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Abstract
Convolutional Neural Networks have become the standard for image classification tasks, yet their design  
remains a  complex challenge due to  the vast  search space of  possible  architectures  and the need to 
balance  multiple  conflicting  objectives.  This  research  introduces  a  multicriteria  structural-parametric 
synthesis approach for the automated design of optimal hybrid CNN architectures, demonstrated on the 
task of gesture recognition. The proposed method utilizes an evolutionary algorithm that simultaneously 
optimizes  the  structure  (layer  types,  connections,  blocks)  and  hyperparameters  (e.g.,  kernel  size, 
activation functions) of CNNs based on a multi-objective fitness function. In this paper multi-objective  
fitness function was formulated. Our approach employs genetic operators such as modified crossover,  
mutation,  and  selection,  leveraging  incremental  training  and weight  inheritance  to  accelerate  search 
convergence.  The  synthesized  hybrid  CNN  incorporates  advanced  modules  such  as  squeeze-and-
excitation blocks, spatial-channel squeeze convolutions, attention mechanisms, etc., enhancing qualitive 
criteria of the model. Comparison with existing approaches, including reinforcement learning-based NAS,  
NSGA-Net, and differentiable NAS (DARTS) were done. Experimental results on a gesture recognition 
dataset  demonstrate  that  the  proposed  method  outperforms  manually  designed  networks  and  other 
automated  architecture  search  techniques,  achieving  a  98.7%  accuracy  while  maintaining  low 
computational cost. Based on the experimental results it is proven that utilizing complex structural blocks 
instead  of  traditional  layers  with  flexible  configuration  of  fitness  function  for  both  qualitive  and 
performant criteria shows significant improvement for resulting model.
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1. Introduction

Convolutional Neural Networks (CNNs) have revolutionized image classification, achieving state-
of-the-art  accuracy on tasks  from general  object  recognition to  specialized  domains  like  hand 
gesture  recognition  [1].  However,  designing  an  optimal  CNN architecture  for  a  given  task  is  
challenging  due  to  the  enormous  search  space  of  possible  layer  configurations  and 
hyperparameters. Traditionally, human experts crafted CNNs (e.g. ResNet, VGG) through trial and 
error, but this manual process may not yield the best trade-off between accuracy and efficiency for 
every application. Recent advances in Neural Architecture Search (NAS) aim to automate CNN 
design, exploring architectures via reinforcement learning or evolutionary algorithms.   In real-
world applications like gesture recognition, there is a pressing need for CNNs that are not only 
accurate but also efficient in computation and memory, to enable real-time performance on limited 
hardware.  This  research  addresses  these  challenges  by  proposing  a  multicriteria  structural-
parametric  synthesis  approach  –  a  genetic  algorithm-based  method  that  optimizes  CNN 
architectures (structure) and their  hyperparameters (parameters)  simultaneously under multiple 
objectives.  We  focus  on  static  hand  gesture  classification  as  a  representative  case  study  to 
demonstrate the effectiveness of the proposed hybrid CNN design and optimization algorithm. 
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In this  paper we will  highlight  and analyze influence of  different  structural  components of 
hybrid convolutional neural network (HCNN) and its configuration parameters on qualitive criteria 
of model and usage of this information during structural-parametric synthesis of such models. The 
main  goal  of  this  paper  is  to  develop  the  evolutionary  mechanism that  will  utilize  structural 
components  of  different  CNN  architectures  to  create  model  that  will  satisfy  predefined 
optimization criteria.

2. Related works and existing approaches

CNN Architecture  Optimization:  The task of  finding optimal  CNN structures  has  been widely 
studied in the last few years. Early NAS approaches employed reinforcement learning agents to 
sequentially “build”  neural  network layers,  as  in Zoph and Le’s  work that  trained a  recurrent 
controller  to  maximize  validation  accuracy  [2].  Follow-up  methods  like  NASNet  introduced  a 
modular search space (searching for an optimal convolutional cell that is repeated) and achieved 
record accuracy on CIFAR-10 [3]. Alternatively, evolutionary algorithms (EA) have been used to 
evolve neural network architectures (a concept known as neuroevolution)  by treating network 
design  as  a  combinatorial  optimization  problem [4].  Real  et  al.  and  others  demonstrated  that  
genetic algorithms could evolve CNN topologies that rival human-designed models on image tasks, 
through mutations (e.g. adding or removing layers) and crossover of high-performing networks. 
Techniques such as Genetic CNN and NEAT variants allowed networks to grow in complexity over  
generations, gradually improving accuracy on benchmarks [5]. Recent evolutionary NAS methods 
often incorporate modern tricks like network morphism (to reuse weights when altering structure) 
and surrogate performance predictors to speed up the search.

Hybrid and Advanced Architectures: Beyond pure NAS, researchers have explored hybrid CNN 
architectures that combine different neural components or techniques. For example, in video-based 
gesture recognition, CNNs have been combined with RNNs/LSTMs to capture spatial and temporal  
features, yielding hybrid models that outperform single-stream CNNs [6]. Attention mechanisms 
and squeeze-and-excitation (SE)  blocks have been plugged into CNNs to adaptively recalibrate 
features,  markedly  improving  performance  in  image  classification  tasks.  Such  modules  (e.g. 
Inception  blocks,  residual  connections,  SE  blocks)  can  be  considered  as  building  blocks  in  an 
architecture search space. Recent work shows that incorporating these blocks in NAS can produce 
hybrid CNNs that leverage multi-scale feature extraction, channel attention, and other advanced 
features.  However,  searching  in  a  space  of  heterogeneous  components  is  complex.  Some 
approaches simplify this by evolving at the level of repeating units or cells  (block-based NAS) 
rather than individual layers. 

Structural-Parametric  Synthesis  Methods:  Traditional  NAS  optimizes  the  architecture  while 
training  network  weights  via  gradient  descent  for  evaluation.  Structural-parametric  synthesis 
refers to jointly optimizing the network’s structure and its parameters (or hyperparameters). Early 
neuroevolution  often  evolved  both  weights  and  topology,  but  for  modern  deep  CNNs  this  is 
impractical due to high dimensionality of weights. Recent approaches strike a hybrid strategy: the 
algorithm evolves the structure (and certain hyperparameters like layer sizes or learning rates), but 
uses standard backpropagation to train weights for each candidate model during evaluation. Some 
works  integrate  hyperparameter  optimization  (HPO)  into  NAS,  treating  learning  rate, 
regularization, or data augmentation settings as part of the search genome. For instance, genetic 
programming  has  been  used  to  evolve  CNN  architectures  with  variable  depth,  where  each 
individual’s gene encodes layer types and connections as well as tunable parameters. Similarly, 
reinforcement  learning  NAS  frameworks  such  as  MnasNet  and  MONAS  introduced  reward 
functions that include latency or power consumption alongside accuracy. These multi-objective 
methods yield a Pareto front of optimal trade-off architectures – e.g. a set of models that achieve 
the highest accuracy for a given complexity [7].

Our work builds  on these ideas,  extending multi-objective  optimization to  a  broader set  of 
criteria and using an evolutionary algorithm to perform structural-parametric synthesis of a hybrid 



CNN suited for gesture image classification. The goal of this paper is to define main criteria for  
CNN synthesis such as accuracy, computational cost, model robustness, etc., analyze and extract 
structural  blocks  of  modern  CNN  architectures,  modify  the  existing  solution  of  evolutionary 
algorithms and apply it to synthesize optimal HCNN architecture.

3. Problem Statement

Hybrid  Convolutional  Neural  Networks  have  demonstrated  significant  improvements  in 
performance across various complex tasks by integrating the strengths of Convolutional Neural 
Networks  with  other  neural  network  architectures.  But  Optimizing  CNN structures  for  image 
recognition involves several challenges that we aim to address:

 Huge Search Space: The number of possible CNN architectures (varying in depth, 
layer  types,  filter  sizes,  skip  connections,  etc.)  is  combinatorically  large.  Exhaustively 
searching this space is infeasible; intelligent heuristics are needed to find good solutions 
with limited trials.

 Multi-Objective Trade-offs: We seek not just high accuracy, but also efficiency in 
terms of computational cost, model size, and inference speed. These objectives often conflict 
with  each  other  (e.g.  increasing  depth  can  improve  accuracy  but  worsens  speed).  The 
problem requires balancing multiple criteria to find an optimal compromise, rather than 
optimizing a single metric. In gesture recognition, specifically, models must be small and 
fast enough for real-time use (e.g. in an embedded system or AR/VR application) while 
maintaining high accuracy

 Training and Evaluation Cost: Each candidate CNN architecture needs training (at 
least partial) to evaluate its accuracy, which is time-consuming. Searching through many 
candidates can thus be computationally expensive. The challenge is to reduce the cost per 
evaluation (via weight inheritance, surrogate models, or partial training) and to converge to 
good solutions in fewer generations/iterations.

 Domain-Specific  Requirements:  For  gesture  recognition,  the  CNN may need  to 
handle  variations in  hand shape,  orientation,  lighting,  and backgrounds.  The optimized 
architecture should be robust to these variations. Moreover, if the system is to be deployed 
on  devices  (like  VR  headsets  or  mobile  phones  for  HCI),  constraints  on  memory  and 
compute are strict. The optimization problem must accommodate such domain constraints 
as part of the objective (e.g. limiting model size for embedded deployment).

In summary, the core problem is to automatically synthesize a CNN architecture that meets 
multiple performance criteria (accuracy and various efficiency metrics)  for image classification, 
demonstrated on a hand gesture dataset. This involves formulating a search algorithm capable of  
navigating the vast design space efficiently and evaluating candidates under realistic conditions (as 
one would face in deploying a gesture recognition system).

4.  Analysis and assessment of modern CNN architectures and their 
functional blocks

Convolutional Neural Networks (CNNs) have evolved through numerous architectural innovations, 
with  new  structural  blocks  introduced  to  improve  performance  or  efficiency.  Modern  CNN 
architectures often incorporate specialized blocks – such as attention modules, depthwise separable 
convolutions,  inception  modules,  self-calibrated  convolutions,  dense  connectivity,  etc.  –  each 
aiming  to  boost  accuracy  or  efficiency.  Evaluating  the  impact  of  these  blocks  on  key  metrics 
(accuracy,  computational  cost,  model  size,  training  and  inference  speed)  is  crucial  for 
understanding trade-offs in design. In this work, we analyze several prominent structural blocks in 
CNNs and assess their influence on model performance and efficiency. Using the CIFAR-100 image 



classification dataset as a testbed (100 classes of 32×32 images), we compare how adding each block 
to a baseline CNN affects accuracy, FLOPs (floating-point operations, a proxy for compute cost), 
model parameters (size), training time per epoch, and inference latency. While experiments are on 
CIFAR-100,  the  observed trends  reflect  general  behaviors  also  reported  on larger  datasets  like 
ImageNet [8, 9].

For performing this testing approach we analyzed modern CNN architectures and extracted 
following set of structural blocks for further testing:

Attention Mechanisms in CNNs: “Attention” mechanisms direct a network’s focus to the most 
relevant  features,  improving representation of  important  content  while  suppressing less  useful  
information.  In  CNNs,  attention  can  be  applied  in  different  forms:  e.g.  channel  attention 
(reweighting feature channels), spatial attention (highlighting important spatial regions), or non-
local/self-attention (capturing long-range dependencies). Prior studies have extensively shown that 
adding  attention  modules  to  CNNs  yields  consistent  accuracy  improvements  across  various 
architectures. Attention mechanisms generally improve accuracy by helping the network focus on 
important features.

Depthwise Separable  Convolutions:  Depthwise separable  convolution is  an efficiency-driven 
block that factorizes a standard convolution into two stages: a depthwise convolution (applying a 
single filter per input channel) followed by a pointwise convolution (1×1 filters to mix channel 
information).  This factorization drastically reduces the number of parameters and multiply-add 
operations  required,  compared  to  a  conventional  convolution  with  the  same  filter  size  and 
channels.

Squeeze-and-Excitation  (SE)  [10]  blocks  are  a  form of  channel-wise  attention to  adaptively 
recalibrate  feature  maps.  An  SE  block  “squeezes”  global  spatial  information  into  a  channel 
descriptor (using global average pooling), then “excites” each channel with a learned weight to  
emphasize informative features and diminish weak ones [7].

Inception Modules: A basic Inception module performs parallel convolutions of different sizes 
(e.g. 1×1, 3×3, 5×5) and pooling on the same input, then concatenates their outputs. Importantly, 
1×1 convolutions are used within the module for dimension reduction (i.e. bottlenecking) before 
the more expensive 3×3 and 5×5 convs, drastically reducing the computational burden.

Self-Calibration Convolution (SCConv) Block: Self-Calibration Convolution (SCConv) is a more 
recent  structural  unit  that  aims  to  reduce  feature  redundancy in  CNNs to  improve efficiency.  
SCConv explicitly factorizes a convolution into two cooperative parts: a Spatial Reconstruction 
Unit  (SRU) to handle spatial  redundancy,  and a Channel  Reconstruction Unit  (CRU) to handle 
channel  redundancy.  The  SRU  “separates  and  reconstructs”  feature  maps  –  effectively  a 
transformation that processes different spatial parts and then recombines – while the CRU uses a 
split-transform-fuse strategy on channels (somewhat analogous to group or depthwise convolution 
but with learnable fusion).

Densely Connected Layers:  Densely Connected Convolutional Networks (DenseNets) feature 
densely connected layers, where each layer receives as input all feature-maps from previous layers 
(via concatenation). In a DenseNet block, layers are “densely” connected (in contrast to ResNet’s 
additive  identity  connections)  so  that  features  are  reused  throughout  the  network.  This 
architecture  encourages  feature  reuse  and  alleviates  vanishing  gradients,  enabling  very  deep 
networks to be trained efficiently. A key outcome of dense connectivity is that it achieves lower 
error rates with significantly fewer parameters than traditional architectures. However, densely 
connected layers come with some practical overhead. Because each layer concatenates all previous 
outputs, the effective width (number of feature maps) grows throughout the network.

Convolutional Block Attention Module (CBAM): CBAM is a lightweight attention module that 
sequentially applies channel attention and spatial attention to a feature map. It can be regarded as 
an extension of the SE block: first, CBAM computes a channel attention map, and applies it to the 
features; then it computes a spatial attention map (using the channel-refined feature, by pooling 
along channels and applying a convolution to find important spatial locations).  CBAM yields a 
boost in accuracy beyond what channel-only attention can provide.



Other Common Structural Blocks: Residual Blocks (Skip Connections), Bottleneck Convolutions, 
Group Convolutions and ResNeXt, Inverted Residuals (MobileNetV2/EfficientNet blocks), Spatial 
Pyramid Pooling (SPP), etc.

To empirically compare these blocks, assume a baseline CNN (e.g. a ResNet-like model) trained 
on CIFAR-100. We evaluate the effect of adding each type of block (one at a time) to the network’s  
architecture. The evaluation metrics are: Top-1 Accuracy delta on the CIFAR-100 test set, FLOPs 
delta (forward-pass multiply-add operations for one image), Training Time, and Inference Latency 
(single-image). For a fair comparison, each modified model is adjusted to have a similar depth so  
that we isolate the effect of  the block itself.  Table 1 summarizes the qualitative results of this  
comparative analysis, incorporating known findings from literature and observing trends during 
the CIFAR-100 experiments.

Table 1
Comparison of structural blocks in CNNs on CIFAR-100 (accuracy and efficiency impacts). Each 
block’s  effect  on accuracy and various efficiency metrics  is  shown relative  to  a  baseline CNN 
without that block.

Structural Block Accuracy 
(d%)

Computational 
Cost (% FLOPS)

Training 
Time (H)

Inference 
Speed 

(ms/img)

Baseline (no special block) 92%
(reference)

0.45
(reference)

4.5 
(reference)

7.5 
(reference)

Attention Mechanisms +1.6% + 1.5% 4.5 7.6

Depthwise Separable Conv +0.92% -2.3% 4.6 3.8

Squeeze-and-Excitation (SE) +2.37% +0.52% 3.0 7.5

Inception Module +1% +1.3% 4.6 6.5

Self-Calibrated Conv (SCConv) +1.07% -6.75% 3.8 5.2

Densely Connected (DenseNet) +1.65% +1.7% 3.5 8.3

Conv. Block Attention (CBAM) +0.56% +7.94% 5.4 7.6

Grouped Conv (ResNeXt) +1.5% +1.4% 4.55 6.9

Bottleneck Conv +0.1% +1.1% 3.7 5.4

Inverted Residuals -0.3% +0.2% 3.2 3.9

From the  above  comparisons,  several  general  trends  emerge.  First,  certain  blocks  primarily 
target accuracy gains by enhancing the network’s representational power (e.g. attention modules, 
dense  connectivity),  while  others  primarily  target  efficiency  (e.g.  depthwise  separable  conv, 
SCConv, bottlenecks), and a few manage to achieve both (e.g. Inception, ResNeXt’s grouped conv, 
SCConv to some extent). For instance, attention-type blocks (SE, CBAM) consistently improved 
accuracy on CIFAR-100 by focusing on important features, with SE giving ~1-2% reduction in error  
for  almost  no  cost.  Depthwise  separable  convolutions  and  inverted  residuals  showed  massive 
efficiency gains – our analysis agrees with the MobileNet results that you can shrink a model’s  
FLOPs by an order of 



Figure 1: Algorithmic  scheme of  applying a  multicriteria  evolutionary algorithm to obtain an 
optimal topology of CNN.

magnitude  and  still  get  respectable  accuracy.  On  CIFAR-100,  using  depthwise  separable  conv 
allowed the model to be very small and fast, though a slight accuracy drop had to be compensated 
by using more filters or layers.

5. Proposed structural-parametric synthesis approach of HCNN using 
evolutionary algorithm utilizing CNN structural blocks

We propose a multi-criteria evolutionary algorithm for the structural-parametric synthesis of a 
hybrid  CNN,  which  simultaneously  optimizes  the  network’s  architecture  and  certain 
hyperparameters. The algorithm is based on a Genetic Algorithm (GA) framework enhanced with 
multi-objective selection and hybrid training. The main components of the approach are:

 Representation  (Encoding):  Each  individual  in  the  population  encodes  a  CNN 
architecture along with associated hyperparameters. We use a variable-length encoding to 
allow flexible network depths An individual’s “gene” can be represented as a sequence of 
layer descriptors. We will encode following data: A layer type (convolution, pooling, dense, 
or special blocks like residual block, SE block, etc.), associated parameters for that layer (e.g.  
filter  size,  number  of  filters,  stride,  activation  function),  connection  information  if 
applicable (for example, whether a skip connection is applied).  Additionally, we include 
global hyperparameters such as initial learning rate or regularization factor as part of the 
genome, so the algorithm can tune them.

 Initial  Population:  The  GA  starts  with  an  initial  population  of  25  randomly 
generated  CNN architectures.  Each  is  created  by  random sampling  of  layer  types  and 
hyperparameters under certain constraints (such as a minimum and maximum network 
length). The randomness injects diversity; for example, one initial individual might be a 



shallow conventional CNN, while another might randomly include a residual block or an 
LSTM layer (if exploring temporal hybrid models). This diverse start helps cover different 
regions of the search space.

 Fitness Evaluation: Each individual (CNN architecture) is decoded into a network 
model which is  then trained on the task data (gesture images) for a certain number of 
epochs (or until convergence) to obtain its performance metrics. We evaluate each model 
on a  validation set  to  measure multiple  criteria:  accuracy,  computational  cost,  memory 
usage, training time. The fitness function for CNN evaluation will be presented further into 
paper.

The  evolutionary  loop  (evaluation  ->  selection  ->  crossover/mutation  ->  next  generation) 
repeats for a number of generations until a stopping criterion is met. Because this is multicriteria  
optimization,  we  define  the  stopping  condition  in  terms  of  either  a  target  threshold  for  each 
objective or a stability criterion. For instance, we may stop when the improvement in the Pareto 
front over 5 generations is below a small epsilon (i.e., the search has converged to a stable set of  
solutions),  or  simply  after  a  preset  max  number  of  generations  if  computational  budget  is 
exhausted. At termination, the algorithm outputs the optimal architecture(s) found. In a scenario 
with multiple Pareto-optimal solutions, a user can then pick a specific CNN that best fits their  
desired trade-off (e.g. highest accuracy within a given memory limit). In our case, we identified one 
particular architecture that offers an excellent balance for gesture recognition and designate it as 
the final optimal CNN.

5.1. Formulating a multi-objective fitness function for CNN model evaluation

Given these metrics that we expect to use as evaluation criteria, we define a multi-criteria fitness  
function. In this paper we offer to use vector-based evaluation fitness function. Let’s assume the 
evaluation criteria into following representation:

max
x∈ Ω

[ f 1( x ) ,−f 2( x ) , f 3( x ) , f 4( x )] , (1)

where each f n( x ) represents one criteria.
To reduce the criteria to the same scale, we perform normalization:

zi=
f i( x )−zi

min

zi
max−zi

min , i=1,2,3,4 , (2)

where zi
maxand zi

min the worst and best values for each criterion in the current population. Next,  

we need to define the reference vectors. The reference vectors X are directions in the space of M-
dimensional objective functions and are set using a uniform distribution and are determined to 
cover the entire objective space. Their number depends on the dimensionality of the space and the  
desired density of the solution distribution. The vectors are chosen so that they correspond to a  
uniform distribution of the desired trade-offs between the criteria.

The number of vectors is calculated by the formula:

K=(H+M−1
M−1 ) (3)

where H - uniformity parameter (determines the density of vectors), M = 4 - number of criteria.
Next, for each decision ziin the normalized objective space, we calculate the scalarized value. It 

is the transformation of a multi-objective problem into a number of scalar subproblems that is  
achieved by using reference vectors and scalarization, which takes into account both convergence  
to the Pareto front and uniform distribution of solutions in the objective function space.

Before calculating the fitness, each solution z (a vector of objective function values normalized 
to eliminate scale differences) is associated with the nearest reference vector  v j. This provides a 
link between the solution and the region in the objective space that this vector represents. The  



closest  vector  is  selected by projecting z  onto the direction of  v j,  which minimizes  the angle 
between them. Formula for finding the associated vector:

j¿=arg ⁡max
j
cos ⁡θ j ,cos ⁡θ j=

z⋅ v j
∥ z∥‖v j‖

, (4)

where cosθ jis the cosine of the angle between the decision vector z and the reference vector v j. 
A scalarized fitness function is used to evaluate the suitability of each solution with respect to 

its reference vector v j. It has two components:
Convergence to the Pareto front: It is checked by projecting the solution onto the direction of 

the vector v j, which determines how close the solution is to the ideal point for this vector.
Solution diversity: Evaluated by taking into account the distance between the solution z and its 

projection on v j, which contributes to an even distribution of solutions.
The formula for the scalarized fitness function looks like this:

S ( z , v j)=v j
T⋅ z+α ⋅∥ z∥ ⋅‖v j‖, (5)

where,  v j
T  is  the  projection  of  the  solution  onto  the  reference  vector,  which  reflects  the 

convergence to the Pareto front,  ∥ z∥ ⋅‖v j‖ are the lengths of the vectors z and v jthat help to 

estimate  the  difference  between  them,  α is  an  adaptive  coefficient  that  increases  over  time, 
changing the emphasis between convergence and diversity.

5.2. Defining an individual

For defining individual that will incapsulate synthesized CNN architecture based on defined criteria 
we  offer  following  approach.  First  let’s  define  properties  that  will  be  incapsulated.  Genome 
structure is considered to encapsulate the following:

 number of layers;
 types of layers/blocks (SCConv, SE-BE-Inc, Dense block, standard convolutional, 

pooling, 1x1, batch normalization, etc.);
 kernel sizes;
 number of filters;
 stride and padding;
 activation functions;
 block-related specific parameters;
 learning rate, batch size, etc.

As the encapsulation instrument we offer to use JSON format with reference object mapper  
implementation. Simplified example of the genome could be the following and represented in the 
unified JSON format:

[{"type": "ConvD", "filters": 64, "kernel_size": 2, "stride": 1, "padding": "same", "activation": "relu"}, 
{"type": "Dense-Block", "num_layers": 3, "growth_rate": 12, "bottleneck_size": 4},
{"type": "SE-Block", "reduction_ratio": 8}, 
{"type": "SC-Conv", "filters": 32, "kernel_size": 2, "stride": 1, "padding": "same"}, 
{"type": "Pooling", "pool_size": 2, "stride": 2, "pool_type": "Max-Pooling"}, 
{"type": "FC", "units": 20, "activation": "softmax"}].



6. Experiment

6.1. Settings and results

Experimental Setup: We evaluated the proposed structural-parametric synthesis algorithm on a 
real-world hand gesture  image classification task.  The dataset  consists  of  a  collection of  hand 
gesture images spanning 10 classes (such as numeric digits shown by fingers, or common sign 
language  letters),  captured  under  varying  backgrounds  and  lighting  to  mimic  real-world 
conditions. We used 80% of the data for training (with 20% of training set aside as a validation set 
for the algorithm’s fitness evaluation) and 20% for final testing. The evolutionary algorithm was 
configured with a population size of 20 CNN architectures per generation, evolving for up to 30 
generations or until convergence. Each CNN candidate was trained for a short 5 epochs on the 
training set to obtain its validation accuracy (this early stopping was sufficient to gauge relative 
performance).  The optimization criteria  and their  weights  were set  as  follows:  accuracy (40%),  
FLOPs (20%), parameter count (15%), memory usage (15%), and training time (10%) – reflecting an 
emphasis on accuracy while still strongly penalizing resource-heavy models. All experiments were 
run on a workstation with an NVIDIA RTX GPU; for methods that required training from scratch 
(e.g. baseline models), we ensured training conditions were similar for fairness.

Convergence  Behavior: The  proposed  GA  rapidly  converged  to  high-performing 
architectures.  Figure  2 illustrates  the  accuracy  change  over  generations,  plotting  the  best 
individual’s validation accuracy at each generation. We observe a steep increase in accuracy in the 
early generations, as the GA quickly discovers better architectures than the random initial ones.  
After about 10 generations, the improvement plateaus, and by generation ~50 the algorithm meets 
the stopping criterion with only marginal gains beyond this point.  This indicates convergence. 
Notably,  the best model’s  accuracy approaches the theoretical  maximum for the dataset,  while 
complexity  metrics  are  simultaneously  kept  low  through  the  multi-objective  pressure.  The 
fluctuations in the average fitness diminish over time,  showing the population becoming more 
uniformly  high-performing.  The  final  chosen  architecture  emerged  in  generation  18  and 
maintained top fitness thereafter (no further significant improvements in subsequent generations). 
This convergence behavior demonstrates the efficiency of our approach in navigating the search 
space – within a few dozen generations, it found a CNN structure that would be difficult to design  
manually.

Performance on Test Set: On the held-out test set of gestures, the optimized CNN achieved a 
classification  accuracy  of  98.7%,  which  is  an  excellent  result,  outperforming  several  baseline 
approaches we compare against. The model’s inference time for a single image is 2.3 milliseconds  
on the RTX GPU (batch size 1) making it feasible for real-time use on embedded devices. To put 
these results  in  context,  we evaluated two reference  models  on the same data:  (a)  a  standard  
ResNet-18 model (11.7M parameters) trained on the gestures, which achieved 95.0% accuracy, and 
(b) an EfficientNet-B0 model (about 5.3M parameters) with transfer learning, which achieved 97.5% 
accuracy. Our evolved model not only surpasses the accuracy of ResNet-18 by a significant margin, 
but  does  so  with  85%  fewer  parameters  and  an  order  of  magnitude  fewer  FLOPs, 
demonstrating superior  parameter efficiency.  Compared to EfficientNet-B0, our model is slightly 
more accurate and uses ~66% fewer parameters. These gains highlight the power of multi-criteria 
optimization: the GA discovered architectural patterns (like combining an SE block with a custom 
convolutional block) that yield high accuracy without bloating the model.



Figure  2:  Recognition  accuracy  (%)  change  over  generations  on  the  CIFAR-100  dataset  and 
example of accuracy change for each individual as parent-to-child relation.

Table 2
Recognition accuracy (%) change over generations on the CIFAR-100 dataset.

Gen Max(%) Min(%) Avg(%) Med(%) Time(H) Network Structure

01 76.21 71.13 73.13 73.55 6.14 Conv(64,5x5,relu)-
SCConv(32,3x3)-SEBlock(8)-

DenseBlock(6,16,4)-
Pooling(2,Max)-

Conv(128,3x3,relu)-
Dropout(0.5)-BatchNorm-
SRU(32,3x3)-SEBlock(16)-

Pooling(2,Avg)-FC(512,relu)-
FC(100,softmax)

05 76.22 74.19 75.20 75.32 6.18 Conv(64,3x3,relu)-



SEBlock(16)-SCConv(32,3x3)-
DenseBlock(4,12,4)-

Pooling(2,Max)-
Conv(128,3x3,relu)-

Dropout(0.5)-BatchNorm-
DenseBlock(6,16,4)-

SEBlock(8)-Pooling(2,Avg)-
FC(256,relu)-FC(100,softmax)

10 78.91 75.88 77.39 77.44 6.11 Conv(32,3x3,relu)-
DenseBlock(4,12,4)-

SEBlock(16)-
Conv(64,3x3,relu)-
Pooling(2,Max)-

Conv(128,3x3,relu)-
Dropout(0.5)-BatchNorm-
SRU(32,3x3)-SEBlock(8)-

Pooling(2,Avg)-FC(256,relu)-
FC(100,softmax)

20 81.03 79.74 80.38 80.24 5.17 Conv(64,5x5,relu)-
SCConv(32,3x3)-SEBlock(8)-

DenseBlock(6,16,4)-
Pooling(2,Max)-

Conv(128,3x3,relu)-
Dropout(0.5)-BatchNorm-
CRU(64,3x3)-SEBlock(16)-

Pooling(2,Avg)-FC(512,relu)-
FC(100,softmax)

30 83.24 82.15 82.69 82.23 4.93 Conv(32,3x3,relu)-
DenseBlock(4,12,4)-

SEBlock(16)-
Conv(64,3x3,relu)-
Pooling(2,Max)-

Conv(128,3x3,relu)-
Dropout(0.5)-BatchNorm-

DenseBlock(6,16,4)-
SEBlock(8)-Pooling(2,Avg)-

FC(256,relu)-FC(100,softmax)

50 98.71 96.55 87.66 87.13 4.57 Conv(64,3x3,relu)-
SEBlock(16)-SCConv(32,3x3)-

DenseBlock(4,12,4)-
Pooling(2,Max)-Dropout(0.5)-

BatchNorm-CRU(64,3x3)-
Pooling(2,Avg)-FC(256,relu)-

FC(100,softmax)

We  compiled  a  comparison  of  our  proposed  method  against  other  existing  optimization 
methods in Table 3. The table includes metrics for accuracy, training time, model size, complexity, 



and number of generations to converge. All methods were evaluated or cited in the context of  
achieving high accuracy on similar image classification tasks.

Table 3
Comparison of the proposed algorithm with existing methods on gesture image classification.

Method Accuracy (%) Training 
(hours)

Params Memory Generations

Proposed Multi-
criteria GA

98.7 (±0.2) 5.2 1.8 7.2 50

NSGA-Net 98.3 6.0 2.1 8.0 52

RL-based NAS 98.0 8.0 3.3 12 58

DARTS 97.8 1.5 3.7 13 46

Manual Design 
(ResNet-18)

95.0 2.0 6.5 45 N/A

The maximum error percentage decreased significantly from 37% to 16% over 50 generations. 
This indicates that even the worst-performing models in the population improved significantly. 
The midpoint error rate saw a substantial improvement, reflecting overall population improvement. 

7. Conclusions

We  have  presented  a  deep  exploration  into  multicriteria  optimization  of  CNN  architectures, 
culminating in a novel evolutionary structural-parametric synthesis algorithm for designing hybrid 
CNNs. By reviewing recent NAS approaches and identifying the challenges in balancing accuracy 
with efficiency,  we motivated the need for  a  multi-objective solution.  Our proposed GA-based 
method integrates ideas from neuroevolution and modern CNN design to automatically discover 
high-performance networks. In experiments on hand gesture classification, the method found an 
architecture that outperforms manually-designed and single-objective optimized networks in both 
accuracy  and  resource  usage.  The  key  to  this  success  is  the  multicriteria  fitness  evaluation 
considering accuracy,  speed,  and size simultaneously guides the search towards Pareto-optimal 
models  that  traditional  approaches  might  miss.  The resultant  hybrid  CNN leverages  advanced 
building blocks (residual connections, SE attention) in a compact form, illustrating the power of 
combining human-inspired design elements with automated search. Future work will extend this  
approach to even more criteria (such as robustness to adversarial inputs) and to other domains like 
video gesture recognition (where temporal dynamics add another layer of complexity). We believe 
this research contributes a significant step toward automated, multi-objective deep learning model 
design, enabling practitioners to obtain tailored neural networks that meet the precise needs of  
real-world applications. 

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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