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Abstract
Method  for  construction  and  demolition  waste  classification  using  two-factor  neural  network  image 
analysis has been developed, which allows increasing the classification accuracy to 97.8% for 10 classes of 
construction waste. High accuracy of object recognition and prevention of misclassifications is achieved 
due to use of two-factor approach to identification and classification of the construction and demolition 
waste.  Approach consists in combining the use of YOLO11 model  for object  identification and set  of 
binary ResNet50V2 classifiers for the classification of each of the 10 classes of construction and demolition 
waste. Method takes into account the results of binary trained neural networks for the classification of  
construction and demolition  waste,  and in  cases  of  ambiguous classification,  it  additionally  uses  the 
prediction of YOLO11 arbiter neural network. To ensure the diversity of training dataset and improve the  
generalization capabilities of classifiers,  dataset was expanded using transformations such as rotation, 
scaling,  color  change,  and reflection;  this  also  significantly  increased the accuracy of  separation and 
classification of construction and demolition waste. Comparison of the developed method and known 
analogues revealed minimum increase in accuracy of 5.2%, maximum increase in accuracy of 32.5%.
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1. Introduction

Classification of construction and demolition waste is becoming increasingly relevant due to the 
rapid growth in the volume of such materials, which accompanies the processes of urbanization 
and infrastructure modernization [1].  The construction industry is  currently one of  the largest 
sources of solid household and industrial waste, which is a significant environmental problem [2,  
3]. Modern waste management strategies require the integration of innovative technologies that 
can provide prompt and highly accurate identification of materials for their effective recycling, 
reuse  or  environmentally  safe  disposal  [4].  Outdated  waste  management  methods,  often 
accompanied by low levels of sorting and disposal, are one of the main causes of environmental 
degradation, water, air and soil pollution [5]. This creates risks of geological instability, increases  
the number of dangerous zones, such as landfills, and contributes to the spread of diseases among  
the population due to exposure to toxic substances.  In addition,  inefficient waste management 
exacerbates the problem of depletion of natural resources, as many materials that could be recycled 
end up in landfills [6, 7]. 

In  this  context,  recycling of  such waste  appears  as  an important  mechanism to reduce the 
volume of landfills,  while reducing the need for energy and natural resources required for the  
extraction and production of new materials [8, 9]. Innovative solutions such as neural network 
technologies,  automated  sorting  systems  and  recycling  infrastructure  aim  to  minimize  these 
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negative  impacts,  ensuring  not  only  the  protection  of  the  ecosystem,  but  also  transition  to  a 
circular economy [10, 11].

The  application  of  neural  network  technologies  in  the  classification  of  construction  and 
demolition waste contributes to the achievement of the UN Sustainable Development Goals,  in 
particular sustainable urban development (SDG 11), responsible consumption (SDG 12), sustainable 
infrastructure development (SDG 9)  and combating climate  change (SDG 13)  through effective 
waste management, increased recycling rates and reduced emissions [12, 13]. The aim of the study 
is to develop a method for classifying the remains of destroyed buildings and construction waste  
using neural network image analysis, which will allow to increase the accuracy of classification. 
The main contributions of the article can be summarized as follows:

 Method  for  construction  and  demolition  waste  classification  using  two-factor  neural 
network image analysis is proposed, which is based on combination of binary classifiers 
and  the  YOLO  neural  network,  which  allows  to  increase  the  accuracy  of  multi-class 
classification.

 Approach  to  refine  predictions  in  case  of  classification  ambiguity  is  developed,  which 
reduces the number of errors and ensures identification accuracy at the level of 97.8% for 10 
classes of construction waste.

 Experimental validation of the method is carried out, which confirmed its effectiveness in 
real conditions with heterogeneous data.

The next section presents an overview of related works in the field of construction waste and 
production waste. Section 4 offers an overview of the experiment to investigate the effectiveness of 
the proposed approach. Section 5 offers an overview of the obtained results with comparisons and 
discussions. The last section is conclusions.

2. Related Works

Studies  have  shown that  construction  and  demolition  waste  (C&DW) constitutes  a  significant 
proportion  of  municipal  solid  waste  (MSW)  accumulating  in  landfills  worldwide,  posing  a 
significant environmental challenge [14].

The study [15]  is  devoted to the development of  a  highly efficient method for fine-grained 
classification of construction and demolition waste (C&DW), which is an important step for the 
development  of  a  recycling system and achieving carbon neutrality  in  the waste  management 
sector.  C&DWNet  models  built  on  ResNet  using  knowledge  transfer  and  a  cyclic  learning 
coefficient were proposed to classify ten types of construction waste. The results showed that the  
knowledge transfer method can reduce the training time and improve the efficiency of the model.  
The  average  training  time  increased  with  the  number  of  layers  of  the  architecture:  from 
C&DWNet-18 (946.7 s) to C&DWNet-152 (1186.6 s). The best Accuracy (73.6%) was achieved on 
C&DWNet-152, however, the C&DWNet-18 model showed the optimal balance between training 
time, accuracy, precision and F1-metric. The use of t-distributed stochastic neighbor embedding 
allowed to clearly distinguish the types of waste.

In [16], an approach to construction waste management is presented using a robotic system to 
automatically sort and collect construction materials, such as nails and screws, which are difficult  
to detect manually. The robot uses neural network and computer vision technologies, as well as the 
Faster  R-CNN  method  for  real-time  detection  and  collection  of  target  objects  in  the  work 
environment.

In the study [17], deep learning approaches for effective waste identification and classification 
based on an open set of images from the Middle East region were studied. Images of garbage and 
waste are divided into five categories: paper, plastic, glass, metal and other. Each image contains  
only one class. Convolutional neural network (CNN) algorithms were used to classify waste, as 
well  as  pre-trained models  MobileNetV2,  ResNet50V2,  and DenseNet169.  The highest  accuracy 



among the pre-trained models was demonstrated by ResNet50V2 (98.95%), while the proposed CNN 
model achieved an accuracy of 88.5%, which exceeds the results of previous studies on the same 
dataset.

The  paper  [18]  describes  the  development  of  a  methodology  to  improve  the  sorting  of 
construction  and  demolition  waste  (BDW)  using  machine  learning,  using  an  RGB  camera  to 
recognize waste fragments. The main goal of the research is to improve the efficiency of waste 
sorting through the use of advanced feature extraction methods, which improves the speed and 
accuracy  of  classification.  The  paper  compares  three  classifiers:  convolutional  neural  network 
(CNN), gradient boosting decision trees (GB), and multilayer perceptron (MLP), where the feature  
extraction method for GB and MLP showed better results in terms of speed and accuracy compared 
to the traditional CNN. The results show that the new methodology provides accuracy up to 92.3%,  
compared  to  85.9% for  CNN.  The  paper  also  provides  additional  materials,  including  datasets, 
codes, and models, which contributes to the transparency and reproducibility of the results.

In [19], a method for detecting construction and demolition waste (CDW) in urban development 
is considered, taking Beijing as an example. Given the rapid demolition of old buildings, waste has  
become  an  important  component  of  the  urban  pollution  problem.  Since  CDW  landfills  have 
unstable contours, it is important to determine their location in a timely and accurate manner to  
achieve accurate mapping and effective waste management. A method based on change detection 
and deep learning was proposed to solve this problem. ZY-3 multispectral images from 2016 and 
2019, as well as difference images obtained using change detection methods, were used to prepare  
the initial samples. Sample expansion using the post-classification method allowed to increase the 
sample by 25.4%, which improved the results. This extended learning environment was used to 
train  the  DeepLabV3+  model,  and  the  digital  terrain  model  information  was  also  used  to 
distinguish different types of CDW, such as demolition waste, landfills, and large-scale dumps. The 
CDW detection accuracy was 91.67%, and the Kappa coefficient was 0.8642. Comparison of the 
results with the original samples showed that expanding the sample using change data improves 
the accuracy of the deep learning models, which is also confirmed by the results for the PSPNet and 
UNet models. This study is the first to effectively distinguish the three main forms of CDW and 
significantly reduce the errors in the classification of CDW and bare land. 

The  literature  review identified  several  key  issues  in  the  classification  of  construction  and 
demolition waste. First, most works are focused on classification within already defined objects, 
which is a simplified task, since one image may contain different fragments, often belonging to 
different  classes,  and  objects  may  be  superimposed  on  each  other.  Second,  in  multi-class 
classification, there is still low identification accuracy, which complicates the effective solution of 
the problem.

3. Method Design

The  proposed  approach  allows  to  increase  the  accuracy  of  classification  of  construction  and 
demolition waste by applying the developed method, which converts input data in the form of a  
photo image for  analysis,  a  trained neural  network for highlighting fragments of  construction 
remains in the photo image and their basic classification, and a set of trained neural networks for 
binary classification of fragments of construction remains into output data in the form of an image 
with highlighted fragments of construction remains and defined classes with probabilities of their 
belonging. The scheme of the method for construction and demolition waste classification using 
two-factor neural network image analysis is shown in Fig. 1.

The input  data  of  the method are  photo images  for  analysis,  a  trained neural  network for 
extracting fragments of construction remains in the photo image, and trained neural networks for  
binary classification of the selected fragments. YOLO11 [20] was chosen as the neural network for 
extracting fragments of construction remains in the photo image, and the trained neural networks  
for binary classification of the selected fragments have ResNet50 architectures [21].



For neural network extraction of objects in the image, the step 1 of preprocessing of the photo 
image first occurs [22]. The image is scaled to a size of 640x640 pixels. After scaling, the step 2 of 
extracting fragments of construction remains in the photo image directly occurs.

Figure 1: Scheme of the method for construction and demolition waste classification using two-
factor neural network image analysis.

For each selected fragment, a preprocessing stage is also performed for the possibility of further  
classification, which includes scaling to a size of 224x224 (while preserving the aspect ratio) and 
normalizing the image by subtracting the mean value and dividing by the standard deviation [23]

At step 3, each selected fragment is classified by each of the 10 trained neural networks for  
classifying  fragments  of  construction  remains  in  the  photo  image.  The  following  classes  are 
classified in the study: brick, concrete, foam, plastic, general waste, gypsum board, pipes, plastic, 
stone, tile, wood. Examples of fragments are shown in Fig. 2 (a-k). In the case where the neural  
networks give the same results, step 4 is performed, which consists of additional verification by an 
arbitrator. The arbitrator is the YOLO11 classification.

As a result, the output data are the selected fragments of construction remains in the photo and  
their defined names with membership probabilities.



The  developed  method  was  used  in  this  study  to  analyze  separate  frames,  but  it  can  be 
integrated into automated demolition waste sorting systems and applied to analyze a video stream 
in real time.

a) brick b) concrete c) foam d) general waste e) gypsum board

f) pipes g) plastic h) stone j) tile k) wood

Figure 2: Examples of construction and demolition waste.

Since one of the input data is a set of ResNet50 neural network models for binary classification,  
Figure 3 shows an example of obtaining a neural network model for brick identification. A similar 
approach is used to obtain trained models for the remaining 9 classes.

Figure 3: Training scheme of typical ResNet50 model for binary classification.

First, to train binary ResNet50 models from the general dataset for classifying different types of 
construction waste, subdatasets are formed. All fragments of the subdataset are scaled to 224x224 
size while preserving the aspect ratio and converted to RGB format.  Since the key problem of 
multi-class classification is the reduction of identification accuracy, it was decided to use 10 neural 
network classifiers, separate for each type of construction waste. Datasets are formed according to 
the rule: all images from the general dataset that correspond to the target category are transferred 
to the subdataset in the target category. The opposite category of the subdataset is  formed by 
combining in equal parts other types of construction waste and construction residues. Further, each 



of the fragments is rotated by 45 degrees 4 times, 4 new samples are formed, and for each new  
inverted  sample,  a  random  color  change  is  applied  according  to  the  brightness  and  contrast 
parameters. Thus, an extended subdataset is formed.

ResNet50 models are trained on the obtained subdatasets, which are validated by the metrics  
Accuracy, Precision, Recall, F1, after which a typical binary classifier model is saved.

So, a method is proposed that, instead of using the standard multi-class classification, which is 
typical for the YOLO neural network, uses a set of binary classifiers, each of which determines the  
belonging of the object to one of the classes. The method takes into account the results of binary  
trained  neural  networks  for  classifying  fragments  of  construction  remains,  and  in  cases  of  
ambiguity  (equality  of  estimates  between  classes),  it  additionally  uses  the  YOLO  forecast.  In 
situations where YOLO and one of  the binary classifiers coincide in the estimate,  this  class is  
determined  as  dominant.  This  approach  reduces  the  number  of  erroneous  classifications  and 
provides higher accuracy of object recognition.

4. Experiment

To research the effectiveness of proposed approach, the software was developed (Fig. 4) that uses 
pre-trained YOLO11 model and set of ResNet50 models for finding and classifying objects in an 
image. The PySide [24],  TensorFlow [25], and Ultralytics [26] libraries were used to create the 
software.

 Figure 4: Created software for construction and demolition waste classification.

The following datasets were used to train the neural networks, which are the input data of the 
proposed method and are used in the application:

1) “Construction and Demolition Waste Object Detection Dataset” [27]. The dataset contains 
3,129 high-resolution images (1920 × 1200 × 3, RGB) with 16,545 annotated samples covering 10 
waste categories. The data were collected at a waste sorting plant in Cyprus. The annotations are 
provided in PASCAL VOC XML format, including the coordinates of bounding boxes and polygons 
for  accurate  object  detection.  The  dataset  is  divided  into  subsets  for  training,  validation,  and 
testing.



2) “Dataset-of-stacked-construction-solid-waste” [28] to supplement the images of concrete and 
wood. The dataset contains 4 types of solid construction waste: concrete, brick, wood, and rubber. 
Each document contains 25 sample images and label files.

3) “RGB-D construction solid waste” [29].  An instance segmentation dataset for solid waste 
identification. The dataset includes 4 waste types: concrete, rubber, wood, and brick. It is also used 
for supplementation.

From the considered datasets, a general dataset was formed, which has the following structure 
and  dimension:  “brick”  –  1370  samples,  “concrete”  –  1407  samples,  “foam”  –  746  samples, 
“general_w” – 742 samples, “gypsum_board” – 1184 samples, “pipes” – 715 samples, “plastic” – 675 
samples, “stone” – 744 samples, “tile” – 1344 samples, “wood” – 1131 samples. This formed dataset 
was used to create subdatasets for training binary ResNet50 classifiers.

For further training of YOLO11, the following distribution was used: “brick” – 1370 samples 
contained in 309 files;  “concrete” – 1407 samples contained in 311 files;  “foam” – 746 samples 
contained in 126 files; “general_w” – 742 samples contained in 359 files; “gypsum_board” – 1184 
samples contained in 126 files; “pipes” – 715 samples contained in 196 files; “plastic” – 675 samples 
contained in 265 files; “stone” – 744 samples contained in 177 files; “tile” – 1344 samples contained 
in 308 files; “wood” – 1131 samples contained in 504 files.

To compare the effectiveness of the studied neural networks, the metrics Accuracy, Precision,  
Recall,  F1-Score  [30]  and  specialized  metrics  were  used,  which  allowed  for  a  comprehensive 
assessment of the proposed approaches. The effectiveness study was conducted in the following 
areas: 

 study of the impact of the elapsed training epochs on the accuracy of binary classifiers;
 comparison of the ResNet50 and MobileNetV2 architectures;
 comparison of the efficiency of YOLO11 for classifying production waste objects with the 

developed method.

5. Results and discussion

To identify construction and demolition waste objects, pre-trained neural network YOLO11 was 
used, which was further trained on the above-described dataset. This neural network also acts as an 
arbiter to confirm the predictions of individual neural network binary models [31].

During training YOLO11, the following transformations are performed on the input data:

 horizontal mirroring;
 random scaling;
 random shifting;
 random color changes (brightness, contrast).

These transformations occur over the full image, the fragments are not processed separately.  
Such  transformations  allow  to  increase  the  correctness  of  the  selection  of  construction  and 
demolition waste fragments.

To classify the selected fragments, a pre-trained ResNet50 model was taken, which is part of the  
TensorFlow library and was further trained on subdatasets, separate for each of the 10 models. To 
study the influence of the passed training epochs on the accuracy of binary classifiers, each of the 
binary neural network models ResNet50 was trained on different numbers of epochs – from 5 to 20. 
To train ResNet50, the following manipulations are performed on each fragment:

 the fragments are rotated 45 degrees 4 times, creating 4 new samples;
 a random color change (brightness and contrast) is applied to the new rotated sample.



Before that, the fragments are scaled to 224x224 while preserving the aspect ratio (the original  
image is centered, the "empty space" is filled with black) and converted to RGB format, if it was 
BGR or RGBA. The results of the experiments are given in Table 1. 

Table 1
The impact of training epochs number on metrics for the ResNet50 neural network

Epochs Accuracy Precision Recall F1-Score Class

Epoch 5 0.9738 0.9713 0.9761 0.9737

Brick
Epoch 10 0.9740 0.9624 0.9863 0.9742

Epoch 15 0.9810 0.9776 0.9845 0.9810

Epoch 20 0.9775 0.9679 0.9876 0.9776

Epoch 5 0.9768 0.9643 0.9907 0.9773

Concrete
Epoch 10 0.9785 0.9658 0.9923 0.9789

Epoch 15 0.9846 0.9855 0.9839 0.9847

Epoch 20 0.9854 0.9883 0.9826 0.9855

Epoch 5 0.9818 0.9860 0.9772 0.9816

Foam
Epoch 10 0.9848 0.9871 0.9822 0.9846

Epoch 15 0.9725 0.9517 0.9950 0.9729

Epoch 20 0.9877 0.9824 0.9931 0.9877

Epoch 5 0.9655 0.9473 0.9827 0.9647

General Waste
Epoch 10 0.9643 0.9420 0.9861 0.9636

Epoch 15 0.9780 0.9766 0.9775 0.9770

Epoch 20 0.9801 0.9767 0.9818 0.9792

Epoch 5 0.9454 1.0000 0.8917 0.9427

Gypsum Board
Epoch 10 0.9786 0.9723 0.9856 0.9789

Epoch 15 0.9765 0.9639 0.9904 0.9770

Epoch 20 0.9647 0.9410 0.9922 0.9659

Epoch 5 0.9552 0.9667 0.9410 0.9537

Pipes
Epoch 10 0.9590 0.9479 0.9695 0.9586

Epoch 15 0.9585 0.9445 0.9724 0.9582

Epoch 20 0.9599 0.9564 0.9619 0.9592

Epoch 5 0.9155 0.9033 0.9277 0.9153

Plastic
Epoch 10 0.9378 0.9364 0.9373 0.9369

Epoch 15 0.9378 0.9381 0.9354 0.9367

Epoch 20 0.9373 0.9355 0.9373 0.9364

Epoch 5 0.9793 0.9891 0.9688 0.9788

Stone
Epoch 10 0.9830 0.9851 0.9803 0.9827

Epoch 15 0.9834 0.9828 0.9836 0.9832

Epoch 20 0.9850 0.9828 0.9869 0.9848

Epoch 5 0.9647 0.9755 0.9528 0.9640

Tile
Epoch 10 0.9679 0.9685 0.9667 0.9676

Epoch 15 0.9647 0.9849 0.9434 0.9637

Epoch 20 0.9676 0.9558 0.9799 0.9677

Epoch 5 0.9732 0.9822 0.9638 0.9729

Wood
Epoch 10 0.9787 0.9763 0.9813 0.9788

Epoch 15 0.9808 0.9849 0.9765 0.9807

Epoch 20 0.9833 0.9891 0.9774 0.9832



The data in Table 1 show that increasing the number of training epochs has a positive effect on 
the performance metrics for most classes. Larger number of epochs allows the model to better  
adapt to the patterns in the data, although after a certain point the effect can fade or even worsen  
due to overfitting [32], as seen in the classes "Gypsum Board" and "Plastic". The metrics can also be 
affected by the characteristics of the data itself [33], such as the distribution between classes, the  
complexity of the samples, and the level of noise. Thus, choosing the optimal number of epochs is 
critical and depends on the specifics of the task and the data [34].

To compare the results, a similar experiment was conducted with the MobileNetV2 architecture 
[35], which is also a pre-trained neural network model. The training results are presented in Table  
2.

Table 2
The impact of training epochs number on metrics for the MobileNet neural network

Epochs Accuracy Precision Recall F1-Score Class

Epoch 5 0.9601 0.9583 0.9659 0.9621

Brick
Epoch 10 0.9587 0.9706 0.9500 0.9602

Epoch 15 0.9508 0.9749 0.9301 0.9520

Epoch 20 0.9564 0.9692 0.9469 0.9579

Epoch 5 0.9765 0.9691 0.9872 0.9781

Concrete
Epoch 10 0.9785 0.9810 0.9785 0.9798

Epoch 15 0.9766 0.9715 0.9849 0.9782

Epoch 20 0.9772 0.9794 0.9775 0.9785

Epoch 5 0.9726 0.9824 0.9662 0.9742

Foam
Epoch 10 0.9670 0.9517 0.9884 0.9697

Epoch 15 0.9726 0.9871 0.9614 0.9741

Epoch 20 0.9814 0.9762 0.9894 0.9828

Epoch 5 0.9540 0.9502 0.9608 0.9555

General 
Waste

Epoch 10 0.9461 0.9275 0.9710 0.9487

Epoch 15 0.9628 0.9714 0.9556 0.9634

Epoch 20 0.9579 0.9662 0.9514 0.9587

Epoch 5 0.9610 0.9570 0.9692 0.9631

Gypsum 
Board

Epoch 10 0.9591 0.9451 0.9788 0.9617

Epoch 15 0.9613 0.9522 0.9752 0.9636

Epoch 20 0.9699 0.9659 0.9770 0.9714

Epoch 5 0.9406 0.9574 0.9278 0.9424

Pipes
Epoch 10 0.9421 0.9165 0.9784 0.9465

Epoch 15 0.9548 0.9379 0.9784 0.9578

Epoch 20 0.9534 0.9585 0.9522 0.9553

Epoch 5 0.8994 0.8844 0.9293 0.9063

Plastic
Epoch 10 0.9104 0.9025 0.9293 0.9157

Epoch 15 0.9094 0.9163 0.9101 0.9132

Epoch 20 0.9154 0.8968 0.9474 0.9214

Epoch 5 0.9564 0.9326 0.9877 0.9594

Stone
Epoch 10 0.9726 0.9793 0.9680 0.9736

Epoch 15 0.9726 0.9707 0.9770 0.9738

Epoch 20 0.9701 0.9682 0.9746 0.9714

Epoch 5 0.9468 0.9436 0.9565 0.9500

TileEpoch 10 0.9523 0.9404 0.9714 0.9556

Epoch 15 0.9540 0.9525 0.9608 0.9567



Epoch 20 0.9530 0.9394 0.9739 0.9563

Epoch 5 0.9627 0.9593 0.9700 0.9646

Wood
Epoch 10 0.9647 0.9680 0.9646 0.9663

Epoch 15 0.9679 0.9664 0.9726 0.9695

Epoch 20 0.9657 0.9744 0.9598 0.967

The impact of training epochs number on metrics for the MobileNet neural network-Score is 
observed at the 20th epoch, while for the "Plastic" class, the qualitative indicators remain lower,  
regardless of the number of epochs, probably due to the more complex data structure.

The stability of the metrics at the 15th and 20th epochs for many classes indicates that the 
network achieves optimal learning, although some fluctuations, for example in the "Pipes" class, 
may  be  caused  by  overfitting  or  insufficient  generalization.  The  overall  result  indicates  the 
importance of fine-tuning the number of epochs for each specific class to avoid performance loss.

A comparison of the best results from Tables 1 - 2 of alternative neural network options for 
binary classification is shown in Figure 5.

Figure 5: Comparison of the performance of neural networks ResNet50 and MobileNetV2 

The  results  of  the  performance  comparison  of  the  ResNet50  and  MobileNetV2  models 
demonstrate significant differences,  which are due to the architectural  features of  these neural 
networks. ResNet50, being a deeper and more complex model, shows higher Accuracy indicators 
and  harmoniously  balanced  Precision,  Recall  and  F1-Score  for  most  classes,  in  particular  for 
"Foam", "Stone" and "Wood". This indicates its ability to effectively generalize patterns even in 
complex data.

MobileNetV2, on the contrary, is focused on optimizing computational resources and has less 
depth, which explains its lower performance in the cases of complex classes such as "Plastic" or  
"Tile". Its advantages become noticeable in tasks with less complex data, where it is able to achieve 
acceptable metric values with minimal resource costs.

The pre-trained YOLO11 neural network is also capable of performing not only the separation 
of construction debris and construction residues, but also the identification of the separated objects. 
After  further  training on the  specified dataset,  the  neural  network obtained the  metric  values 
shown  in  Table  3.  The  metrics  results  for  YOLO11  demonstrate  significant  variability  in 
classification performance for different classes of construction and demolition waste, confirming 
the feasibility of implementing binary classifiers to improve accuracy and consistency of results. 
The macrometrics show a moderate overall Accuracy of 0.601 and F1-Score of 0.7508, however, 
there is a clear gap between high performance for some classes (e.g., "brick" and "concrete") and 
significantly lower results for others (e.g., "foam", "pipes", "plastic"). Most critically, for classes such 



as "foam" (Accuracy 0.373, F1-Score 0.544),  "pipes" (Accuracy 0.289, F1-Score 0.45) and "plastic" 
(Accuracy 0.294, F1-Score 0.455), Recall values are either not high enough or excessively exceed 
Precision. This indicates problems with the differentiation of these classes, which may be due to 
overlapping features between classes, imbalance in the amount of data, or the complexity of the 
objects themselves to be classified.

Table 3
Metrics of YOLO11

Class Image
s

Instance
s

Accuracy Precisio
n

Recall F1-Score mAP50 mAP50-
95

MACRO 570 3236 0.601045 0.803 0.705 0.750816 0.746 0.669

Brick 86 372 0.889290 0.988 0.899 0.941401 0.940 0.876

Concrete 86 364 0.882799 0.965 0.912 0.937752 0.977 0.910

Foam 49 295 0.373196 0.409 0.810 0.543544 0.613 0.502

General Waste 121 287 0.542018 0.702 0.704 0.702999 0.768 0.689

Gypsum Board 30 276 0.875393 0.989 0.884 0.933557 0.904 0.839

Pipes 55 260 0.289945 0.719 0.327 0.449547 0.490 0.383

Plastic 97 306 0.294285 0.493 0.422 0.454745 0.401 0.320

Stone 43 245 0.467000 1.000 0.467 0.636673 0.590 0.539

Tile 84 346 0.770411 0.811 0.939 0.870319 0.921 0.871

Wood 190 485 0.667783 0.954 0.690 0.800803 0.854 0.765

The introduction of binary classifiers allows you to optimize the performance for each class  
separately,  adapting the model to the specifics of each type of object.  For example,  the use of 
separate  binary  classifiers  for  "plastic"  and  "pipes"  allowed  you  to  focus  on  the  characteristic  
features of these classes, minimizing the impact of the heterogeneity of features of other classes in 
the  overall  model.  This,  in  turn,  improved  the  Recall  and  F1-Score  for  classes  with  low 
performance, while increasing the overall level of consistency of the metrics.

The mAP50 and mAP50-95 metrics are used to evaluate the quality of the YOLO11 model in 
classifying and localizing construction debris and construction waste objects in images. The overall  
mAP50  score  is  0.746,  indicating  a  high  ability  of  the  model  to  detect  objects  at  a  moderate  
threshold of match between the predicted and actual frame (IoU ≥ 50%). At the same time, mAP50-
95 with an average value of 0.669 shows reduced performance under stricter evaluation conditions 
that take into account localization accuracy at higher IoU thresholds. This difference is expected, 
since mAP50-95 is  a  more stringent  metric  that  reflects  the ability of  the model  to accurately 
localize objects. Analysis of the results by individual classes shows that for objects with clear visual  
features,  such  as  "brick",  "concrete",  "gypsum  board"  and  "tile",  the  model  demonstrates 
consistently high performance,  even under strict  conditions.  This indicates a  reliable ability of  
YOLO11 to recognize objects with minimal variations in shape or texture. At the same time, classes 
with  heterogeneous  characteristics,  such  as  "plastic",  "pipes"  and  "stone",  are  characterized  by 
significantly lower indicators. This indicates the need for optimization, in particular, increasing the 
number of training samples, improving data quality or applying specialized approaches to their  
processing.

However, despite the classification problems, this neural network copes with the task of object 
selection at a fairly high level, as evidenced by the MioU metric of 0.897.

Regarding the task of classifying the selected objects, a comparison of the obtained metrics for 
YOLO11 and ResNet50 and their delta results is given in Table 4. A comparison of the metrics of 
YOLO11 and ResNet50 shows significant advantages of ResNet50 in object classification accuracy 
and  overall  model  performance.  The  data  in  the  table  shows  that  ResNet50  significantly 
outperforms YOLO11 in all key metrics – Accuracy, Precision, Recall and F1-Score. The largest  



gains are observed in metrics for classes such as "foam", "pipes" and "plastic", where the difference 
reaches more than 0.6, indicating significant improvements in the ability of ResNet50 to correctly  
classify these objects and determine their belonging to the corresponding classes.

The  average  value  of  the  indicators  (MACRO)  also  demonstrates  significant  advantages  of 
ResNet50, where the overall increase in Accuracy is 0.374, Precision – 0.169, Recall – 0.272, and F1-
Score – 0.223. This indicates that ResNet50 is not only more accurate in class detection, but also 
better at reducing missed (False Negative) or incorrectly identified (False Positive) objects.

Table 4
Metrics comparison for YOLO11 and ResNet50

Class
Accuracy Precision Recall F1-Score

YOLO11 ResNet50 
(delta)

YOLO11 ResNet50 
(delta)

YOLO11 ResNet50 
(delta)

YOLO11 ResNet50 
(delta)

MACRO 0.601 0.975 
(+0.374) 

0.803 0.972 
(+0.169)

0.705 0.977 
(+0.272)

0.751 0.974 
(+0.223)

Brick 0.889 0.981 
(+0.092)

0.988 0.978 
(-0.01)

0.899 0.985 
(+0.086)

0.941 0.981 
(+0.04)

Concrete 0.883 0.985 
(+0.102)

0.965 0.988 
(+0.023)

0.912 0.983 
(+0.071)

0.938 0.986 
(+0.048)

Foam 0.373 0.988 
(+0.615)

0.409 0.982 
(+0.573)

0.810 0.993 
(+0.183)

0.544 0.988 
(+0.444)

General Waste 0.542 0.980 
(+0.481)

0.702 0.977 
(+0.275)

0.704 0.982 
(+0.278)

0.703 0.979 
(+0.276)

Gypsum Board 0.875 0.979 
(+0.104)

0.989 0.972 
(-0.017)

0.884 0.986 
(+0.102)

0.934 0.979 
(+0.045)

Pipes 0.290 0.960 
(+0.67)

0.719 0.956 
(+0.237)

0.327 0.962 
(+0.635)

0.450 0.959 
(+0.509)

Plastic 0.294 0.938 
(+0.644)

0.493 0.938 
(+0.445)

0.422 0.935 
(+0.513)

0.455 0.937 
(+0.482)

Stone 0.467 0.985 
(+0.518)

1.000 0.983
(-0.017)

0.467 0.987 
(+0.52)

0.637 0.985 
(+0.348)

Tile 0.770 0.968 
(+0.198)

0.811 0.956
(+0.145)

0.939 0.980 
(+0.041)

0.870 0.968 
(+0.098)

Wood 0.668 0.983 
(+0.315)

0.954 0.989
(+0.035)

0.690 0.977 
(+0.287)

0.801 0.983 
(+0.182)

Particular attention should be paid to the classes with low performance of YOLO11, such as 
"foam",  "pipes",  "plastic"  and  "stone".  For  these  classes,  YOLO11  shows  significantly  lower 
Accuracy, which may be due to the difficulty of object detection due to non-uniform texture or 
shape features. ResNet50 significantly improves the results for these classes, indicating its ability to 
better capture object features even in complex cases.

However,  for  some  classes,  such  as  "brick",  "gypsum  board"  and  "stone",  the  Precision  of 
YOLO11 exceeds ResNet50 or has minimal loss. This may indicate that YOLO11 does a good job of  
identifying specific, well-defined objects, although the overall performance of the model is lost due 
to  low  Recall,  which  indicates  frequent  omissions.  That  is  why  this  model  was  used  for 
classification only as an arbiter neural network, and its main role is to select objects.

A comparison with existing scientific research was also made. Comparing the results obtained 
with a similar study of the classification of construction debris and construction waste conducted 
in [15], an improvement in Accuracy to 0.975 was achieved, compared to the authors' value of 0.736 
for classification by ten classes. In the study [17], ResNet50V2 was also used, which achieved an 
Accuracy of almost 0.99, however, the study was conducted only for five classes, and the objects in 
the  images  were  contained  one  at  a  time,  the  authors  did  not  conduct  a  study  of  object 



identification, but only classification. In the study [18], the classification of construction waste into 
four classes was carried out and the Accuracy of 0.923 was achieved, which is lower than the  
results obtained by the proposed method. The proposed method also performed better than in [19]  
(the authors obtained Accuracy of 0.917).

Thus, the proposed implementation of binary classifiers is reasonable approach to improve the 
quality of classification in tasks with high variability of performance between classes.

6. Conclusions 

The method for construction and demolition waste classification using two-factor neural network 
image analysis has been developed, which allows increasing the classification accuracy to 97.8% for  
10 classes  of  construction and demolition waste.  This  effect  is  achieved by using a two-factor 
approach to identifying and classifying the remains of destroyed buildings and construction waste, 
which consists in combining the use of YOLO11 for object identification and as a neural network-
arbitrator  and  a  set  of  binary  classifiers  ResNet50V2  for  classifying  each  of  the  10  classes  of 
construction waste. The method takes into account the results of binary trained neural networks 
for classifying fragments of construction remains, and in cases of ambiguity (equality of estimates  
between classes), it additionally uses the prediction of the YOLO11 neural network-arbitrator. In 
situations where YOLO11 and one of the binary classifiers coincide in the estimate, this class is 
determined as dominant. This approach reduces the number of false classifications and provides 
higher object recognition accuracy.

As data for further training of YOLO11 and binary classifiers ResNet50V2, a composite dataset 
based on the datasets "Construction and Demolition Waste Object Detection Dataset", "Dataset-of-
stacked-construction-solid-waste" and "RGB-D construction solid waste" was used.

The use of transformations such as rotation, scaling, color change and reflection significantly 
increases the accuracy of construction waste separation and classification. This provides a variety 
of training dataset and promotes generalization of models. Comparison of the developed method 
and known analogues showed an increase in accuracy in the range from 5.2% to 32.5%, reaching an 
indicator of up to 97.8%.

The developed method contributes  to  the  achievement  of  the  UN Sustainable  Development 
Goals, in particular SDG 11, SDG 12, SDG 9 and SDG 13 through effective waste management,  
increased recycling and reduced emissions. The presented approach can be used to automate the 
sorting  of  construction  waste,  which  will  reduce  time  and  increase  the  efficiency  of  waste  
processing.  Further development includes refining the models to better handle complex classes 
such as "Plastic" and "General Waste",  as well  as implementing active learning mechanisms to 
adapt to new data. Another direction for further research is method's integration into automated 
waste sorting systems and real-time analysis of the method's performance. The priority direction of 
further  research is  to  expand the  dataset  with  additional  image classes  and scaling developed 
method up to a wider range of building materials. 
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