
Enhancing adaptive systems with Intelligent Agents in
Microservice Architectures: Opportunities and Challenges*

Roman Lysenko1*,†, Oleksa Skorokhoda2,†

1 EPAM Systems, Lviv, 79048, Ukraine
2 Lviv Polytechnic National University, Lviv, 79013, Ukraine

Abstract
The integration of intelligent agents into adaptive systems based on microservice architecture offers
significant advantages in automation, scalability, and resilience. These agents enable real-time system
monitoring, anomaly detection, and autonomous decision-making, improving system efficiency and fault
tolerance. The modular nature of microservices facilitates flexible updates and independent scaling,
reducing operational overhead. However, this integration also introduces challenges, including
coordination complexities, security risks, and increased computational overhead. This paper explores the
benefits, architectural considerations, and key challenges of integrating intelligent agents with adaptive
microservice-based systems, providing insights into optimizing system performance while addressing
potential limitations.

Keywords
Artificial intelligence, intellectual systems, intelligent agents, adaptive systems, microservices

1. Introduction

The rapid evolution of adaptive systems, particularly those designed using microservice
architecture, has significantly transformed how complex systems are built, maintained, and
optimized. Microservices, with their modular design, allow for flexible and scalable system
development, but their full potential is realized when combined with intelligent agents. These
agents can autonomously monitor, manage, and adapt system operations in real-time, enabling
systems to respond proactively to dynamic changes in environment and demand.

This paper aims to investigate the integration of intelligent agents with adaptive systems based
on microservice architecture, focusing on their role in improving system performance, scalability,
security, and resilience. We explore how intelligent agents enhance the capabilities of
microservice-based solutions by providing real-time monitoring, self-healing mechanisms, and
cost-effective resource management. At the same time, we examine the challenges that arise from
such integration, including coordination between agents, security concerns, and system
complexity.

Adaptive systems in software are systems that can automatically adjust their behavior or
structure depending on the environment in which they operate. The primary goal of such systems
is to ensure flexibility, efficiency, and resilience when facing changing requirements or operating
conditions.

Examples of adaptive systems include:
 Cloud computing systems, which can scale resources according to the load.
 Smart grids, which adjust parameters depending on electricity consumption.
 Artificial intelligence systems, which learn and adapt based on data they receive.
Such adaptability allows systems to operate more efficiently in a changing environment or with

limited resources.
1 SmartIndustry 2025: 2nd International Conference on Smart Automation & Robotics for Future Industry, April
03-05, 2025, Lviv, Ukraine
 * Corresponding author.
2 These authors contributed equally.

roman.r.lysenko@lpnu.ua (R. Lysenko); oleksa.v.skorokhoda@lpnu.ua (O. Skorokhoda);
0009-0009-2353-9272 (R. Lysenko); 0000-0002-1455-8553 (O. Skorokhoda);

2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:roman.r.lysenko@lpnu.ua
mailto:oleksa.v.skorokhoda@lpnu.ua

Table 1
Main Characteristics of Adaptive Systems

Characteristic Description
Self-configuration The system can adjust its parameters according to current needs.
Self-optimization The system continuously improves its processes based on the analysis

of its performance.
Self-healing The ability to automatically detect and correct errors that occur during

operation.
Self-protection The system adapts to external threats, such as cyber-attacks.

This paper aims to analyze the integration of intelligent agents into adaptive systems designed
using microservice architecture. The primary objectives are:

 To examine how intelligent agents enhance system adaptability, security, and efficiency in
microservice-based environments.

 To identify key challenges, including agent coordination, security risks, and performance
trade-offs, that arise in such integrations.

 To explore architectural and implementation considerations necessary for optimizing
adaptive microservice-based systems with intelligent agents.

 To provide insights into practical applications, demonstrating real-world benefits and
challenges of this approach across various industries.

This research contributes to the understanding of how intelligent agents can be leveraged to
improve the resilience and autonomy of modern distributed systems while highlighting strategies
to mitigate associated risks.

2. Architectural, Development, and Maintenance Challenges in
Adaptive Systems

Adaptive systems offer substantial advantages, but their development and maintenance pose
significant challenges. Designing architectures that dynamically adjust during runtime while
maintaining system stability remains a core challenge in adaptive systems [1].
Table 2
Comparison of adaptive systems based on microservices vs. monolithic architectures.

Criterion Microservices architecture Monolithic architecture
Flexibility High Low
Scalability Horizontal, flexible Vertical, limited

Maintenance Easy, independent components Difficult, changes affect the entire
system

Performance High with proper configuration Higher in small projects

Figure 1: High-level structure and interaction of model of integration intelligent agents with
adaptive systems which based on microservice architecture.

Below are the main issues faced by architects and developers of adaptive systems:
1. Architectural Issues
 Modularity and flexibility: Adaptive systems require a high degree of modularity so that

each component can be modified or updated without negatively affecting the entire system.
This complicates the design due to the need for clear decomposition of components.

 Dynamic configuration: Creating an architecture capable of dynamically changing its
configuration during operation is difficult because it requires anticipating and controlling
possible adaptation paths and their consequences.

 Balancing performance and adaptability: Increasing adaptability often leads to increased
system complexity, which can reduce performance, creating a challenge for architectural
optimization.

2. Development Issues
 Managing complexity: The more adaptation scenarios there are, the harder it is for

developers to control system behaviour. The increase in system complexity requires
advanced mechanisms for managing adaptation at both design and runtime [2].

 Modeling environment and adaptation scenarios: Developers need to account for a wide
range of potential conditions in which the system may operate. This includes simulating
different contexts and creating models of adaptive behavior.

 Implementing self-learning mechanisms: If adaptability includes machine learning or self-
learning, appropriate algorithms must be integrated, requiring additional resources and
expertise in artificial intelligence and data science.

3. Maintenance and Operational Issues
 Monitoring and analysis: To ensure adaptability, monitoring systems must be implemented

to collect real-time data on the system’s performance and identify the need for changes.
However, continuous monitoring increases infrastructure costs.

Intelligent Agents:
Strategic, Decision-Making, Processing

Sensor Agents Actuators Agents

Se
ns

or

Ac
tu

at
or

Se
ns

or

Se
ns

or

Ac
tu

at
or

Ac
tu

at
or

Adaptive Systems

Microservice
Application #1

Microservice
Application #2

Microservice
Application #2

 Unpredictable behaviour: It is difficult to predict how the system will behave in new
conditions, which can lead to unexpected errors or conflicts between adaptive processes.
Managing unpredictable behaviour in adaptive systems is critical for ensuring long-term
stability [3].

 Continuous updating requirements: Due to constantly changing requirements and external
conditions, adaptive systems need continuous updates to address new challenges or
improve adaptability.

 Security: Adaptive systems are more prone to vulnerabilities due to their complexity and
dynamic changes. Ensuring security becomes a critical task, especially when the system
constantly adapts to new conditions and configurations.

4. Performance and Optimization Issues
 Real-time optimization: Systems must perform adaptation in real-time without significant

delays or performance degradation, which may require considerable computational
resources.

 Conflicts between different adaptation scenarios: There may be situations where adaptive
mechanisms work against each other, complicating the maintenance of overall system
stability and coherence.

Thus, the architecture, development, and maintenance of adaptive systems are complex due to
the need to integrate flexibility and resilience in a changing environment. This requires careful
planning, modelling, and continuous monitoring, as well as a high level of technical expertise.

The problem of monitoring and controlling an adaptive system using intelligent agents presents
several challenges due to the complexity and dynamic nature of such systems. Here are the key
issues:

 Real-time Monitoring
Intelligent agents are tasked with continuously collecting data from various components

of the adaptive system, assessing performance, and detecting potential issues. Given the
complexity of these systems, the challenge is to process and analyse data in real-time
without overloading the system or affecting performance [4]. Handling large data volumes
from distributed sources efficiently is critical to ensuring the system’s responsiveness.
Usage of well-known solutions for system monitoring (as example: Grafana or Prometheus)
provides the capabilities to track and analyse general system environment parameters. At
the same time, intelligent agents can also use these solutions for data collection of internal
states from each microservice, but this will require custom implementation to maintain
conceptual features.

 Coordination and Communication
Multiple agents deployed across different system nodes must coordinate and

communicate effectively. Poor synchronization or miscommunication can lead to
inconsistent or conflicting adaptations, causing unintended consequences [5]. Efficient,
low-latency communication is essential, especially in large-scale distributed systems, to
provide a comprehensive view of the system’s state and avoid errors. Deep view on cross-
component communication design of each unique system can require strong attention to
integration design of communication between intelligent agents and system nodes.

 Decision-Making and Adaptation
When agents detect an issue or opportunity for optimization, they must decide whether

to initiate adaptation. This decision-making process is complex, as agents must consider
both immediate and long-term consequences. Agents must balance system performance
optimization with maintaining stability, which often requires trade-offs between short-term
and long-term goals [1]. Additionally, conflicts can arise when multiple agents trigger
conflicting adaptations, complicating overall system behaviour. Each agent can be
responsible for dynamic maintenance of solution, based on an internal state of the system

node. This can require dynamical analysis of internal system processes operability and
adaptability based on the results of internal execution flow.

 Scalability
As the system scales, so does the number of intelligent agents required to monitor and

control it. Ensuring the scalability of agent-based monitoring without introducing overhead
is a significant challenge. The system must adapt to increasing complexity without
diminishing the agents’ effectiveness or introducing inefficiencies [4]. When intelligent
agents are integrated into the internal system nodes, it can require massive data collection
from the internal system nodes states. As a result, this complex multi-agent monitoring is
heterogeneously integrated into the cross-services design, and it can require complete view
of full system internal state. Especially, it is required for deep state analysis by strategic
intelligent agents which build possible suggestions as solution enhancements. Classical
cloud-based solutions provide the capabilities for scaling each system node separately based
on general environment parameters. The implementation of scalability based on data-
driven dependencies in multi-layered intelligent agent’s environment will require
additional customization of classical solutions (as example: Kubernetes provide the
possibility to build custom controllers).

 Security and Trust
Ensuring the security and integrity of intelligent agents is critical since these agents

operate autonomously and make decisions that can impact the system’s stability. Any
compromise in agent security can lead to system vulnerabilities, impacting overall trust in
the system’s adaptability [5]. Safeguarding agent communications and decision-making
processes is vital to prevent malicious interference.

 Error Handling and Recovery
Intelligent agents must detect and manage errors without causing system disruptions.

Robust error-handling mechanisms are necessary to ensure graceful recovery from failures
and prevent cascading issues across the system [1]. Agents must coordinate effectively to
restore normal operation while maintaining the system’s adaptability. Error handling and
recovery in complex microservice architectures sometimes can be critical from the data
importance perspective. Some solutions will require deep data analysis or debugging which
are time consuming. Intelligent learning agents (ML-based) which track and analyse the
complete solution state can provide suggestions for architectural improvements based on
identified errors.

Using intelligent agents to monitor and control adaptive systems presents challenges in real-
time data processing, coordination, decision-making, scalability, security, and error recovery.
Addressing these challenges requires careful design of the agents and the system architecture to
ensure efficiency, security, and responsiveness.

3. The methods and materials

Developing adaptive systems based on microservice architecture, monitored by intelligent agents,
is a modern approach to creating flexible, scalable, and resilient software systems. This concept
combines the strengths of microservice architecture with the autonomous decision-making
capabilities of intelligent agents to enhance adaptability and performance in dynamic
environments:

 Microservice Architecture as a Foundation
Microservices are small, loosely coupled services that work independently to perform

specific functions within a larger system. Each microservice is responsible for a particular
aspect of the system’s functionality, and these services communicate with each other
through lightweight protocols, typically via APIs. This architecture is highly modular,
allowing developers to easily modify, scale, or replace individual services without affecting
the entire system. The decentralized nature of microservices supports adaptive behaviour

by enabling isolated changes in specific components without disrupting other parts of the
system [6].

 Autonomous Monitoring and Adaptation by Intelligent Agents
In an adaptive system built on microservices, intelligent agents play a critical role in

monitoring the system’s health and performance. These agents observe the behaviour of
individual microservices and the overall system in real-time, collecting data on various
metrics such as resource utilization, response times, error rates, and security threats. Based
on the data, agents can make decisions autonomously, such as reallocating resources,
restarting failed services, or adjusting configurations to optimize performance.

For instance, if an agent detects that a particular microservice is experiencing high
traffic, it can automatically scale up resources allocated to that service, ensuring smooth
performance. Conversely, if certain services are underutilized, the agent can reduce
resources, optimizing the system’s overall efficiency. Agents can also identify and mitigate
failures, helping the system recover quickly from unexpected issues [7].

 Dynamic Reconfiguration and Self-Healing
One of the primary advantages of combining microservices with intelligent agents is the

ability to dynamically reconfigure the system without manual intervention. Intelligent
agents continuously analyse the system’s state and can rewire services in response to
changes in the environment or user demands. For example, if a particular service needs to
be updated or replaced, agents can route traffic to alternative services, ensuring minimal
downtime.

Self-healing capabilities are also enhanced in this model. If a microservice fails, the
intelligent agents can detect the issue and restart the service, or in more critical cases, spin
up a replacement service in a different part of the infrastructure. This reduces system
downtime and ensures that services remain operational even in the face of unexpected
failures [8].

 Scalability and Flexibility
Microservice-based architectures are inherently scalable, allowing for the easy addition

or removal of services as needed. Intelligent agents further enhance this scalability by
automating resource allocation and scaling decisions. As demand for certain services
increases or decreases, agents can dynamically adjust the system to maintain performance
levels while avoiding over-provisioning or under-utilization of resources.

Flexibility is another key advantage. The modular nature of microservices allows
developers to update or replace individual components without affecting the entire system.
Intelligent agents facilitate this by managing the transition between old and new versions
of services, ensuring smooth updates with minimal disruption [9].

 Decentralized Control and Reduced Complexity
By utilizing microservices and intelligent agents, control over the system becomes more

decentralized. Each microservice can operate independently, and intelligent agents handle
local decision-making and adaptation. This reduces the complexity of managing a large,
monolithic system and allows for more granular, efficient control over the system’s
behaviour.

However, the use of intelligent agents requires careful coordination to avoid conflicts
between adaptation decisions. For example, one agent might attempt to scale up a service,
while another could be reducing resources elsewhere. Mechanisms for agent coordination,
such as message passing or centralized decision-making in certain critical scenarios, can
help mitigate these challenges [10].

 Security and Resilience
Intelligent agents can enhance the security and resilience of microservice-based adaptive

systems. By constantly monitoring system behaviour, agents can identify unusual patterns
that might indicate security threats, such as denial of service attacks or unauthorized access

attempts. In response, agents can take corrective actions like isolating affected services or
dynamically adjusting security policies to mitigate risks.

Resilience is another strength of this model. In addition to self-healing mechanisms,
intelligent agents can pre-emptively identify and resolve potential issues before they
escalate into failures. This proactive approach helps maintain high availability and reduces
the risk of catastrophic failures [11].

Example of function of self-configuration mechanism. An adaptive system automatically
changes its parameters in response to external variations in workload. This process can be
described by the equation:

Pn e w
¿

Pc u r r e n t
+¿α
¿
∆
E

(1)

where:
 Pnew is the new level of system performance,

 Pc ur r e n t is the initial performance level (e.g., the average value without adaptation),

 α is the adaptation coefficient (determining how quickly the system responds to changes),

 ∆
E

 represents external workload variations (such as increased requests, failures, or

environmental changes).

Figure 2: Dependence of the performance of an adaptive system on the load.

Explanation of the Graph:
 If the workload increases (∆

E
 > 0), the system adapts and increases its performance.

 If the workload decreases (∆
E

 < 0), the system can lower its performance to save resources.

 The red dashed line represents the initial performance level (Pc ur r e n t).

 The higher the adaptation coefficient (α), the faster the system adjusts its performance in

response to changes.

This approach allows adaptive systems to dynamically react to workload variations,
maintaining stable operation without resource overuse.

4. The results of research

The approach of developing adaptive systems using microservice architecture combined with
intelligent agents yields several notable outcomes:

 Increased Flexibility
The microservice architecture’s modular design allows each service to evolve

independently. This leads to a highly flexible system where individual components can be
updated, replaced, or scaled without affecting the overall system. The use of intelligent
agents further enhances this flexibility by enabling real-time adaptations to the system’s
behaviour in response to changing conditions [12].

 Improved Scalability
Microservices naturally support horizontal scaling, where new instances of a service can

be created as demand increases. Intelligent agents monitor resource utilization and
automatically manage this scaling process, ensuring optimal performance while avoiding
over-provisioning. This scalability makes the system well-suited to environments with
fluctuating loads and high variability in user demands [13].

 Enhanced Resilience and Self-Healing
By leveraging intelligent agents, adaptive systems become more resilient. Agents can

detect failures or performance bottlenecks in real-time and take corrective actions, such as
restarting services or rerouting traffic to healthy components. This self-healing capability
ensures that the system can recover quickly from disruptions, minimizing downtime and
maintaining service continuity [14].

 Autonomous Optimization
Intelligent agents continuously monitor system performance and can optimize resource

allocation and configurations based on current conditions. This leads to more efficient use
of resources, as the system dynamically adjusts to maintain optimal performance. Over
time, this results in cost savings and improved operational efficiency as the system operates
with fewer manual interventions [15].

 Decentralized Control and Reduced Complexity
The decentralized nature of microservices and the autonomous actions of intelligent

agents reduce the complexity of managing the system. Instead of relying on centralized
control, each microservice and agent operates independently, making local decisions. This
decentralized approach simplifies system management, especially in large-scale systems, as
there is less need for manual oversight or intervention [16].

 Improved Security and Proactive Threat Mitigation
With continuous monitoring by intelligent agents, the system becomes more proactive

in identifying and responding to security threats. Agents can detect anomalies in system
behaviour that may indicate potential attacks and take immediate action, such as isolating
compromised services or adjusting security configurations. This proactive approach
reduces the risk of system breaches and enhances overall security [17].

 Faster and Easier Maintenance
Due to the modular nature of microservices, maintaining and updating adaptive systems

is faster and easier. Developers can make changes to individual services without needing to
take down the entire system. Intelligent agents assist by managing service transitions,
ensuring smooth updates, and reducing the potential for errors during maintenance
processes [18].

 Cost-Effective Resource Management

Intelligent agents optimize resource usage by scaling services up or down based on real-
time demand, which prevents wasteful over-provisioning and reduces infrastructure costs.
This cost-effectiveness is especially valuable in cloud environments where resources are
billed based on usage [15].

While the approach of developing adaptive systems using microservice architecture and
intelligent agents offers numerous advantages, it also presents several drawbacks:

 Increased Complexity in Management

Managing a system based on microservices, especially one with intelligent agents,
introduces significant complexity. Each microservice operates independently, which can
lead to many services that need to be monitored, maintained, and updated. Coordinating
the actions of multiple intelligent agents and ensuring they work in harmony without
causing conflicts can be challenging. As the system scales, the complexity grows, requiring
advanced tools and expertise to manage the interactions between services and agents
effectively.

 Communication Overhead

Microservice architectures rely on inter-service communication, typically through APIs
or messaging systems. As the number of microservices increases, the volume of
communication between them grows as well, especially when system architecture and
cross-services communication design were not refactored properly in time. This can lead to
performance bottlenecks and increased latency, especially in large-scale systems where
services are distributed across different servers or geographic locations. Intelligent agents,
which monitor and manage these services, may also add to the communication overhead as
they exchange data and coordinate actions in real-time.

 Resource Consumption

Running multiple microservices and intelligent agents requires significant
computational resources. Each microservice operates independently, often needing its own
instance of resources such as memory, CPU, and storage. Intelligent agents, which
continuously monitor and optimize the system, also consume additional resources. This can
lead to higher infrastructure costs, especially in cloud environments, where resources are
billed based on usage.

 Coordination and Conflict Resolution

In an adaptive system with multiple intelligent agents, ensuring proper coordination is
essential. However, there is a risk of conflicts when different agents make decisions that
affect the same part of the system. For example, one agent might attempt to scale up a
service, while another is scaling it down based on different criteria. These conflicts can lead
to instability or suboptimal performance. Designing mechanisms for effective coordination
and conflict resolution among agents is a challenging aspect of this approach.

 Security Challenges

While intelligent agents enhance security by detecting and mitigating threats in real-
time, they also introduce new security concerns. The autonomous nature of agents means
they need to be carefully designed to avoid being exploited or manipulated by malicious
actors. Additionally, the decentralized nature of microservice architectures can make it
harder to maintain a consistent security posture across all services. Each service may have

its own vulnerabilities, and securing the communication between services and agents is
critical to prevent breaches.

 Testing and Debugging Difficulties

Testing and debugging adaptive systems built on microservice architecture can be more
difficult compared to monolithic systems. The dynamic and distributed nature of
microservices makes it challenging to trace and isolate issues, especially when they involve
multiple services or when intelligent agents are autonomously making changes in real-
time. Debugging interactions between services, identifying the root cause of performance
issues, or understanding the impact of agent decisions often requires specialized tools and a
deep understanding of the system’s architecture.

 Overhead from Intelligent Agents

While intelligent agents provide valuable automation, they also introduce overhead. The
agents must be continuously running, consuming resources, and processing large amounts
of data in real-time to monitor and make decisions. If not properly managed, this can result
in additional load on the system, potentially reducing overall performance. Moreover, the
algorithms used by agents for decision-making may need to be fine-tuned to avoid
inefficient behavior, which could further complicate the system’s management.

 Steep Learning Curve

Implementing and maintaining an adaptive system with microservices and intelligent
agents requires expertise in both microservice architecture and AI-driven automation.
Developers and operations teams need to be familiar with distributed systems, microservice
design patterns, agent-based systems, and real-time monitoring. This steep learning curve
can increase development time and require more skilled personnel, raising the overall cost
of implementation and maintenance.

5. Practical value

The practical implementation of adaptive systems based on microservice architecture, monitored
and operated by intelligent agents, can be seen across various industries. These systems are used to
optimise operations, enhance user experience, and reduce costs. Below are real-world examples
and practical implementations that demonstrate how these technologies are applied:

1. E-commerce Platforms: Dynamic Scaling and Personalisation
Example: An online retailer like Amazon utilises a microservice architecture where

different services, such as inventory management, product recommendations, and payment
processing, function independently.

Implementation by Amazon:
 During high-traffic periods, such as Black Friday, intelligent agents monitor

user demand and dynamically scale specific services, like payment processing,
to handle the increased load without overburdening the entire system.

 These agents also analyse browsing behaviour and purchasing patterns to
provide personalised recommendations in real-time, ensuring that the user
receives tailored suggestions, which can boost sales.

Benefit: This automated scalability prevents system crashes, reduces latency, and enhances
the customer experience, all while keeping infrastructure costs manageable by scaling only
what is needed.

2. Healthcare: Real-Time Patient Monitoring Systems

Example: Hospitals and healthcare providers use adaptive systems for patient
monitoring in intensive care units (ICUs). A microservice architecture ensures that different
aspects of patient care, such as vital signs tracking, medication management, and alerts, are
handled independently.

Implementation by Philips IntelliVue Guardian:
 Intelligent agents continuously monitor patients’ vital signs (heart rate, blood

pressure, oxygen levels) in real-time. If an agent detects anomalies—like a
sudden drop in blood pressure—it can immediately trigger an alert to medical
staff and activate pre-programmed actions, such as adjusting medications.

 These systems can also integrate with patient history records and offer real-
time recommendations based on a combination of current data and historical
trends.

Benefit: The system reduces the risk of human error, ensures timely interventions, and
allows medical staff to focus on more complex tasks, as many routine decisions and
adjustments are made autonomously by the system.

3. Financial Services: Fraud Detection and Risk Management
Example: In the banking sector, institutions like JPMorgan Chase utilize adaptive

systems to monitor transactions for fraud detection.
Implementation by JPMorgan Chase COiN:

 Microservices handle different banking functions, such as transaction
processing, user authentication, and loan approval. Intelligent agents constantly
analyse transaction patterns in real-time, flagging suspicious activities such as
unusual withdrawals or transfers.

 The agents cross-reference the data with global fraud patterns and historical
data from individual users to determine whether a transaction should be
blocked or flagged for further review. If necessary, the system can take
immediate action, like freezing an account or notifying the user, without
waiting for human intervention.

Benefit: This system reduces response times for potential fraud cases, protects customer
assets, and significantly lowers the risk of financial loss for both the bank and its clients.

4. Cloud Services: Automated Resource Management
Example: Cloud service providers like Google Cloud and AWS use adaptive systems to

manage vast infrastructures and client resources efficiently.
Implementation by AWA Auto Scaling:

 Cloud services are broken down into microservices responsible for storage,
computing, database management, etc. Intelligent agents monitor system
performance, traffic, and resource utilisation. When there is a sudden surge in
demand for cloud resources—like during a product launch or a viral event—the
agents automatically allocate additional computing power and storage.

 Once the demand decreases, the agents deallocate resources to avoid over-
provisioning and unnecessary costs.

Benefit: This adaptive resource management ensures that clients always have access to the
necessary resources without experiencing slowdowns or outages, while also minimising
costs through efficient allocation.

5. Smart Manufacturing: Predictive Maintenance and Automation
Example: In smart factories, like those operated by Siemens, adaptive systems manage

production lines and equipment maintenance through predictive analytics.
Implementation by Siemens MindSphere:

 Microservices control various production processes, such as assembly, quality
control, and packaging. Intelligent agents continuously monitor equipment
performance, tracking vibration, temperature, and operational efficiency.

 If the system detects signs of wear or inefficiency in machinery, it schedules
predictive maintenance before a breakdown occurs. In addition, intelligent
agents can reassign workloads to other machines to ensure that production
continues without disruption.

Benefit: This approach reduces downtime, improves operational efficiency, and extends the
life of expensive machinery, ultimately saving manufacturers significant time and money.

6. Telecommunications: Network Optimisation and User Experience Enhancement
Example: Telecom providers like Verizon and AT&T use adaptive systems for managing

their networks, ensuring high-quality service for millions of users.
Implementation by AT&T Network AI:

 The network infrastructure is divided into microservices responsible for
managing call routing, data services, and network traffic balancing. Intelligent
agents constantly monitor the quality of the service each user experiences,
detecting any network bottlenecks or latency issues.

 When agents notice congestion in a particular region or node, they
automatically reroute traffic to less congested areas or dynamically allocate
more bandwidth to high-demand regions.

Benefit: Users experience fewer dropped calls, faster internet speeds, and more reliable
connectivity, all without manual intervention by network engineers.

7. Energy Sector: Smart Grid Management
Example: Utility companies use adaptive systems for managing smart grids, ensuring

efficient energy distribution and consumption.
Implementation by General Electric Predix:

 Microservices monitor different parts of the grid, including power generation,
distribution, and consumption. Intelligent agents predict demand based on
historical data and real-time inputs such as weather forecasts and user
consumption patterns. When the system predicts a surge in demand—such as
during a heatwave—agents adjust the distribution of power to prevent
blackouts, or suggest alternative energy sources, like solar or battery storage.

 Additionally, the system can monitor the health of grid infrastructure,
identifying faults in power lines or transformers and alerting repair teams
before major outages occur.

Benefit: This ensures more reliable energy distribution, reduces the chances of blackouts,
and helps optimise energy consumption, contributing to cost savings for both utilities and
consumers.

6. Conclusions

Developing adaptive systems using microservice architecture, monitored and controlled by
intelligent agents, offers numerous benefits. The modularity of microservices provides flexibility
and scalability, while intelligent agents enhance system adaptability, resilience, and security. This
approach allows systems to dynamically reconfigure in real-time, respond to changing conditions,
and recover from failures, making it ideal for environments with fluctuating demands or
unpredictable circumstances. Combining these two paradigms results in systems that are not only
highly adaptive but also easier to maintain and evolve over time.

Despite its benefits, the combination of microservice architecture and intelligent agents in
adaptive systems comes with challenges related to complexity, resource consumption, security, and
management. Addressing these drawbacks requires careful system design, robust coordination
mechanisms, and the use of advanced monitoring and debugging tools. As a result, this approach
may not be suitable for all applications, particularly those with limited resources or less dynamic
requirements.

Practical implementations of adaptive systems with microservice architectures and intelligent
agent monitoring are transforming industries by improving operational efficiency, enhancing
customer experience, and reducing costs. These systems enable businesses to dynamically respond
to real-time changes, predict potential issues before they arise, and automate decision-making
processes, leading to better overall performance.

The development of adaptive distributed systems based on microservice architecture, with
intelligent agents for monitoring and management, holds significant scientific value across various
fields leading to more resilient and efficient systems. Key technical design attributes are:

1. Flexibility and Modularity: Microservices allow complex systems to be broken down into
independent components, enabling easy scaling and adaptation. This is crucial for creating
systems that can quickly evolve with changing requirements.

2. Adaptability and Self-Learning: AI agents use machine learning to monitor and predict
system behavior, allowing real-time adaptation to environmental changes, advancing
autonomous decision-making systems.

3. Efficiency in Computing: These systems optimize computational and network resource use,
fostering the development of energy-efficient distributed computing solutions, critical in
handling big data and cloud systems.

4. Management of Complex Systems: AI agents autonomously manage large-scale
infrastructures, detecting anomalies and preventing failures in critical sectors like energy,
healthcare, and transportation.

5. Scalability: Microservices enable scalable integration of AI agents into both small and large
systems, improving overall performance while reducing the need for human oversight.

6. Interdisciplinary Research: This technology supports cross-disciplinary studies in fields
such as computer science, engineering, and social sciences, offering new insights into
automation, decision-making, and resource optimization.

7. Security and Ethics: As these systems evolve, they raise new challenges in data security,
transparency, and ethical standards, driving research in developing safe, reliable, and
ethically responsible AI systems.

The scientific significance of adaptive systems with microservice architectures and AI agents
lies in their potential to automate complex processes, enhance system efficiency and security, and
foster interdisciplinary research in emerging technologies.

Declaration on Generative AI

During the preparation of this work, the authors utilized ChatGPT and LanguageTool to identify
and rectify grammatical, typographical, and spelling errors. Following the use of these tools, the
authors conducted a thorough review and made necessary revisions, and accept full responsibility
for the final content of this publication.

References

[1] Salehie, M., & Tahvildari, L. (2009). Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS), 4(2), 1-42.

[2] Lewis, G. A., Morris, E. L., Simanta, S., & Wrage, L. (2009). Common themes in dynamic
system adaptation. Journal of Systems and Software, 83(12), 1865-1872.

[3] Andersson, J., de Lemos, R., Malek, S., & Weyns, D. (2013). Modeling dimensions of self-
adaptive software systems. Software Engineering for Self-Adaptive Systems II, 1-30.

[4] Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41-
50.

[5] Weyns, D., Andersson, J., & Schmerl, B. (2012). On patterns for decentralized control in self-
adaptive systems. Software Engineering for Self-Adaptive Systems II, 76, 76-107.

[6] Groves, M. D., Richardson, R., & Whitesell, S. (2025). Pro microservices in .NET 6: With
examples using ASP.NET Core 6, MassTransit, and Kubernetes.

[7] Makarenko, A., & Otrokh, S. (2023). Using SDR as sensor nodes in an intelligent radio emission
data collection network management system. Scientific Notes of the State University of
Information and Communication Technologies, (1), 15-23. Retrieved from journals.dut.edu.ua.

[8] Magableh, B. (2019). A deep recurrent Q network towards self-adapting distributed
microservices architecture.

[9] Dragoni, N., Lanese, I., Larsen, S. T., Mazzara, M., Mustafin, R., & Safina, L. (2017).
Microservices: How to make your application scale. Perspectives of System Informatics, 95-
104.

[10] Mori, K. (2019). Autonomous decentralized systems: Achievements and future challenges.
Proceedings of the 2019 IEEE International Symposium on Autonomous Decentralized
Systems, 1-8.

[11] Leines-Vite, L., Pérez-Arriaga, J. C., & Limón, X. (2021). Information and Communication
Security Mechanisms For Microservices-based Systems.

[12] Ford, N., & Parsons, D. (2017). Building Evolutionary Architectures: Support Constant Change.
O'Reilly Media.

[13] Leitao, P., Karnouskos, S., Ribeiro, L., Lee, J., & Strasser, T. (2016). Smart Agents in Industrial
Cyber-Physical Systems. Proceedings of the IEEE, 104(5), 1085-1101.

[14] Rieger, C. G. (2014). Resilient control systems: Practical metrics basis for defining mission
impact. In Proceedings of the 7th International Symposium on Resilient Control Systems (pp.
1-6). IEEE.

[15] Sharma, S., Nag, A., Cordeiro, L., Ayoub, O., & Tornatore, M. (2020). AI-assisted virtualization
software.

[16] Zilberstein, S. (2021). Decentralized Partially Observable Markov Decision Processes.
University of Massachusetts.

[17] Stiennon, N., et al. (2020). Learning to Summarize with Human Feedback. Advances in Neural
Information Processing Systems, 33, 3008-3021.

[18] Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41-
50.

	1. Introduction
	2. Architectural, Development, and Maintenance Challenges in Adaptive Systems
	3. The methods and materials
	4. The results of research
	5. Practical value
	6. Conclusions
	Declaration on Generative AI
	References

