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Abstract
Improving time series  forecasting methods is  a  critical  task for  various industries,  including finance,  
manufacturing, military applications, medicine, mine clearance processes, including time-based analysis of 
GPR and magnetometer data, and energy in the era of Industry 4.0. The use of recurrent neural networks 
with LSTM units is an effective approach for predicting long-term dependencies in data. However, the  
optimal configuration of the long short-term memory (LSTM) architecture remains an open question, in 
particular, the choice of the number of blocks, the dropout rate, and the use of technical indicators to  
improve prediction accuracy. This study presents a detailed analysis of the impact of key hyperparameters 
in LSTM models, including the number of blocks (100-400), the dropout rate (0.1-0.3), and the role of 
technical indicators such as EMA (Exponential Moving Average) and RSI (Relative Strength Index) in 
generating  accurate  forecasts.  The  obtained  results  show  that  EMA_20  has  the  highest  correlation 
coefficient (0.99) with the closing price, while RSI demonstrates a weaker relationship (0.04-0.05), which 
emphasizes its secondary role.  The training algorithm for the neural network with LSTM blocks was 
optimized using the Nadam optimizer, which allowed us to determine the most effective combination of  
hyperparameters for forecasting financial time series. The training data was obtained from the Yahoo  
Finance (yfinance) library and included historical data on the Google (GOOGL) stock price for the period  
from 2011 to 2024. The model performance was evaluated using the MSE, RMSE and MAPE metrics, which 
allowed us to objectively assess the level of forecasting accuracy. The analysis of the obtained results  
showed that the optimal configuration of the neural network consists of 350 LSTM units, a Dropout level of 
0.05, and the Nadam optimizer. This configuration achieved a minimum average absolute percentage error 
(MAPE) of 1.64%, which is lower than the results obtained in previous studies. The study confirms that  
increasing the number of LSTM blocks beyond 350 does not improve accuracy and may lead to overfitting.
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1. Introduction

Time series forecasting is a key task in the era of Industry 4.0, encompassing finance, marketing, 
energy,  medicine,  and landmine  clearance  processes,  including time-series  analysis  of  ground-
penetrating radar and magnetometer data. One of the most effective tools in this domain is the Long 
Short-Term Memory (LSTM) recurrent neural network, which has the ability to retain long-term 
temporal dependencies between data points.

In the context of Intelligent Systems and Technologies in Industry, LSTM models are actively 
utilized  for  early  failure  detection  in  industrial  equipment,  forecasting  production  line  loads, 
identifying anomalous patterns in sensor data, and enhancing the efficiency of logistics management. 
Conversely,  in  humanitarian  and  military  fields,  LSTM  models  are  applied  to  mine  clearance 
operations,  including time-series  analysis  of  ground-penetrating radar  and magnetometer  data, 
forecasting potential landmine displacement due to weather and geological factors, and optimizing 
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resource  allocation  in  demining  missions.  Due  to  LSTM's  ability  to  retain  long-term temporal 
contexts, these tasks can be solved with greater accuracy and efficiency.

2. Review and analysis of recent studies

Recurrent  neural  networks  (RNNs)  incorporating  Long  Short-Term Memory  (LSTM)  units  are 
extensively employed for time series prediction in modern computational research [1].  Despite 
significant progress in this field, multiple unresolved challenges persist. The application of LSTM-
based  models  for  forecasting  sequential  data  remains  a  pivotal  area  in  contemporary  neural  
engineering  [2].  While  various  architectural  modifications  of  LSTM networks  yield  promising 
outcomes, certain aspects of model optimization still require refinement.

The study in [3] explores a methodology where stacked autoencoders are combined with LSTM 
layers to improve financial time series predictions. The authors report a forecasting precision of  
MAPE ≈ 2.2%. However, the model demonstrates constrained adaptability to fluctuations in market 
conditions due to the absence of technical indicators during the training phase.

In [4], an LSTM model is enhanced with an attention mechanism, enabling the neural network to 
prioritize significant temporal markers. While this modification improves forecast accuracy (MAPE ≈ 
2.0%), the model lacks optimization in terms of computational efficiency and does not account for the 
impact of Dropout regularization on training stability.

The  work  presented  in  [5]  examines  the  integration  of  technical  indicators  such  as  the 
Exponential Moving Average (EMA) and the Relative Strength Index (RSI) into LSTM-based stock 
price forecasting models. Despite achieving a forecasting accuracy of MAPE ≈ 1.95%, the model does 
not  incorporate  adaptive  optimization  algorithms,  particularly  Nadam,  which  could  improve 
performance in volatile financial markets.

A comparative evaluation of LSTM and Gated Recurrent Unit (GRU) models is conducted in [6],  
where  the  authors  establish  that  LSTM-based  architectures  are  more  effective  for  financial  
predictions, reaching MAPE ≈ 1.9%. However, this study does not explore the influence of varying 
LSTM block counts or Dropout levels on model robustness.

In [8], researchers assess the effectiveness of low-value Dropout regularization in improving 
LSTM model stability. Although the study reports a forecasting precision of MAPE ≈ 1.9%, it does not 
consider the impact of LSTM block count variation and adaptive loss functions on overall prediction 
reliability.

Findings from studies [9, 10] suggest that machine learning methodologies are progressively 
supplanting traditional forecasting models, particularly in cases involving extensive datasets with 
complex interdependencies. Ensemble learning techniques such as Random Forest and XGBoost, 
alongside regression-based models incorporating supplementary features (e.g., lagging indicators, 
seasonality, and market anomalies), have demonstrated enhanced predictive accuracy. However, the 
challenge of selecting optimal hyperparameters and ensuring model interpretability remains.

Several studies [11, 12] investigate hybrid modeling strategies that integrate statistical and neural 
network approaches (e.g., ARIMA+LSTM, SARIMA+MLP). These models leverage the explainability 
of statistical trend analysis while capitalizing on the adaptability of deep learning methods. However, 
the complexity of hybrid pipelines increases computational costs and necessitates extensive data  
preprocessing.

Research efforts detailed in [13, 14] focus on time series prediction, particularly the forecasting of 
Yahoo Finance stock price data using LSTM networks trained with Adam [13] and Nadam [14] 
optimization algorithms. The reported prediction accuracy, measured by MAPE, reached 1.9%.

It is noteworthy that Adam, as referenced in multiple studies, utilizes a conventional adaptive 
weight adjustment approach based on the mean squared gradients and their exponentially smoothed 
moments. However, Adam does not account for a "lookahead" gradient component. In contrast, the  
Nadam optimizer incorporates a projected gradient update mechanism, adjusting weights based on 
anticipated rather than current gradient values. This methodological distinction enables Nadam to 
enhance  the  accuracy  of  LSTM-based  time  series  forecasting.  The  primary  factors  influencing 



forecasting performance include the number of LSTM units, the level of Dropout regularization, and 
the incorporation of additional technical indicators such as EMA and RSI.

3. The purpose and objectives of the research

A review of existing literature [1–14] reveals that LSTM model accuracy is typically constrained by a 
Mean  Absolute  Percentage  Error  (MAPE)  exceeding  1.9%,  indicating  the  need  for  further 
advancements in both network architecture and training methodologies.  Several key challenges 
persist in time series forecasting using LSTM-based neural networks:

 Development of an optimal model architecture and training algorithm with different LSTM-
block configurations (100, 200, 300, 400) and trained with the Nadam optimizer. The study 
aims to identify the most effective Dropout regularization value (0.1, 0.2, 0.3) to prevent 
overfitting while balancing generalization and accuracy.

 Impact of technical indicators such as the Exponential Moving Average (EMA_20) and the 
Relative  Strength  Index  (RSI)  on  forecasting  accuracy,  as  these  indicators  help  smooth 
stochastic fluctuations in data;

 Evaluation of model accuracy using metrics such as MSE, RMSE and MAPE.

Thus, the critical issue is designing an optimal LSTM architecture configuration and training 
algorithm using the  Nadam optimizer,  selecting  the  appropriate  number  of  blocks,  tuning the 
Dropout level, and incorporating technical indicators to enhance time series forecasting accuracy.

To achieve this objective, the study focuses on solving the following tasks:

 Determining the optimal  number of  LSTM-blocks in  a sequential  network to achieve a 
forecasting error below 1.8%;

 Optimizing the training process of the LSTM neural network using the Nadam optimizer;
 Investigating the role of Dropout regularization in improving the predictive performance of 

LSTM models;
 Analyzing the impact of EMA and RSI on forecasting accuracy;
 Assessing model accuracy using evaluation metrics such as MSE, RMSE and MAPE.

4. Neural network architecture with LSTM-blocks

Fig 1. illustrates the architectural design of a recurrent neural network (RNN) [15], structured with 
sequentially  connected  LSTM units.  Each  LSTM block  processes  data  at  a  discrete  time  step, 
accumulating contextual information through inter-block interactions. This architecture enables the 
network to refine both its output predictions and internal state updates, ensuring greater accuracy in 
long-term forecasting.



Figure 1: Morphology of a neural network with LSTM-blocks.

The processed output from LSTM blocks is subsequently fed into a fully connected (Dense) layer, 
responsible for generating final prediction outputs. Depending on the specific network configuration, 
activation functions in LSTM layers may include tanh or sigmoid, while the output Dense layer 
employs linear or ReLU, depending on the necessity for output scaling.

On Fig. 2 illustrates the internal structure of an individual LSTM unit utilized in this research.

Figure 2: LSTM unit architecture.
1. Forget gate — This step allows the network to decide which elements of the current memory cell 

should be discarded based on the forget gate layer. The decision-making process is governed by the 
sigmoid activation functionσ , which evaluates information from the previous hidden state ht−1 and 

the  current  time step  x t.  The output  value  ranges  between 0  (indicating data  removal)  and 1 

(indicating retention), ensuring selective memory update mechanisms cell С t−1.

f t=σ (W t∗[ht−1 , x t ]+bf ) ,
(4 )

where:
f t – represents a vector of values in the range [0,1], specifying the fraction of retained or discarded 

information within the memory cell.
W t , bf  – denote trainable weight matrices and bias vectors, updated dynamically during the 

training process.
σ  – denotes the sigmoid activation function used to regulate information flow.



2. Input gate — At this stage, the network decides whether to store new information in the current 
memory state. Specifically, it determines which input values should be used to modify memory. The 
network utilizes the previous hidden state and the sequence value at the current time step, applying 
them to a sigmoid function.  This  process  consists  of  two layers:  sigmoid activation layer  that 
determines which values can be updated and tanh activation layer that generates a vector of new 
candidate values for updating the memory cell

it=σ (W i∗[ht−1 , x t ]+bi) ,
(5 )

C t=tan h (W C∗[ht−1 , x t ]+bC ) ,
(6 )

where: 
it – represents activation vector that determines memory updates.

C t – represents vector of new candidate values.
3.  Output  gate  —  At  this  stage,  the  network  processes  previously  computed  and  stored 

information to generate a new hidden state, deciding what will be returned as the output of the 
current memory cell. First, a sigmoid activation layer determines which part of the current state 
should be output. Then, the tanh function is applied to compute the candidates for the output state.  
Finally, all layers’ results are combined, and only the relevant information is returned.

ot=σ (W 0∗[ht−1 , x t ]+b0) ,
(7 )

ht=ot∗tan h (C t ) ,
(8 )

where:
ot – represents vector of output signal values.

ht – represents updated hidden state, which is passed to the next time step.
The LSTM-block structure [14] is designed to efficiently preserve long-term dependencies by 

combining mechanisms for storing essential information and filtering out irrelevant data. This makes 
LSTM-blocks one of the most effective tools for time series forecasting.

The core idea is that the learning process occurs within a memory-based context. The network 
forgets, learns, and extracts relevant parts of the information for the next step. However, at the next 
step, the same process is repeated again. Essentially, this approach attempts to mimic how the human 
brain learns and retains information through the internal gating mechanisms of LSTM (although this 
is not necessarily an exact representation, it is an attempt to apply different strategies to improve  
learning).

5. LSTM model evaluation metrics

The performance of LSTM models was assessed using the following metrics [17]:
Mean Squared Error (MSE) – is an indicator that reflects the average of the squared differences 

between the actual and predicted values. The use of error squares amplifies the impact of large  
deviations, making this metric sensitive to significant errors. Formula for calculation MSE:

MSE=1
n
∑
i=0

n

( y i− ŷ i)
2 ,

(1)
Root mean squared error (RMSE) – is the square root of MSE, which allows the error to be  

expressed in the same units as the actual values. This metric provides an intuitive interpretation of 
forecasting accuracy. The RMSE formula is:



RMSE=√ 1n∑i=0n ( y i− ŷ i)
2 ,

(2)
Mean absolute percentage error (MAPE) – measures the average percentage deviation between 

actual and predicted values. This metric evaluates forecasting accuracy independently of scale. The 
MAPE formula is:

MAPE=1
n
∑
i=0

n | y i− ŷ iy i |∗100%. ,
(3 )

6. Computer experiment and analysis of results

The computer experiment on time series forecasting was conducted based on a neural network 
algorithm with LSTM-blocks and the Nadam optimizer, represented in the block diagram in Fig. 3.

Figure 3: Block diagram of the neural network algorithm with different numbers of LSTM-blocks 
and hyperparameter configurations (Case A: 300 LSTM-blocks, Dropout = 0.1; Case B: 350 LSTM-
blocks, Dropout = 0.05) for time series forecasting.

The experiment was performed for two different sets of hyperparameters in the LSTM-based 
neural network.

Case A: First set of parameters:

 Number of LSTM-blocks: 300
 Dropout: 0.1
 Optimizer: Nadam
 Technical indicators: Exponential Moving Average (EMA) and Relative Strength Index (RSI) 

were included to enhance the understanding of market trends.

Case B: Second set of parameters:

 Number of LSTM-blocks: 350
 Dropout: 0.05
 Optimizer: Nadam
 Technical indicators: Exponential Moving Average (EMA) and Relative Strength Index (RSI) 

were included to enhance the understanding of market trends.

To train the LSTM-based neural network, a dataset was obtained from the publicly available  
Yahoo Finance source using the yfinance library. The experiment focused on Google (GOOGL) stock 



market data, forming a dataset that spans January 2011 to January 2024. In total, the analyzed time  
period includes 4,748 calendar days, while the dataset contains 3,270 records. Each record contains 
the following characteristics:

 Open – the opening price of the stock at the beginning of the trading day;
 High – the highest price recorded during the day;
 Low – the lowest price at which the stock was traded during the day;
 Close – the closing price of a stock at the end of the trading session;
 Adj Close – is the adjusted closing price taking into account corporate events;
 Volume – the volume of shares that were sold or bought during the day.

The data was retrieved using the yfinance library, which provides a convenient interface for 
accessing financial data. For this experiment, the “Close” column was selected as it is the most  
relevant for time series analysis and forecasting.

6.1. Data preparation and neural network training

The model was implemented in Python programming language, using the following libraries:
 NumPy – for efficient numerical computations.
 pandas – for handling tabular data and preprocessing.
 Matplotlib – for graphical visualization of results.
 keras – a framework for developing and training neural networks.
 yfinance – a library for retrieving historical financial data.

The dataset was divided into training and test samples in the ratio of 80:20. The Min-Max Scaling 
method was used to normalize the values. The dataset was prepared in such a way that each forecast 
was formed on the basis of 60 previous time points. The scaling was performed using the Min-Max 
Scaler, which contributes to stable model training.

Fig. 4 (a, b) presents the results of the computer experiment on stock price forecasting using an 
LSTM-based neural network with the first (Case A) and second (Case B) sets of hyperparameters. Fig. 
5 (a, b) illustrates the dependency of MAPE metric values on the number of LSTM-blocks for Cases A 
and B. Fig. 6 (a, b) visualizes the MSE (Mean Squared Error), RMSE (Root Mean Squared Error), and 
MAPE (Mean Absolute Percentage Error) metrics using histograms.

a. Case A; b. Case B;
Figure 4 (a, b): Stock price forecast graphs for the first and second sets of parameters.

 Blue line: Training data.
 Yellow line: Validation data.
 Green line: Predicted values on validation.



a. Case A; b. Case B;
Figure 5 (a, b): Dependency of MAPE metric values on the number of LSTM-blocks for cases A and 
B.

a. Case A – for 275 LSTM-blocks b. Case B – for 325 LSTM-blocks
Figure 6 (a, b): Visualization of MSE, RMSE and MAPE metrics using histograms.

Significantly higher MAPE values were observed when using fewer LSTM-blocks (50–100). A 
more gradual decrease in MAPE with an increasing number of LSTM-blocks indicates the stability of 
the neural network.

The network morphology in Case A is well-suited for stock price forecasting due to its low error 
rate and stable predictions. The choice of 300 LSTM-blocks and Dropout 0.1 ensures an optimal 
balance between model complexity and overfitting prevention. However, despite achieving good 
accuracy (MAPE = 1.75%), this neural network lags behind Case B in performance.

The network morphology in Case B (350 LSTM-blocks, Dropout 0.05) demonstrated a consistent 
MAPE value across 180–400 LSTM-blocks, indicating strong generalization capability. In particular, 
the Case A configuration (300 LSTM-blocks, Dropout 0.1) resulted in minimal MAPE values (~1.64%). 
Reducing the Dropout rate to 0.05 in Case B helped prevent excessive weight nullification, positively 
impacting prediction accuracy. This neural network (Case B) outperformed the model from Case A, 
showing higher efficiency but also greater sensitivity to overfitting with a large number of LSTM-
blocks (>350). The lowest MAPE value was observed in Case B with 325 LSTM-blocks, indicating that 
this configuration achieved the highest accuracy and stability. Thus, the best-performing network 
had 325 LSTM-blocks and a Dropout of 0.05, yielding the lowest MAPE (~1.64%) while minimizing the 
risk of overfitting.

Histograms (Fig. 6 a, b) provide a visual representation of forecasting accuracy for the neural  
network models across three key metrics: MSE (Mean Squared Error), RMSE (Root Mean Squared 
Error) and MAPE (Mean Absolute Percentage Error).

For the first set of hyperparameters (Case A):
 MSE = 6.57
 RMSE = 2.56
 MAPE = 1.75%

For the second set of hyperparameters (Case B):



 MSE = 5.98
 RMSE = 2.44
 MAPE = 1.64%

The  experimental  results  confirmed  that  using  LSTM-based  neural  networks  significantly 
improves time series forecasting accuracy compared to traditional approaches such as ARIMA and 
GRU.

In particular, the integration of technical indicators (EMA and RSI) with adaptive optimizers 
enabled the models to better adapt to complex fluctuations in time series, resulting in more accurate 
predictions.

Advantages of the proposed LSTM-based neural network in case B configuration:
 High accuracy: The MAPE of 1.64% confirms the model's ability to provide precise forecasts, 

even in the presence of stochastic fluctuations in the time series.
 Robustness to noise: The use of technical indicators allows the model to process time series  

data more effectively.
 Flexibility: The ability to adjust the Dropout rate and the number of LSTM-blocks makes the 

model adaptable to different forecasting tasks and datasets.

6.2. Analysis of the impact of the number of LSTM-blocks and Dropout

During the experiments, the impact of different LSTM-block counts (100, 200, 300, 400) and Dropout 
levels (0.1, 0.2, 0.3) on the accuracy of Google stock price forecasting was analyzed.

Dropout is a regularization method [18] used to prevent overfitting in a neural network by 
randomly deactivating (zeroing out) a portion of neurons during training. In our LSTM model,  
Dropout was applied twice:

After the first LSTM layer (Dropout Layer 1):

 10% of neurons were deactivated before passing to the next LSTM layer.
 This reduces dependencies between neurons and improves the network’s generalization 

ability.

After the second LSTM layer (Dropout Layer 2):
 Another 10% of neurons were deactivated before passing to the final Dense layer.
 This helps prevent excessive adaptation of the model to the training data.

Thus,  Dropout  improves  the  model’s  robustness  to  input  data  variability  and  enhances  its  
generalization on test data.

Figure 7: Dependence of validation loss on the number of LSTM-blocks.



Figure 8: Dependence of training time on the number of LSTM-blocks.

1. Validation Loss vs. LSTM-blocks (Fig. 7) – This graph illustrates the change in validation loss 
depending on the number of LSTM-blocks and Dropout values: 

 Increasing the number of LSTM-blocks up to 200 helps minimize validation loss.
 At 300 LSTM-blocks, the model exhibits the lowest loss values when Dropout 0.2, indicating 

optimal stability.
 Dropout 0.3 leads to significant fluctuations, suggesting weaker generalization ability of the 

model.
2. Training Time vs. LSTM-blocks (Fig. 8) – This graph shows that increasing the number of  

LSTM-blocks directly impacts the model's training time:
 There is an almost linear relationship between the number of LSTM-blocks and training time.
 Dropout has a minimal effect on training time, but minor differences can be observed when 

the number of blocks exceeds 200.

Fig. 9 presents a 3D-visualization of the stability analysis of LSTM models based on validation loss 
in the coordinates: number of LSTM-blocks and Dropout.

Figure 9: Validation losses by a neural network when predicting validation data in 3D-space.
This 3D graph illustrates validation loss variations depending on two key parameters – Dropout  

and the number of LSTM-blocks (Fig. 9). Red areas indicate higher loss values, observed at high 
Dropout values and a low number of LSTM-blocks. Light and deep blue areas indicate minimal loss 
values, particularly when the LSTM model has 300–350 blocks with Dropout = 0.05–0.1.

 Optimal Dropout values (0.05–0.1) significantly reduce validation loss during time series  
forecasting. 



 The  LSTM  model  with  300  blocks  demonstrates  the  best  performance  in  validation 
forecasting.

The analysis of  experimental  results confirms that proper tuning of  LSTM parameters [19],  
specifically  the  number  of  blocks  and Dropout,  can significantly  improve model  accuracy and 
stability.

6.3. Impact of technical indicators (EMA, RSI) on forecast accuracy 

3D-visualization of technical parameter influence on forecasting

Figure 10: 3D-visualization of parameters: EMA, RSI, and Close Price.
A 3D graph (Fig. 10) was constructed to visualize the relationships between EMA_20, RSI, and the 

closing price:
 EMA_20 exhibits the most significant impact on predicted stock price changes.
 RSI shows a much more dispersed influence, confirming its secondary role in forecasting 

long-term trends.

Trend analysis of Close, EMA, and RSI for LSTM models

Figure 11: Graph of trend analysis for Close, EMA, and RSI parameters.
A comparison of LSTM models with different numbers of blocks revealed certain trends,  as 

illustrated in Fig. 11:
 The EMA_20 indicator (red line) closely follows the Close price trend (blue line) with almost 

no deviations, confirming their strong correlation.
 The RSI indicator (green line) exhibits significant fluctuations, particularly during sharp price 

changes.
Thus:
 EMA_20 is well-suited for forecasting long-term trends.
 RSI is useful for short-term market fluctuation analysis, especially during periods of market 

instability.



7. Conclusions

The architecture of a neural network with LSTM-blocks and its training algorithm were optimized 
using the Nadam optimizer for time series forecasting and analysis of the impact of hyperparameters 
and technical indicators on forecasting accuracy.

A block diagram of the neural network algorithm with different numbers of LSTM-blocks and 
hyperparameter configurations was developed for time series forecasting.

Based on the conducted experiments, the role of the number of LSTM-blocks, Dropout levels, and 
technical indicators (EMA and RSI) was analyzed:

 The optimal configuration was achieved with 300–350 LSTM-blocks and Dropout values in 
the range of 0.05–0.1, minimizing prediction errors.

 EMA_20 was  identified as  the  key predictor  for  closing  price  forecasting,  whereas  RSI 
exhibited a weaker correlation, but can be useful for detecting anomalous market movements.

 Training time increases linearly with the number of LSTM-blocks.
 The Nadam optimizer ensured stable model training.
 The EMA_20 trend almost perfectly follows the Close price trend, confirming its efficiency in 

forecasting.
 3D-vizualization of validation loss demonstrated that Dropout = 0.3 is less effective, as it  

reduces prediction accuracy.
Practical implications of the study:
 The proposed model can be applied to mine clearance operations, including temporal analysis 

of georadar and magnetometer data, as well as energy forecasting in the Industry 4.0 era,  
stock prices, currency exchange rates, sales volume predictions, product demand, and other 
time series tasks.

 The study established that using 325 LSTM-blocks is optimal, achieving a minimum forecast 
error (MAPE = 1.64%), surpassing previous studies where the error exceeded 1.8%.

 This model can also be adapted for forecasting drone trajectories, meteorological changes, 
and object recognition based on electromagnetic signals.

 It was confirmed that applying the Nadam optimizer and low Dropout values (0.05–0.1) 
ensures training stability and high-speed model learning.

Thus, this study confirms that a properly optimized LSTM architecture, incorporating the optimal 
number of blocks, Dropout levels, and technical indicators, can significantly enhance the accuracy of 
time series forecasting. The results obtained open new opportunities for applying LSTM networks in 
financial  analysis,  market  trend  forecasting,  and  artificial  intelligence  tasks.  Additionally,  the 
proposed  architectural  and  morphological  solutions  can  be  directly  applied  to  predicting  the 
trajectories of drones and forecasting the potential movement of mines due to weather and geological 
factors, as well as optimizing resource planning in demining missions.
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