosen  for  the  study,  since  it  was  necessary  to 
implement an object detection system with limited use of hardware resources. The ESP32-Cam 
provides  the  required functionality  through a  compact  design,  energy efficiency and sufficient 
computing power to perform basic computer vision tasks. In addition, its low cost and availability 
make it an optimal choice for developing systems on a budget. The platform supports video stream 
processing using the built-in OV2640 camera module and data transmission via Wi-Fi. This allows 
integration with other systems, transmittion of video stream to the server for further processing 
and implementation tasks that requiring minimal energy consumption.



2.3. Research of the features of integration of machine learning technologies for 
mobile platforms with limited resources

At the research stage, the following technologies and frameworks were considered to solve the 
project tasks: ESP-WHO (ESP-IDF), TensorFlow Lite, OpenCV.

ESP-WHO (ESP-IDF) is a specialised computer vision framework developed by Espressif for use 
on the ESP32 [27]. It is part of the ESP-IDF (Espressif IoT Development Framework) ecosystem and 
provides integration with camera modules such as the OV2640 for basic image processing tasks.

TensorFlow Lite  is  a  simplified version of  the TensorFlow framework optimized to  run on 
devices with limited resources such as mobile devices [28]. For microcontrollers, including ESP32, 
the TensorFlow Lite for Microcontrollers version is used.

OpenCV (Open Source  Computer  Vision Library)  is  a  popular  computer  vision library that 
supports  a  wide  range  of  image  and video  operations.  It  is  widely  used  for  processing  video 
streams, object recognition and working with machine learning models.

The  results  of  the  comparison  of  machine  learning  technologies  and  frameworks  for  mobile 
platforms with limited resources are presented in Table 3.

Table 3
The comparison of machine learning technologies and frameworks for mobile platforms with lim-
ited resources

Technology 
(framework)

ESP-WHO (ESP-IDF) TensorFlow Lite OpenCV

Advantages ESP32-specific,  face 
recognition support

Optimised  for  low 
power consumption de-
vices,  using  compact 
models

The universal framework 
for  computer  vision,  the 
rich  set  of  functions  for 
image processing

Disadvantages Limited set of functions 
for complex tasks; diffi-
cult  to integrate third-
party machine learning 
models

ESP32's limited memory 
does  not  allow loading 
even  minimal  Tensor-
Flow models, as well as 
poor  performance  in 
video processing

More powerful hardware 
is  required  for  real-time 
video  processing,  which 
requires  an  external 
server

Support 
ESP32-CAM

Limited  support  for 
complex tasks

Integration problems on 
ESP32-CAM

Support for basic tasks

Purpose  and 
application

face  recognition,  basic 
computer vision tasks

Support  for  machine 
learning models on mi-
crocontrollers

Image and video process-
ing,  real-time  object  de-
tection

3. Related works

The use of image processing approaches for object detection system for mobile platforms is an im-
portant component,  especially considering the limited resources of mobile platforms. The main 
tasks include data preparation, pre-processing to improve image quality, and the use of object de-
tection algorithms.

Data preparation for the machine learning model consists of frame size preparation and image 
normalisation [29]. For most machine learning models to function properly, input images must be 
of a fixed size. This is achieved by scaling the image, which allows to adjust the frames to the  
required dimensions without losing importand information. Image normalization involves bringing 



pixel values into the range [0, 1]. This helps prevent large discrepancies between pixel values and 
ensures stable performance of the machine learning model.

Pre-processing  to  improve  image  quality  includes  the  use  of  noise  filtering  and  lighting 
correction.

Noise filtering reduces noise that can reduce recognition accuracy. The following filters can be 
distinguished [30]:

 The Gaussian filter is used to smooth images and reduce fine noise, workss based on a  
Gaussian distribution, which determines the values of pixel depending on their neighbors.

 Median filter is used to remove image noise while preserving sharp edges, and is especially  
effective for images with point noise.

Lighting correction involves adjusting the brightness and contrast of an image and is performed 
using  histogram equalization,  a  technique  that  increases  contrast  by  evenly  distributing  pixel 
intensities, thereby improving image quality.

According to the conducted research,  the most  common algorithms for detecting objects  in 
images that can be implemented for mobile platforms are: Haar cascades [31, 32], Histogram of 
Oriented Gradients (HOG), You Only Look Once (YOLO) [33], Single Shot Multibox Detector (SSD) 
та Region-based Convolutional Neural Networks (Faster R-CNN).

Haar cascades are a classical object recognition method [31, 32], that uses Haar-like features to 
detect  objects  such  as  faces,  cars,  etc.  The  algorithm uses  a  cascade  of  simple  classifiers  that 
sequentially filter the frame, quickly discarding unnecessary parts of the image.

HOG is a method that detects objects by analysing histograms of oriented gradients in local 
areas  of  an  image.  It  is  particularly  effective  at  detecting  people  in  the  frame by recognizing  
characteristic shape patterns.

YOLO is one of the most popular object detection methods [33]. Unlike traditional methods such 
as Haar cascades, YOLO analyses the image as a whole, dividing it into a grid and detecting several  
objects simultaneously. This approach allows to quickly processing large images and work in real  
time.

SSD is another fast algorithm for real-time object detection. It  is similar to YOLO, but uses 
different sizes of “anchors” to detect objects. SSD is faster than most methods on medium and low 
resolution images.

Faster R-CNN is a more complicated model for object detection that uses regional proposals to 
find potential objects. Compared to other methods, it has high accuracy, but requires significantly  
more resources.

The results of the comparison of object detection algorithms in images are presented in Table 4.
To  implement  the  object  detection  system on  the  ESP32-CAM platform,  it  was  decided  to 

choose the YOLO algorithm due to its real-time processing speed. One of the main advantages of  
YOLO is its ability to perform object detection in a single pass through the network, providing high 
speed and real-time capabilities. This is extremely important for the ESP32-Cam, as the platform 
has limited computing resources but requires the ability to process video streams with minimal 
delays. Unlike other models such as Faster R-CNN that rely on pre-generated region proposals to 
detect  object,  YOLO  processes  the  image  simultaneously  without  performing  complex  pre-
processing steps, speeding up the detection process, which is essential for running on the ESP32-
Cam. Despite hardware limitations (520 KB of RAM, 4 MB of flash memory), ESP32-Cam can use 
optimized versions of YOLO models such as Tiny YOLO or YOLOv4-tiny, which have a reduced 
number of parameters and require less memory and processing power.  One of the reasons for  
choosing YOLO for the ESP32-Cam is the ability to use TensorFlow Lite Micro, which supports  
simplified models including YOLO. This allows inference to be performed on microcontrollers with 
limited resources. YOLO is also capable of detecting multiple objects simultaneously in a single 
frame, which is important for many real-world applications such as monitoring multiple objects at 



the same time. This allows ESP32-Cam to be used for tasks where it is necessary to simultaneously  
identify different types of objects in a video stream.

YOLO offers  a  wide  range  of  tools  and  libraries  for  implementation  on  various  platforms,  
including support for libraries such as OpenCV, allowing for easy integration with platforms such 
as the ESP32-Cam.

Table 4
The comparison of object detection algorithms in images

Algorithm Advantages Disadvantages ESP32-
CAM  sup-
port

Purpose

Haar  cas-
cades

Fast,  with  low 
resource  re-
quirements

Low  accuracy  for 
complex objects

Limited Simple  detection  of  ob-
jects, for example, a per-
son's face

HOG High  accuracy 
for  people  de-
tection

Requires  more  re-
sources

Limited People detection

YOLO High speed and 
accuracy

Reduced  accuracy 
for small objects

Supported Real-time  object  detec-
tion

SSD Processing 
speed  on 
medium-sized 
images

less  accurate  than 
YOLO  on  large  im-
ages

Supported Detection  of  several  ob-
jects at the same time

Faster
R-CNN

Very accurate Requires  significant 
resources

Limited Detection  of  complex 
scenes

4. Development of an algorithm based on the YOLO computer vision 
model for ESP32-Cam

Detection and recognition of objects in a real-time video stream using the YOLO computer vision 
model was implemented with the ESP32-Cam module, with subsequent display of results on the  
screen. The algorithm detects objects in the image, classifies them into categories and displays the 
results as rectangles around the detected objects with corresponding labels. Below is a description 
of the algorithm.

Step 1. Importing and connecting libraries to a video stream.
import cv2
import numpy as np
The OpenCV library cv2 is used to work with images and videos. The numpy library is required 

to work with numeric arrays, which is necessary for processing data by a neural network.
url = "http://192.168.0.102:81/stream"
Next, the URL for connecting to the ESP32-Cam video stream is configured.
Step 2. Loading the YOLO model.
The pre-trained YOLO model is loaded, including the yolov3.weights file and the yolov3.cfg 

configuration file. If the download is successful, a confirmation message is displayed, otherwise, an 
error message is displayed on the screen.

net = cv2.dnn.readNet(r"C:\Users\Dovgal 
Dima\Desktop\esp32cam_video_stream_on_web_server\CameraWebServer\yolov3.weights",



 r"C:\Users\Dovgal 
Dima\Desktop\esp32cam_video_stream_on_web_server\CameraWebServer\yolov3.cfg")

Step 3. Getting layer names.
The names of all network layers are obtained and the output layers that will be used to process 

the results are identified.
layer_names = net.getLayerNames()
output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()]
Step 4. Loading object classes.
The list of object classes is loaded from coco.names. Each class corresponds to a type of object  

that the model can recognize (e.g., person, car, etc.).
with open(r"C:\Users\Dovgal 

Dima\Desktop\esp32cam_video_stream_on_web_server\CameraWebServer\coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
Step 5. Opening the video stream.
The  connection  is  established  with  the  video  stream at  the  specified  URL.  The  success  of 

opening the stream is verified.
cap = cv2.VideoCapture(url)
Step 6. Reading and processing frames.
While the stream is open, frames are continuously read from the video stream. If a frame cannot 

be retrieved, the loop terminates.
while cap.isOpened():
 ret, frame = cap.read()
Step 7. Frame preprocessing.
The frame is converted into a format suitable for the neural network input.  It  is  resized to 

416x416 pixels and normalized.
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
Step 8. Object prediction.
The input data is fed to the network, which returns the prediction of each frame.
net.setInput(blob)
outs = net.forward(output_layers)
Step 9. Processing predictions.
The output data is processed to calculate the coordinates and dimensions of detected objects.
for out in outs:
for detection in out:
Step 10. Filtering and displaying results.
Non-Maximum Suppression (NMS) is applied to remove redundant bounding boxes. 
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for i in indexes:
 x, y, w, h = boxes[i]
 label = str(classes[class_ids[i]])
 cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
 cv2.putText(frame, f"{label} {int(confidence * 100)}%", (x, y - 10), font, 1, color, 2)
Bounding boxes with labels indicating class names and recognition accuracy are drawn around 

detected objects.
Step 11. Displaying frames on the screen.
The processed frame is displayed on the screen. Pressing 'q' will exit the loop.
cv2.imshow("ESP32-CAM Object Detection", frame)
Step 12. Releasing computational resources.
Upon termination, resources are released, the video stream is closed, and the display windows 

are closed.
cap.release()
cv2.destroyAllWindows()



Thus, an algorithm has been developed consisting of the following main stages: loading the 
model, processing the video stream and displaying the results. Based on this algorithm, a system 
for recognizing real-time object  on a video stream  was implemented using the YOLO model. 

Additionally, a web application was developed using the Django framework to display the video 
stream from the ESP32-CAM camera on a web page [34].

5. Experiments and results

The study of computing resources usage was conducted based on the following parameters: 

 Frame processing time:  during the test,  the average time of  one frame processing was 
measured for two video stream resolutions (320×240 and 640×480).
 Memory usage: the RAM and flash memory usage of the ESP32-CAM was monitored. 
 ESP32-CAM CPU load: to evaluate the performance, the CPU load was monitored for two 
video stream resolutions and the average CPU load was determined (320×240 and 640×480).
 Power consumption:  the  power consumption was measured using a  multimeter  during 
system operation,  and  the  experiment  showed  that  the  average  power  consumption  of  the 
system was 0.65W (at 5V power supply).

To evaluate the accuracy of recognition  of  objects of a given class by the developed system, 
experiments were conducted on data sets with various objects: simple objects (people) and complex 
objects (small items, low-contrast objects). For simple objects, the recognition accuracy was 94%, 
while for complex objects, the accuracy dropped to 77%, indicating the limitations  of the  model 
when processing more complex types of data.

Additional  experiments  were  conducted  to  assess  the  impact  of  lighting  conditions  on  the 
recognition  accuracy  of  both  simple  and  complex  objects.  These  experiments  showed  that  as 
illumination levels decreased, the accuracy of object recognition decreased.

The results of the experimental  research of the object detection system for mobile platforms 
based on the ESP32-CAM are presented in Table 5. They confirmed that the system is capable of 
performing basic functions with high accuracy and stability under normal operating conditions. All 
core  functions of the system, such as video stream capture, data transmission to the server, object 
detection, and result visualization, work correctly and meet the specified requirements. 

Testing has shown that the system can recognize objects in stable lighting conditions at the 
proper  level,  but  in  challenging  conditions  such  as  low  light  or  noise,  recognition  accuracy 
decreases.

Testing was also  conducted to  assess  the  stability  of  the  results,  which confirmed that  the 
system demonstrates  minimal  deviations  in  results  upon  repeated  testing  (less  than  1%).  This 
demonstrates a high level of stability and reliability of the software under the same input data 
conditions. 

Testing the system's performance under weak Wi-Fi conditions showed that at reduced data 
transfer rate (less than 5 Mbps), the system experiences frame transfer delays and periodic loss of  
images, which reduces the efficiency of object recognition. This indicates that the system depends 
on a stable Internet connection.

Experimental  studies  of  computing  resources  usage,  have  shown  that  ESP32-CAM  has 
limitations in terms of computing power. The system is capable of processing a video stream with a 
resolution  of  320×240,  however,  when  working  with  higher  resolutions  (640×480),  there  is  a 
significant increase in CPU load and frame processing time. This indicates the need to optimise the 
algorithm to make more efficient use of limited resources.

The results of power consumption experiments showed that the average power consumption of 
the system is 0.65W, which is low enough for autonomous operation. However, for long work 
sessions, it is important to reduce power consumption through additional optimisation measures.



Table 5
Results of the experimental research system

Criterion Description Results

Frame processing time Processing  time measurement  for  dif-
ferent resolutions

320×240: 107 ms
640×480: 179 ms

Memory usage Monitoring of RAM and flash memory 
usage on the ESP32-CAM

RAM: 165 KB, Flash: 3.1 MB.

CPU  load  of  ESP32-
CAM

Evaluation  of  CPU load  during frame 
processing

320×240: 47.5 %
640×480: 48.54 %

Power consumption Measurement  of  power  consumption 
during system operation

Average  consumption:  0.65 
W

Accuracy  of  simple 
object recognition

Evaluation  of  object  identification  in 
the conditions of real data and compar-
ison of results with reference data

94 %

Accuracy  of  complex 
object recognition

Evaluation  of  object  identification  in 
the conditions of real data and compar-
ison of results with reference data

77 %

6. Conclusions

As a result of the work, a prototype of an object detection system was developed that allows real-
time object identification using computer vision algorithms for mobile platforms with limited re-
sources.

An analysis of mobile platforms with limited resources, image processing methods and machine 
learning technologies was conducted. Based on a comparative study of popular platforms, ESP32-
Cam was chosen as the optimal option for developing an object detection system with limited 
hardware resources, taking into account its low cost, compactness and energy efficiency. 

An application has been developed for the ESP32-Cam module that provides remote control of a 
ground drone and real-time environmental monitoring. The system enables video streaming via 
Wi-Fi, providing high image quality through the use of the OV2640 camera.

The developed algorithm consists of the following main stages: loading the model, processing 
the video stream and displaying the results is developed. Based on this algorithm, a system for real-
time object  recognition was implemented using the YOLO model.  A web application has been 
developed using the Django framework that displays a video stream from the ESP32-CAM camera 
on a web page. 

Testing and experimental study of the developed object detection system for mobile platforms 
based on ESP32-CAM was carried out. It  has been confirmed that the developed system has a 
sufficient  level  of  performance  for  use  in  stable  conditions,  however,  further  improvement  is 
required for operation in more challenging conditions (poor lighting, low data transfer rate).

The scientific novelty of the work lies in the fact that using the YOLO model, an algorithm for 
recognizing  objects  in  real-time  in  a  video  stream  with  high  recognition  reliability  has  been 
developed. 

The practical value of the results of the work lies in the fact that the developed software can be 
used  as  a  tracking  and  object  recognition  system for  real-time  environmental  monitoring  for 
mobile platforms with limited resources.



Future research will focus on further improving and expanding the system's functionality under 
limited  computing  resources,  optimizing  resource  usage,  increasing  recognition  accuracy  in 
challenging conditions, and ensuring stable operation at low Wi-Fi signal levels.
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