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Abstract
The paper examines the methodology for modeling many-section conveyor systems using a neural network 
architecture based on the multilayer perceptron model. Modeling such systems are analyzed, and a rationale 
for the use of neural networks in the development of systems for controlling they flow parameters is 
described. Conditions for using such models are determined. A model of a multi-section transport conveyor 
is developed. To correct synaptic weights when training a neural network in accordance with the method of 
minimizing the root mean square error, the backpropagation algorithm is used. For nodes in each hidden 
layer, the same type of activation function is specified, which characterizes the nonlinearity of the layer. The 
weights are adjusted during the training period for each training example. Initialization of the weights of the 
neural network is carried out using a pseudorandom number generator, which provides for the possibility of 
repeating the experiment many times with different activation functions and hyper-parameters for training. 
Strategies for initializing the weighting coefficients of neural networks are presented and recommendations 
for the initialization process are given. To train the neural network is used a data set generated using an 
analytical model for an eight-section transport conveyor. An analysis of the main numerical characteristics 
of material flow in transport systems used as a training data set for a neural network is presented and the  
need for data normalization is substantiated. The speed and accuracy of training for multilayer perceptron of 
different architectures and with different types of  activation functions are analyzed.  The analysis  was 
performed for both the hidden layer nodes and the output layer.
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1. Introduction

The natural resource extraction industry continues to actively develop to obtain valuable resources. 
This  industry  is  characterized  by  aggressive  mining conditions,  labor-intensive  work and huge 
volumes of cargo transportation. Its effectiveness directly depends on the equipment used. One of the 
main types of equipment needed in the mining industry is a belt conveyor. Its difference from other 
transport systems (TS) lies in its continuous operation and ability to carry impressive loads through 
hard-to-reach places.

This work is devoted to the construction of models of multi-sectional TS based on the use of 
multilayer feed-forward networks, is a continuation of studies [1,2], in which a multilayer perceptron 
is applied to predict the flow parameters of a transport system. We consider a multilayer perceptron 
(MLP) as a type of artificial neural network consisting of multiple layers of neurons.

2. Literature review

The transportation of material in the mining industry makes about 30% in the cost of production even 
with loading a conveyor by 50–70% [3, 4]. With an increase in the length of the transport route and a 
decrease in the load factor of a many-sections conveyor, the cost of transportation in the unit cost of 
products increases nonlinearly. A transport conveyor is a dynamically distributed system in which the 
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connection of input and output parameters takes into account the transport delay. When designing 
systems for controlling the transportation of a material for a conveyor consisting of several sections, 
models are used based on the equations of system dynamics [5], the aggregated equation of state [6], 
the Lagrange equations, the finite element method [7-9]. With an increase in the number of sections to 
several dozen, these methods lose their relevance due to a significant increase in the complexity of the 
computational algorithm. In this case, the analytical PiKh-model of the transport conveyor can be 
applied to elaborate control systems [10,11]. In recent years, quite a lot of research has appeared on 
the use of MLP for modeling various processes in conveyor TS [12-14].

A common phenomenon in the modern mining industry is the use of multi-section conveyor 
systems [15-17]. The use of MLP for calculating the flow parameters of a conveyor-type TS is of 
scientific and practical interest even with several tens of conveyor sections [1]. The tendency to 
further increase the number of sections in modern conveyor systems makes the use of MLP in models 
of  multi-section  conveyor-type  systems  more  and  more  actual.  Unlike  other  studies  the  main 
attention in this research will be paid to the study of the influence of the network architecture on the 
accuracy of predicting the flow parameters of the transport system.

3. Problem statement

To train MLP, let us use the error back propagation algorithm [18], based on the correction of  
synaptic weights in accordance with the method of minimizing the mean square error. With forward 
signal propagation, the synaptic weights that determine the connection between the nodes of the 
layers of MLP are fixed. Correction of synaptic weights occurs when the signal propagates backward. 
An activation function is specified for each neuron. When constructing MLP, two types of activation 
functions were used: the logistic activation function 

(1)

linear (ReLU) activation function

(2)

Within one layer, for all nodes, the same activation function is set with coefficients fixed for each 
node of the layer a,b. For different layers, the form of the activation function and the coefficients that 
determine it may differ. For an identical functionf ( x )=bx , x∈ ]−∞ ;+∞[   (without restrictions on 

the range of values of the function), a multi-layer feed-forward network with a linear activation 
function can be reduced to a network without hidden layers. network, in this case, transforms into a 
linear regression model

yν=wν 0+wν 1 x1+. . .+wνm xm+. . .+wνM xM , (3)

in which the values of the output parameters of the TS  yν   are determined through the value of the 

input parameters xm . TS model based on a multilayer MLP with a logistic activation function (1) has a 

distributed  form  of  nonlinearity  and  high  connectivity  of  network  nodes,  which  significantly 
complicates the learning process, and as a consequence, the use of such models to describe TS. In this 
regard, to substantiate and qualitatively analyze the results of a model with a logistic activation 



function at the nodes of MLP, a model of a multilayer MLP with a linear activation function is 
considered  (2).  When conducting  a  comparative  analysis  of  the  results  for  MLP with  different 
architectures,  it  should  be  borne  in  mind  that  the  used  back-propagation  algorithm  ensures 
convergence to one of the minima of the function that determines the value of the mean square error. 
This requires a fairly large number of experiments with different parameters of the activation function 
and the value of the learning rate. The function of the mean square error of the model (MSE) was used 
as a criterion for the quality of training when predicting the output flow parameters of TS yν

MSE= 1
N
∑
n=1

N

∑
ν=1

V

( yνt n− yνn)2
,

(4)

whereyνn ,yνt n  is the predicted and test value of the output parameter yν , ν=1. .V  for the n-th 

row of input parameters  xmn ,  m=1. .M  with the total number of elementsN  in the training set 

(cardinality of the set N ). During training, the weights wνm  are adjusted within the training epoch 

after each training example. During one learning epoch, the weighting coefficients are adjusted N  

times. MSE (4) is calculated after each epoch. The correctionΔwνm  for the weightwνm  with the output 

neuron ν  and the neuron m  from the hidden layer (the previous layer adjacent to it) is determined by 

the delta rule

Δwνm=−α νm

∂Eν

∂wνm .
(5)

where the quality criterion is selected as the sum of squares of errors for each of the nodes of the 
output layer

Eν=
1
2
∑
ν

e
ν2

.
(6)

Each output neuron is characterized by an error eν

eν= yνt− yν , (7)

where  yνn  is  the  predicted  value  of  the  output  parameter,  yνt n  is  the  value  of  the  output 

parameter, which is used to train MLP. The distributed error for the hidden layer eν  is determined by 

the magnitude of the errors in the output layer. In expression (7), the index n is omitted to simplify the 
notation, but it is assumed that the formula is given for the n– sample of the training data set [2] used 
to train MLP. To train MLP, a dataset was generated based on the use of the PiKh analytical model to 
study the flow parameters of MLP. The methodology for generating a data set presented in [2]. The 
predicted value yνn  for ν− th node of the output layer is expressed in terms of the values of the nodes 

xmn  of the hidden layer (previous layer)



yν=f (∑
m

wνm xm)
,

(8)

from where

∂Eν

∂wνm

=1
2

∂Eν

∂ eν

∂ eν
∂wνm

=
∂Eν

∂ eν

∂ ( yνt− yν )
∂wνm

=
∂Eν

∂ eν

∂ ( yνt− yν )
∂ yν

∂ yν
∂wνm .

(9)

Taking into account that

1
2

∂Eν

∂ eν
=eν

,   

∂ ( yνt− yν )
∂ yν

=−1
,

(10)

∂ yν
∂wνm

=

∂ f (∑
m

wνm xm)
∂wνm

=

∂ f (∑
m

wνm xm)
∂∑

m

wνm xm

∂∑
m

wνm xm

∂wνm

=f '(∑
m

wνm xm)xm
,

(11)

the expression for adjusting the weight wνm  with the output neuron ν  and the neuronm  from the 

hidden layer can be represented as

Δwνm=−α νmeν (−1) f '(∑
m

wνm xm)xm
.

(12)

For logistic activation function (1)

∂ f (β )
∂ β

=
ab exp(−bβ )

(1+exp(−bβ ))2
=bf (β )exp(−bβ )

1+exp(−bβ )
=bf (β )(1−

f (β )
a )

,
(13)

considering relation (8), for the nodes of the layer with the logistic activation function, let's write 

Δwνm=α νmeν byν(1−
yν
a )xm

.
(14)

For linear activation function (2)

(15)

and, correspondingly

(16)

For the logistic activation function, the coefficients change with each return pass. For a linear 
activation function, the change in the coefficients occurs only for nodes for which the value yν  is in 

the rangea> yν>0 . Expressions (14), (16) determine the value of the adjustment of the coefficients 

connecting the node xm  of the hidden layer and the node yν  of the output layer. 



To determine the value of adjustmentΔwkm  between the node zk  of the hidden layer, which is 

closer to the nodes of the output layer yν  and the node xm  of the hidden layer, which is farther to the 

nodesyν  of the output layer, we will use expressions (14) and (16), replacing for definiteness yν  by 

zk , and eν  by ξk .

ThenΔwkm  between the two hidden layers will be determined by the dependency

Δwkm=αkmξk bzk(1−
zk
a )xm

.
(17)

(18)

with an unknown error value ξk  for the node zk  of the hidden layer. To determine the value of the 

error, let us use the back-propagation algorithm. The hidden layer error ξm  can be written in the form 

of the superposition of the errors of the output layers

ξm=∑
ν

eν
wνm

∑
m

wνm
.

(19)

The fraction of the error eν  for the node of the output layer, transmitted to the hidden layer, is 

proportional to the coefficientwνm . The calculation of the error for the nodes of the next hidden layer 

is determined by the expression

ξk=∑
m

ξm
wmk

∑
k

wmk
.

(20)

Substituting the calculated error value ξk  for the node zk  for the hidden layer node into formulas 

(17), (18), we obtain the correction value Δwkm  for the coefficientwkm  between the two hidden layers. 

For a particular case, when the value ∑
k

wmk  is comparable in order of the value for different nodes 

xm , expression (21) can be simplified to the form

ξk=∑
m

ξmwmk
.

(21)



In the present study, when training MLP for the back-propagation algorithm, expression (20) was 
used. When determining the value of adjustment Δwkm , the learning rate αkm  local and is determined 

for each weight wkm  when calculating the local gradient. A rather small absolute intensity of change 

ΔMSE=10−6 MSE  (4) between learning epochs was taken as a criterion for the convergence of the 

learning  algorithm.  Initialization  of  the  weights  is  performed  using  a  pseudo-random  number 
generator [19] (new Random (long seed)), [20] in the range [0.0; 1.0]. Initialization seed=1000 provides 
for the possibility of repeating the experiment many times. The value of the activation function 
coefficient  a  for  each  node  of  the  output  layer  is  selected  from the  ratioa≥max ( yνt n ) .  The 

maximum value of the output parameters from the training set [2] is max ( yνt n )=4 .558 .

4. Method

As a starting point for the analysis, let's use the structural diagram of the conveyor of eight sections 
(see Figure 1). A model of TS with this structure, based on MLP with one hidden layer and a 9-3-2  
topology, was studied in [1]. To form the data set required for tutoring MLP, let's use an analytical  
model [2]. In [2], a detailed analysis of the generated dataset for training MLP is presented. The 
dataset will be used in this study. The state of the m -th section at the moment of time τ  is determined 
by parameters: gm( τ ) , γm( τ ) , ξm  are the conveyor belt speed, the material flow at the entrance of the 

section and the transport route length of the section, respectively. 
The output flow of material from a section  θ1( τ , ξm )  is a calculated value. The sections are 

equipped with accumulating bunkers for combining the input flows of material and for separating the 
output  flows  of  material  [21].  There  is  no  system to  control  the  flow of  material  leaving  the 
accumulating bunkers. The material flow from the sixth accumulating bunker is distributed between 
the seventh and eighth sections in a ratio γ7( τ )/γ8( τ )=2/3 .

Input and output nodes of MLP are numbered in accordance with the designations (Figure 2):

x3m−2=γm( τ ) , x3m−1=gm( τ ) , x3m=ξm ,  m=1…M, (22)

y1=θ17( τ , ξ7 ) , y2=θ18( τ , ξ8 ) ,
ξ1=1.0 ; ξ2=0 .5 ; ξ3=0 .7 ; ξ4=0 .8 ; ξ5=1.5 ; ξ6=1.0 ; ξ7=1.5 ; ξ8=0 .6 .

(23)

The nodes corresponding to the parametersx7=γ3( τ ) ,  x14=γ6( τ ) ,x19=γ7( τ ) ,x22=γ8( τ )  are 

excluded from the input layer of MLP. These values can be calculated through the parameters of the 
previous sections.

Also excluded are nodes whose values are constant when analyzing the considered transport 
systemx3m=ξm . Thus, the input layer consists of thirteen nodes, twelve of which are determined by 

the parametersγ1( τ ) ,  g1( τ ) ,  γ2( τ ) ,  g2( τ ) ,  g3( τ ) ,  γ4( τ ) ,  g4( τ ) ,γ5( τ ) ,  g5( τ ) ,  g6( τ ) ,  g7( τ ) , 

g8( τ )and  a  node  whose  value  is  constant  and  equal  to  1.  Nodes  corresponding  to  calculated 

parametersγ3( τ ) , γ6( τ ) , γ7( τ ) , γ8( τ )  are excluded.



Figure 1: Structure diagram of a multi-section conveyor transport system.

Figure 2: Neural network parameters

The  values  of  the  output  node  correspond  to  the  parameters  of  the  output  material  flows 
θ17( τ , ξ7 ) , θ18( τ , ξ8 ) . The quantity of neurons in the hidden layers of the multilayer perceptron will 

be selected N h=15  from the range N h∈ [5 ,30 ]  in accordance with the methods for determining the 

number of hidden neurons [22, 23]

N h=√N iN o≈5 ,    
N h=

1
2

N
N i log2N

≈30
,

(24)

where the number of samples N≈104
 in the training set for N i=13  nodes of the input layer and 

N o=2  nodes of the output layer. 

In this paper, let's will consider in detail the further improvement of TS model using MLP, namely, 
increasing the precision of predicting the value of the parameters of the output flow of the transport 
conveyor by changing the architecture of MLP with the same number of neurons in hidden layers.  
Let's carry out a comparative analysis of models with a rectangular network architecture for hidden 
layers 13–N L⋅L–2 (thirteen nodes in the input layer, N L⋅L  nodes in the hidden layers and two nodes 

in the output layer), where N L is the number of neurons in each hidden layer, L is the quantity of 

hidden layers.
The computational complexity of the algorithm at a constant transport delay is proportional to the 

number  of  sections  of  the  conveyor.  With  a  variable  of  the  belt  speed,  the  transport  delay  is 
determined by solving the equation [1]



ξm= ∫
τ−Δτ ( τ )

τ

g(α )dα
.

(25)

If the speed g(α )  defined as the optimal belt speed, then, as a rule, the solution to equation (24) is 

numerical with computational complexitylog2N τ ch , where N τ ch=τ ch /Δα ; τ ch is characteristic time 

of measuring the input flow parameters of the transport system; Δα is step of numerical integration 

(24). A further increase in the number of sections leads to an increase in the number of equations, 
which makes it difficult to use the PiKh-model for designing efficient control systems due to the 
extreme computational complexity of the algorithm. For such a limiting number of sections of the 
transport conveyor, it is advisable to use models based on MLP [1] or linear regression equations [24]. 
This result is explained by the trade-off between the algorithm computational complexity and the 
forecast error of the output parameters. For a model based on MLP, the algorithm computational 
complexity is proportional to the value(L+2)N

w2 , Nw is the average number of nodes for MLP layer. 

For branched multi-section TS, the inequality Nw<<√N τ chN K  is valid. This makes it attractive to 

use MLP models to predict the flow parameters of the transport conveyor. The number of input layer 
nodes depends on the number of conveyor sections. Each such section is defined by two parameters
x3m−2=γm( τ ) , x3m−1=gm( τ )  (22). The above condition for the applicability of models using MLP 

substantiates the fact of their small use for the design of control systems for the flow parameters of the 
transport conveyor. The main application of models using MLP [25, 26] and regression equations [27-
29] is associated, as a rule, with predicting the state of the physical characteristics of the elements of a 
one-section conveyor with a significant number of the regressors. TS model based on MLP with 13-5-1 
architecture is used to diagnose the state of wear of a conveyor belt [25]. To control the process of 
extraction and transportation of material in [26], a model of the main conveyor based on MLP with a 
different architecture, containing 3, 16, 32, 48 and 64 nodes in a hidden layer, is analyzed. The 3-4-3 
architecture is proposed for designing a control system for the start and stop mode of the conveyor 
section [30]. In work [31], a regression model of a transport conveyor consisting of 18 sections is  
analyzed, and in work [1] a model using MLP with one hidden layer for TS consisting of 8 sections.

5. Results

The accuracy of predicting the flow parameters of TS depends on the data set for training MLP. 
Satisfactory accuracy of the prediction of the values of the flow parameters of the transport conveyor 
can be ensured if there is a sufficiently large data set with the number of samplesN , containing the 
parameters of the transport system, which are lowly correlated with each other and varying in a wide 
range. The number of hidden neurons (24) is directly related to the valueN  [22, 23]. The preparation 
of the set is the key moment in the learning process of MLP, it requires the provision of non-standard 
modes of functioning of both a separate section and TS as a whole, characterized, as a rule, by excess 
consumption  of  resources,  which  is  unacceptable  in  economic  conditions.  For  a  conveyor-type 
transport system, consisting of several dozen sections, it is economically impossible to provide a set of 
possible combinations of non-standard modes, which creates an almost insurmountable obstacle to 
the use of MLP and regression equations when designing systems for controlling the flow parameters 
of a multi-section transport conveyor. A variant of the solution to this problem was proposed in [2], in 
which a set for training MLP is formed on the basis of an analytical PiKh-model of a conveyor without 
directly using an experimental data set. We can to develop a model of a multi-section conveyor based 
on MLP with one hidden layer (MLP architecture 9-3-2) [1] for the designing of an optimal control 
system for the flow parameters of TS. The introduction of a control system for the flow parameters of 



the TS presupposes the presence of non-contact sensors based on machine vision using digital image 
processing devices [32] to determine the input material flow quantity and the section belt speed. 
Numerical characteristics for the studied factors of the data set for training MLP are presented in 
Table 1 for the nodes of the input layer and in Table 2 for the nodes of the output layer of MLP 13–
N L⋅L–2 (thirteen nodes in the input layer, N L⋅Lnodes in hidden layers and two nodes in output 

layer, Figure 2) for TS model Figure 1. The numerical characteristics of the input parameters xk  have 

approximately the same order of values. 

Table 1
Basic numerical characteristics of the input parameters of MLP

Factor E [ xk ] σ
k2=E [(xk−mk )2] σ k max [ xk ] min [ xk ]

1.input 0,1658 0,0139 0,1179 0,3333 0
1.speed 0,4991 0,0312 0,1768 0,75 0,25
2.input 0,2083 0,0217 0,1473 0,4167 0
2.speed 0,6251 0,0488 0,221 0,9374 0,3126
3.speed 0,7508 0,0703 0,2651 1,125 0,375
4.input 0,2916 0,0426 0,2063 0,5828 0,0006
4.speed 0,8749 0,0957 0,3093 1,3124 0,4376
5.input 0,3335 0,0556 0,2357 0,6667 0
5.speed 0,9999 0,1250 0,3536 1,4993 0,5007
6.speed 1,125 0,1582 0,3978 1,6875 0,5625
7.speed 1,2495 0,1953 0,4419 1,875 0,625
8.speed 1,375 0,2364 0,4862 2,0623 0,6913

Table 2
Basic numerical characteristics of output parameters of MLP

Factor E [ xk ] σ
k2=E [(xk−mk )2] σ k max [ xk ] min [ xk ]

7.output 0,4039 0,2625 0,5123 3,8411 0,0328
8.output 0,5914 0,5068 0,7119 4,558 0,0412

If the order of the values of the numerical characteristics of the test data used for training is 
significantly different, then the test data set should be normalized beforehand. Normalized dataset 
with an average value mν  and standard deviation σ

ν2 : 

mν=E [ yν ]=0 , 
σ
ν2=E [( yν−mν )2]=1 (26)

provides the ability to compare the result with similar studies. In addition, the normalization of a 
set of test data is of practical importance for the process of accelerating the training of MLP.

In the considered model of the transport system, the values of the input variables are positive 
(input material flow, belt speed, etc.). In this case, in accordance with the formula (17), (18), the weight 
coefficientswkm , associated with the m− th neuron of the hidden layer either simultaneously increase 

or  simultaneously  decrease,  which  leads  to  a  change  in  the  direction  of  the  vector  of  weight 
coefficients to the opposite, which leads to a zigzag movement on the surface of errors and slowing 
down the learning process. To speed up the learning process by the back-propagation method, the 
training set was normalized. Numerical characteristics for the studied factors of the normalized 
dataset for training MLP are presented in Table 3 and Table 4.



The values of the numerical dimensionless characteristics of the input parameters presented in 
Table 3 are about the same range of values. We can explain it by the fact that for training MLP, an 
analytical method for forming a data set [2] was used, which provided values for the input parameters 
γm( τ )  и gm( τ ) , Figure 3, Figure 4:

γm( τ )=γ0m+γ1m sin(mπτ−mπ
4 )

, 
γ0m=

3+m
24 , γ0m=γ1m ,

(27)

gm( τ )=g0m+g1m sin(mπτ+mπ
3 )

, 
g0m=

3+m
8 , 

g1m=
g0m

2 .

(28)

A series of distributions of valuesθ11( τ ,1 .0 )  is  shown in Figure 5.  The values of the input 

parametersγm( τ )  and  gm( τ )  have a qualitatively similar series of distribution of values due to 

relations (27), (28). Input parameters  γm( τ )  and  gm( τ )  (22) using the methodology [2] form the 

output material flowθ17( τ ,1 .5 ) , θ18( τ ,0 .6 )  (23), are shown in Figure 6.

Table 3
Basic numerical normalized characteristics of the input parameters of MLP

Factor E [ xk ] σ k max [ xk ] min [ xk ]
1.input 0 1 1,4213 -1,4067
1.speed 0 1 1,4195 -1,409
2.input 0 1 1,4146 -1,4136
2.speed 0 1 1,4134 -1,4142
3.speed 0 1 1,4112 -1,4175
4.input 0 1 1,4117 -1,4111
4.speed 0 1 1,4145 -1,4135
5.input 0 1 1,4135 -1,415
5.speed 0 1 1,4126 -1,4118
6.speed 0 1 1,414 -1,4141
7.speed 0 1 1,4153 -1,4131
8.speed 0 1 1,4137 -1,4063

The initial filling of the sections of TS with the material is:

ψm( τ )=ψ0m+ψ1m sin(mπτ+mπ
4 )

, 
ψ0m=

3+m
24 , ψ0m=ψ1m .

(29)

The series of distribution of values θ17( τ ,1 .5 ) , θ18( τ ,0 .6 )  is presented in Figure 7, Figure 8.

To accelerate the convergence of MLP learning process when choosing input parameters in the 
training set, the condition of minimum correlation between the input conditions is adopted [33].

Table 4
Basic numerical normalized characteristics of output parameters of MLP

Factor E [ xk ] σ k max [ xk ] min [ xk ]
7.output 0 1 6,7089 -0,7244
8.output 0 1 5,572 -0,7729



Figure 3: The flow of a material at the input of the m-th section

Figure 4: The belt speed m-th section

Figure 5: The series of distribution θ11( τ ,1 .0 )  

There is no correlation between the parametersxk  and xm  if the correlation coefficient between 

them is less in absolute value0 .2≥|rkm| and is considered strong if  0 .8≤|rkm|.  The correlation 

coefficients between the input parameters of TS model are presented in Table 5.
Between the twelve parameters that make up the input layer, 66 correlation coefficientsrkm  are 

defined in Table 5, among which 62 coefficients satisfy the condition0 .01≥|rkm|.

This  circumstance  allows  us  to  assume  that  the  learning  process  will  have  satisfactory 
convergence, and the dataset itself for training MLP has been generated quite successfully.



Figure 6: The material flow at the output of the 7-th and 8-th section

Figure 7: The series of distribution θ17( τ ,1 .5 )  

To  improve  convergence,  one  of  the  parameters  in  each  of  the  pairs  [2.speed-2.input]  and 
[5.speed-5.input] can be removed.

Figure 8: The series of distribution θ18( τ ,0 .6 )

Table 6 shows the results of analysing the relationship between the parameters of the input layer 
and the output layer parameters. The parameters that determine the values of the nodes of the input 
layer, the correlation coefficient of which with the parameters that determine the values of the nodes 
of the output layer is small, should be excluded from the set for training MLP. Input layer parameters 
that can become candidates for exclusion from the test dataset for training neural net are [1. speed], [4. 
speed].

Let's analyse the coefficient wkm  initialization strategy. For MLP with 13-8-8-2 architecture (13 

input nodes, 8 nodes each in two hidden layers and two nodes in the output layer), the optimal 
initialization strategy is achieved with the relation [30]:



σ
k2=∑

m

M

E [wkm2]=Mσ
w2

,
(30)

where M is the number of neurons in the nearest layer to the input of MLP.

Table 5
The correlation coefficient between the parameters of the transport system model

Factor
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sp

ee
d

8.
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1.input -0,260 -0,004 0,000 0,000 -0,003 -0,002 0,000 0,000 0,002 0,000 0,000
1.speed -0,003 0,007 0,000 0,003 0,001 0,000 0,000 -0,002 0,000 0,000
2.input -0,867 -0,009 0,000 0,000 -0,002 0,001 0,000 0,001 0,000

2.speed 0,008 0,000 0,000 0,001 0,000 0,000
-0,00

1
0,000

3.speed 0,000 0,006 0,000 0,000 0,000 0,000 0,000

4.input 0,500 -0,005 0,006 0,000
-0,00

1
0,000

4.speed -0,007 0,006 0,000 0,000 0,000
5.input -0,966 -0,006 0,000 0,000
5.speed 0,007 0,000 0,000
6.speed 0,006 0,000
7.speed 0,006

For a uniform distribution law in the range [0.0; 1.0], the variance value followsσ
w2=1/12 , which 

determines the distribution law used for the initialization of the weight coefficients. For the input 
nodes, the main numerical characteristics are presented in Table 1, estimate is σ

k2 ~ (0 ,01÷0,2) .

Table 6
Correlation  coefficient  between  input  and  output  the  parameters  of  the  transport 
system model
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0,0
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0,15 0,03
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6
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5

0.23
0,1
1
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-0,1
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0,14 -0,2
0,2
0

-0,1
3

-0,0
7

0,1
9

0,2
1

-0,2
4

-0,0
5

0,4
4

Whence, for M = 10 neurons in the hidden layer (next to the input layer), can obtain an estimate of 
the numerical value  σ

w2=σ
k2/M ~ (0 ,001÷0 ,02)  for the initialization of coefficientswkm .  The 

estimated value of the numerical valueσ
w2 shows, that in order to accelerate the convergence of 



learning MLP, the distribution law of the pseudo-random value used during initialization must be 
changed, to reduce the variance in the distribution law used to initialize the weight coefficients. To 
conduct the study, software libraries in Python were used for data processing and analysis: Pandas 
(version 2.0.0), Pytorch (version 2.0.0).

6. Conclusion

In this work, a comparative analysis of transport conveyor models based on multilayer MLP is carried 
out. The main focus is on MLP with the logistic activation function and linear (ReLU) activation 
function. MLP with a logistic activation function demonstrated a shorter learning time for equal MSE 
values, which is explained by the distributed form of nonlinearity and high connectivity. However, it 
should be noted that the learning process of MLP with and linear (ReLU) activation function is more 
stable, which allows achieving lower MSE values in the learning process. 

The work touches upon many issues that are important from the point of view of constructing 
models of conveyor-type TS. The estimation of the method of initialization of the weight coefficients 
providing  the  connection  between  the  nodes  of  MLP  is  carried  out  and  the  rationale  for  the 
preparation of a normalized data set for training MLP is given. The importance of the last question is 
emphasized by the fact that the values of the nodes of the input and output layers are positive, which 
leads to a simultaneous increase or decrease in the weight coefficients that ensure the connection of 
the nodes of the input layer with the nodes of the hidden layer,  and, as a consequence, to the 
occurrence of oscillatory processes. 

A method for increasing the accuracy of the learning process as a result of removing values from 
the data set is demonstrated, which characterize the transient mode of operation of the transport 
system. 

This  article  does  not  discuss  the  importance  of  hidden neurons  as  detectors  of  factors  that 
determine the behavior of the flow parameters of the transport system. Also, the problem of reducing 
the order of a multilayer MLP without losing the quality of model prediction is not considered.
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