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Abstract
This paper considers a hybrid mobile robotic system for the problem of landmine detection. The system 
consists of two intelligent robotic agents. The first agent is a highly mobile aerial-based detector with a 
hyperspectral / multispectral camera and is designed to identify all areas of landmine installation. The 
second intelligent agent is a ground-based robot with an infrared camera, which has a lower sensitivity  
threshold  and  is  used  to  further  validate  the  mines  identified  by  the  first  intelligent  agent.  Semi-
supervised learning with spectral-spatial consistency is used to train CNN-based feature extraction and 
classification  pipeline.  The  proposed  technique  allows  to  boost  labeled  sample  size  by  ~3  times  and  
achieves high recall (1.0) and moderate precision (0.694). The verification step improves precision to 0.93,  
reducing the number of false positives.
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1. Introduction

     In many countries, mines pose a serious threat to life and cause economic problems. Mines are  
dangerous  because  their  location  is  unknown  and  they  are  often  difficult  to  detect.  The 
development of new demining technologies is  difficult  due to the wide variety of terrains and 
environmental conditions in which mines are laid, as well as the wide variety of mines. Currently,  
detecting and clearing mines requires special knowledge and special equipment.

The conduct of active hostilities on the territory of our state led to the appearance of significant 
territories contaminated with explosive objects, which poses a real danger to people's lives and 
health,  prevents  them  from ensuring  their  livelihoods  and  restoring  economic  activity,  has  a 
negative  impact  on  ecosystems,  etc.  Today,  Ukraine  is  the  most  polluted  place  in  the  world. 
According to estimates, about a third of its territory - an area the size of Florida - contains WB.

Prompt, accurate and automated detection and determination of explosive objects is becoming 
an  extremely  urgent  task  today.  At  the  same  time,  the  methods  and  conditions  of  planting 
explosive objects, in particular their special concealment, scattering as a way of setting up and 
scattering remnants as a result of explosions, as well as "noisiness" of the battlefield territories and 
significant limitations (primarily of a technical nature) of detection means, significantly complicate 
the task of detecting and identifying explosive objects. by conventional computer vision methods.  
This necessitates the development of new methods for determining such objects, based on hybrid 
approaches.  The  process  of  detecting  mines  is  complex,  dangerous  and  expensive.  The  main 
problem is not to remove mines, but to accurately determine the location of the mine. This entire 
operation is still performed manually, which leads to the fact that the pace of demining is very 
unsatisfactory. Since 20 times more mines are installed for each remote mine [3]. 
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Therefore, a more appropriate approach based on the latest technologies is critical, minimizing 
risk while increasing the speed of demining and the accuracy of the procedure. Therefore, the  
development of hybrid robotic systems that include unmanned air and ground vehicles and can 
carry sensors with minimal interaction with human operators is of great importance. [6].

This is achieved by dividing the overall system into two subsystems: sensor technologies and a 
robotic device. 

There are many problems in mine detection. The first is that changes in weather factors have 
led to the disappearance of underground mine spaces. The second is the ability to stop the effects of 
mines without seeing underground. The third is that detection requires not only the presence of a  
mine, but also the robot must mark the location of the mine with an accuracy of 5 cm. 
Work  is  needed  to  merge  mine  detection  technologies  to  improve  their  performance,  as  each 
approach produces good results in limited conditions. Due to the above limitations, a multi-sensor 
system  based  on  signal  fusion  and  algorithms  should  be  developed.  Rather  than  focusing  on 
individual technologies operating in isolation, mine detection research and development should 
emphasize design from first principles and subsequent development of an integrated multi-sensor 
system that overcomes the limitations of any single sensor technology. Combining different types 
of sensors will certainly achieve better detection results [1].

2. Robot-based landmine removal

The  ability  to  detect  mines  in  a  surface  minefield  using  autonomous  robots  is  becoming 
increasingly popular as it reduces the danger and cost of manual detection [19]. The robots search 
for mines with such low pressure that mine explosions do not go off. To effectively cover all mined 
areas, robots must adapt to accelerated reconnaissance to improve efficiency, especially if there is 
any surveillance team. The use of robots to detect landmines provides an ideal sensor for robots  
due  to  its  low  cost,  wide  availability,  high  data  content  and  speed  of  information.  Adequate 
clearance rates can only be achieved using new technologies such as improved sensors, efficient 
manipulators and mobile robots [16]. Estimating the position of buried landmines using data from 
landmine detection sensors is important in selective work. One of the problems with current mine 
detection robots is  that they are quite large in structure and very expensive.  Although several 
inexpensive mine detection robots have also been developed, most of them use simple algorithms 
so  that  they  can  only  work  in  simple,  unobstructed  environments  [11].  The  development  of 
lightweight, low-cost, semi-autonomous robots operating in conjunction with a monitoring station 
(personal mine scouts) is a well-studied approach [17]. The robots search for mines at such low 
pressure that mine explosions do not go off. Multi-robot systems for area reduction form the next  
step in  the search for  landmines.  Some research has been carried out  on a  multi-agent  based 
architecture  responsible  for  coordinating  advanced  stochastic  terrain  analysis.  It  includes  the 
reactive obstacle avoidance technique and the development of mission control software to plan,  
configure and control operations. The system uses walking, wheeled and aerial robots. Finally, this 
study describes a payload sensor system using Fourier analysis as a mechanism for efficient mine  
detection.

Three main facts made it possible to gradually increase the efficiency of surveys using UAVs 
[13,14]:

 The UAV industry (eg DJI) has created very advanced systems that enable computer-
aided planning and automated aerial detection missions with multiple sensors.

 The sensor industry has provided powerful devices to match UAVs. 



 The software industry has provided tools to process the records collected by UAVs, 
producing results of the highest quality.

The first UAV for humanitarian demining appeared in the EU ARC project. The use of UAVs 
with visible color sensors for humanitarian mine clearance has increased over the past 5–10 years. 
[4,5,9–12].

In  the context  of  a  high level  of  false  alarms in an intelligent  hybrid  mobile  robotic  mine  
detection system, it is proposed to use two information-connected robots.

The idea of obstacle avoidance for an autonomous mine detection robot is based on the use of 
continuous mapping and localization techniques (simultaneous localization and mapping – SLAM). 
This allows the robot's position to be localized while the map is updated using Gmapping [17].
The purpose of this is to adjust the parameters so that the robot can navigate the new map and 
reach the desired location, avoiding potential obstacles along the way. The path planner gives the 
robot a path, which is a new path that allows the robot to avoid obstacles along the way. The local  
planner sends commands that allow the robot to follow its path. This is done by estimating the 
robot's position using data obtained from a laser scanner [18].

3. Landmine detection technologies

Today, the main means of technical inspection in mine countermeasures include: 
1. Metal detectors that work on the basis of the principle of electromagnetic induction. 
2.  Geo-radar  (Ground  Penetrating  Radar,  GPR),  which  use  high-frequency  electromagnetic 

waves to scan subsurface layers of soil, concrete, or other materials. 
3.  Explosive  vapor  detectors  ("electronic  noses")  that  detect  molecules  or  microparticles  of 

explosive substances in the air. 
4. Mine detectors based on acoustic, ultrasonic or seismic methods. 
5. Non-linear mine detectors (Non-Linear Junction Detector, NLJD) are devices for detecting 

non-linear electronic components that are commonly used in various electronic devices. 
5. X-ray systems that are not used for wide areas and have restrictions on the location of the  

object in the viewing area. 
6. Thermal imagers, which have less effect in the case of equalized temperature (for example, at 

night or during long-term cover of explosives). 
However, traditional methods used in mine countermeasures have significant limitations, which 

depend not only on the physical principles of action and the technical and technological levels of  
development of these methods, but above all on the specific tasks and conditions of this activity. 

Innovative methods of detecting explosive objects include, first of all, the methods of analyzing 
infrared and hyperspectral images (Hyperspectral Imaging, HSI). Despite the maturity of sensors,  
signal  processing  algorithms  remain  underdeveloped  and  not  related  to  physical  phenomena. 
Thermal signatures are currently not sufficiently studied, and there is no comprehensive prognostic 
model" [20]

Practically all studies of methods of detecting mines and explosive objects mentioned here, both 
traditional  and  innovative,  agreed  with  the  thesis  that  for  their  effective  determination,  it  is 
necessary to apply the combination and fusion of data of different types. 

Research suggests using both different types of sensors and different methods of data fusion. 
The hardware combination is based on the fact that multisensor systems combine technologies 
with various sources of false alarms, so they can significantly reduce the frequency of false alarms. 
The  most  powerful  methods  of  processing  infrared  and  hyperspectral  images  are  methods  of 
artificial intelligence.



4. Objects and features 

The  measured  data  in  hyperspectral  images  can  be  visualized  as  a  data  cube.  A 
hyperspectral cube is a three-dimensional array of data that represents a set of spectral images of  
an  object  captured  in  various  narrow  spectral  bands  in  the  electromagnetic  spectrum).  The 
hyperspectral  cube  consists  of  two-dimensional  spatial  information  (x,  y),  which  reflects  the 
location of pixels in the image, and the third dimension - the spectral axis (λ), which corresponds to 
the intensity of light or signal at each wavelength. Each slice of the data cube contains an image of 
the scene at a specific wavelength. Each pixel is associated with a vector of spectral responses, 
otherwise known as a spectral signature.The signal intensity (which is recorded for each pixel and 
each spectral channel) is the main parameter that reflects the amount of electromagnetic radiation 
recorded by the sensor. The hyperspectral cube is thus defined by spatial and spectral structures.  
Spatial structure is characterized by: 

a) resolution (spatial resolution), which determines the detailing of spatial information, i.e. high 
spatial resolution makes it possible to recognize small objects in the image;

b) size in space: dimensionality along the axes x and y corresponds to the number of pixels that  
cover the area of the object or scene.

The spectral structure of the hyperspectral angle is determined by: 
a) the number of spectral channels (bands), i.e. the number of narrow spectral bands in which 

the signal is recorded - usually from several tens to hundreds of channels; 
b) spectral resolution, which determines the width of each spectral channel (for example 1–10 

nm); higher spectral resolution makes it possible to better distinguish materials; 
c) wavelengths that cover a certain range of the electromagnetic spectrum. 
The conditionality of the data, in particular, a large number of spectral anals, determines the 

high  computational  complexity  of  the  hyperspectral  cube  data  processing  algorithms.   An 
important  characteristic  of  the  hyperspectral  cube  is  the  signal-to-noise  ratio  (SNR),  which 
determines  the  quality  of  spectral  information:  a  high  SNR  value  provides  a  more  accurate 
determination of material characteristics.  Some hyperspectral cubes include a time component, 
which adds another measurement axis. This is used to monitor dynamic processes (such as changes 
in vegetation) or highly dynamic processes (targeting). The data of hyperspectral cubes are highly 
informative, because they contain detailed information about the physical, chemical, biological, etc. 
properties of objects.  Another property of hyperspectral cube data is the spectral correlation of 
channels, which should be taken into account during intelligent image processing.  Signal intensity 
can  be  expressed  in  relative  units  (reflectance,  emissivity,  etc.)  or  calibrated  physical  units.  
Calibrated  units  take  into  account  the  physical  properties  of  the  scene,  the  sensor,  and  the 
environment in which the measurement is made. They make it possible to obtain accurate data  
about  the  physical  parameters  of  the  signal,  for  example,  energy,  flow or  radiation  intensity.  
Calibration  involves  taking  into  account  the  spectral  sensitivity  of  the  sensor,  atmospheric 
conditions (scattering, absorption), scene geometry (angle of light incidence/reflection), power of 
the  light  source.  It  should  be  taken  into  account  that  calibration  requires  additional  time, 
equipment and resources.

As of today, the main features that are promising for use in the remote detection of mines and  
explosive  devices  using  the  methods  of  intelligent  processing  of  hyperspectral  images  can  be 
considered: 

1) actual mines and explosive objects as physical objects; 

2) spectral signatures of explosives and associated substances; 

3) disturbance of land cover and vegetation; 

4) marking of dangerous objects and zones (in conventional cases); 



5) unmasking signs on the terrain (in case of concealment).

The main task of using hyperspectral analysis methods to solve the tasks of demining territories  
and disarming explosive  devices  can be  the  detection and identification of  substances  used in 
explosive devices.  It  is the spectral  signatures (signatures) of the specified substances that will  
determine  the  limits  of  the  wavelength  ranges  of  electromagnetic  radiation,  which  should  be 
investigated using hyperspectral analysis, and therefore, the technical requirements for equipment 
and, ultimately, the methods of intelligent analysis of hyperspectral images. However, methods of 
detection and identification of substances in demining tasks have certain limitations.

5. Problem Statement

In this work, the task of detecting mines will be considered as a segmentation task - pixels that 
correspond to mines and other objects of interest must be selected on the target images. More 
formally, an image I represented as a tensor H × W × C, where H is the height of the matrix, W is 
the matrix width, C is the number of channels. Each element of the matrix x  represents an image 
pixel  and contains a single rational  value  x ∈  R,  which corresponds to the "brightness" of  the 
surface  in  this  pixel.  The  work  solves  the  task  of  constructing  a  segmentation  function  that 
transforms the  input  image  I to  the  segmentation map  I' of  size  H ×  W where  each  element 
y∈C ,C={∅,1 ,2 ,3 , ... , c } , defined as an empty space or an explosive ordnance.

When evaluating the quality of an intelligent system, it is important to use realistic standards. The 
UN  standard  for  demining  landmines  requires  a  99.6%  explosive  ordnance  detection  rate  for 
humanitarian demining. However, this standard does not establish the level of false positives. Such 
triggers are not dangerous for the life and health of the personnel performing demining, but they 
significantly slow down and make the process more expensive. To overcome this shortcoming, the 
use of a hybrid system of two autonomous devices is proposed. The first device is mobile and 
allows for a quick processing of a large area, and the second.
Since complex high-dimensional images are used to solve the segmentation problem, the problem 
of a limited data set arises. Collecting data using one sensor is labor intensive, but adding a second,  
different  type  of  sensor  increases  the  complexity  of  the  process  even  more.  Semi-supervised 
learning is used to solve this limitation. Formally, this process is described as the trainig of an 
approximator  f (x ,θ ) ,  where  x∈X  is  the input  space,  y∈Y  is  the output  space,   θ are 
approximator’s parameters, derived through a training process. The learning function is used to 
learn the weights T ( f , L ,U )=θ , where T is the training function,  f – is the approximator, L – 
is  the  labeled  dataset,  L=( x1, y1) ,… ,( xn , yn) , x∈X , y∈Y ,  U  is  the  unlabeled  dataset, 

U=x(n+ 1) ,… xm , x∈X . It should be noted that the approximator obtained by means of semi-

supervised  learning does  not  differ  from the  approximator  obtained  using classical  supervised 
learning at the inference stage.
When evaluating the effectiveness of the proposed solution, it is important to choose the right  
metrics, as it is important to correctly classify the mine, and to avoid errors of the first kind (false 
negatives).
The following metrics will be used in this work:
Precision (Mine / No Mine) – the ratio of all true results to the total number of true and false-true  

results: Precision= TP
(TP+ FP)

 ;

Recall (Mine / No Mine) – he ratio of all true results to the total number of true and false negative 
results. When detecting mines, it is very important not to make mistakes of the first kind, which 

makes recall one of the key metrics: Recall= TP
(TP+ FN )



Rand index (Per Class) – also known as classifier accuracy. This metric evaluates the ratio 

of true positive and true negative predictions to all predictions: Rand= TP+ TN
(TP+ TN+ FP+ FN )

Intersection over Union (IoU) – is a classic accuracy indicator that is often used to assess 
the quality of a solved segmentation problem. The IoU calculates the ratio of the intersection of the 
expected  class  label  to  the  total  sum  of  the  prediction  area  and  the  actual  label. 

IoU= TP
(TP+ FP+ FN )

.

6. Method

6.1. General description of the approach

The proposed approach is based on the use of two devices for remote survey of the mined  
area and detection of regions that contain mines. The first device is a highly mobile (quadrocopter),  
the task of which is to detect areas with a high probability of finding explosive objects. For this, a  
hyperspectral or multispectral camera is used, capable of detecting mines on the surface or in the  
ground at  a depth of  up to 10 centimeters.  At the same time,  the intelligent system is  highly  
sensitive and allows a high number of errors of the second kind.

To compensate for this, a second, less mobile, ground-based device is used. It is equipped 
with a more sensitive sensor (lidar, ground-penetrating radar, magnetometers). At the same time, 
its intelligent system is less sensitive, which significantly reduces the level of type II errors without 
creating additional risk to personnel. This approach has following advantages:

1. This removes restrictions on the use of heavy and bulky sensors that cannot be installed on 
a quadcopter;

2. This makes it possible to speed up the collection of data by a ground robot by optimal route 
planning and scanning of areas with a high probability of exposure to explosive objects,  
without visiting areas that were confirmed to not have any landmines;

3. This enables usage of a combination of several sensors. The specific types of sensors are  
chosen depending on the task, but at the post-processing stage, the sensor fusion technique 
can be used to obtain an even richer set of data.

The general scheme of the system is shown in Figure 1.



 Figure 1: The diagram of the proposed approach

6.2. Data Processing

A popular trend in hyperspectral data processing is a comprehensive data processing pipeline that 
denoises, normalizes, filters, and (if necessary) reduces the dimensionality of the input data.  This 
work uses a  hybrid approach with two intelligent systems that  control  the level  of  sensitivity 
individually, a lightweight reprocessing pipeline is used. The pipeline is designed to create a high-
quality  contrast  with  minimal  blurring  or  artifact  introduction  into  the   original  image.  The 
proposed  preprocessing  consists  of  local-global  contrast  stretching  via  normalization.  When 
normalizing,  a  grayscale  representation  of  pixels  is  used.  After  calculating  the  corresponding 
coefficients, each channel is scaled by multiplying the value by the corresponding coefficient.
In the case when the elements of the scene are illuminated unevenly, this can lead to different local 
contrast in the same objects. Since contrast strength is an important feature, it must be normalized.  
For this, local normalization based on convolution is used:

 I n(x , y )=newMax∗
(I ( x , y)−min I ( x , y))
max I ( x , y)−min I (x , y )

, (1) 

wher  newMax is the maximum value after the normalization,  I ( x , y)  is pixel value x, y in the 
original  image,   min I (x , y ) is  the  minimum value  for  the  convolution  kernel  in  pixels  x,  y,  

max I (x , y )  is the maximum value for the convolution kernel in a pixel x,y.

For local convolution, it is recommended to use a medium-sized window (this work uses a kernel of  
25×25), however, specific settings depend on the data set. 

Local  normalization  is  followed  by  global  normalization  (within  a  batch  during  training  or  a 
window during inference).  Global normalization is  implemented as linear normalization,  which 
allows to reduce the density of the space of the input distribution:

I N=(I−Min) newMax−newMin
Max−Min

+ newMin , (2)

where Min is the minimum brightness value in the original image, Max s the maximum brightness 
value in the original image, newMax is the new maximum value in the image, newMin is is the new 
minimum  value  in  the  image.  Linear  normalization  uses  standard  parameters  newMax =  255, 
newMin = 0.

6.3. Convolutional Neural Networks for feature extraction and segmentation

Artificial  convolutional  neural  networks  are  used  in  the  work  to  extract  features  and 
perform segmentation. This type of neural networks makes it possible to flexibly process features 
from high-dimensional data when solving a classification problem. This makes it possible to use the 
same architecture for segmentation and feature extraction from a wide range of sensors that can be 
reduced to a tensor format.
The  use  of  a  homogeneous  architecture  significantly  simplifies  the  learning  process  and  also 
expands the number of available types of sensors, as it allows for unified processing of both low-
dimensional and high-dimensional data.
The classic  Unet  architecture  with residual  connections  was chosen as  the  architecture  of  the 
segmenter. The architecture of the neural network is shown in Figure 2.
The proposed architecture consists of three components:

1. Input adapter – this block consists of several 3D convolution layers and brings the input 
layer to a fixed dimension. The main task of this block is, first of all, spectral compression, 



which  highlights features while reducing the resolution of the input, so the input data is  
processed incrementally by granular kernels.

2. Feature detection path – this block consists of the classical U-net architecture and contains 
convolutional  and  sweeping  paths.  Each  of  these  paths  consists  of  three  blocks  of  
convolution  (or  deconvolution)  and  feature  detection.  There  are  residual  connections 
between the corresponding blocks of each pathway, which prevents gradient attenuation 
and stabilizes learning. The convolution block consists of a maximum pooling block and 2 
consecutive convolution operations.  A deconvolution block consists  of  two consecutive 
convolution operations and one sweep operation. 

3. Segmentation Adapter – expands the resulting feature map to the target size, producing a 
segmentation map that fits the size of the input. This layer also uses three-dimensional 
convolutions to combine features from different channels into one, forming at the output a 
segmentation map with the size H × W.

 Figure 2: The diagram of the proposed approach

6.4. Segmentator Training

When creating a set of data for the proposed one, it is important to take into account the nature of 
the task and the specificity of the data.

To detect  explosive objects,  the images  must  have a  high resolution,  which makes the use of  
orthophotomosaic segmentation techniques impractical. Recognition must take place at the level of 
individual drone images,  which reduces dimensionality, but increases the number of individual 
samples that need to be labeled. The received data contains a high level of noise, which may have a 
signature similar to the target objects. Also, the dataset itself is unbalanced and contains a large 
number of "empty" images with noise and a small number of images with explosive objects. Taking 



this into account, semi-supervised learning based on spatial consistency with proxy labeling and 
modified loss functions and learning modes are used in training the segmenters.

This  paper  considers  the  proxy  labeling  method  based  on  the  principle  of  smoothness  and 
clustering. The idea is that when applying the clustering algorithm, all the pixels belonging to the 
landmine class should belong to the same cluster, which allows the class label to be propagated 
within the same image. The disadvantage of this approach is that the propagation is sensitive to 
noise,  and the transfer  of  labels  between different  images  requires  the application of  complex 
cluster similarity metrics, which significantly reduces the accuracy of pseudolabels. Therefore, in  
this  work,  to  compensate  for  these  shortcomings,  an  additional  assumption  is  introduced  - 
temporal-spatial cluster consistency. The intuition is that by having a labeled image  xt and the 
unlabeled image x't+1, which have a certain intersection, both contain the object of interest. If the 
direction of optical flow is known, an approximate location of the object of interest in x't+1 can be 
derived by offsetting the location of the object in xt via the estimation of the camera’s movement. 
Therefore, a distribution of the possible location of the object in the image with an estimation of 
the probability based on the distance is created.   Afterwards, clustering of the image is performed 
and the intersection between the detected clusters and the object’s location probability distribution 
is calculated, which is used to verify the accuracy of the pseudo labels. Visually, the idea is depicted 
in Fig. 3

Figure 3: Semi-supervised learning with temporal and spatial consistency

Analytically,  the  procedure  is  moderately  complex.  The  first  step  is  the  calculation  of  the 
probability map of object’s location. This is achieved by applying a convolution operator with a 
Gaussian kernel is used, which is defined as:

KGaussian (x , y )=
e

−(x2+ y2)
2σ

2πσ2 , (3)

This kernel is applied to the labeled image xt in order to generate a probability map pt. The next 
step is to cluster the data of the unlabeled image  xt+1. Any algorithm can be used for clustering, 
KNN is used in this work. The clustering algorithm is applied for each spectral channel, forming 
cluster masks mt_1 … mt_c.

After calculating the cluster masks for each spectrum, the metric of the ratio of the noise to the 
positive signal of the label of each of the clusters in the image is calculated:

LS mt k
(x , y )=

∑x , y∈k∑w∈k−Gaussian( x , y )
W∗X t(x , y )

∣k∣
,  (4)



where k – is a cluster of mt, w are pixel’s weight in the Gaussian kernel, xt is the labeled image. The 
value of  is bounded by [0, 1] and does not require additional normalization.

The noise ratio is calculated for each of the spectral channels, after which the spectral consistency 
metric is calculated, on the basis of which a conclusion is made regarding the assignment of the 
label  to each of  the pixels.  Landmine features may be clearly present in only one (or several)  
spectral channels, as such logarithmic transformation is used to significantly increase the influence 
of high-impact channels on the pseudo-labeling results. Spectral consistency is calculated as:

SC t(x , y )=
∑ log (1+ α∗LS mt k

(x , y ))
∣c∣∗log (1+ α )

,  (5)

where  c is the number of spectral channels,  is a scaling hyperparameter, recommended value is 
[10, 1000], depdending on the number of channels.
The last step of the algorithm is to cut off low-probability labels. For this, a standard cut-off process 
is used based on the ConfidenceThreshold parameter (CT). Pseudolabels with a value of spectral 
consistency less than CT are filtered out and not used in further training.
The pseudo-labeling is performed iteratively. For each labeled image, where a landmine segment is 
present, a breadth first search is used to check neighboring images in the order of optical flow and 
propagate landmine segmentation pseudo labels.  The propagation is peformed until the average 
value  of  spectral  consistency  SCt is  above  the  confidence  threshold.  This  iterative  process  is 
repeated for every labeled image with landmine segment present.

An important component of system training is sensitivity adjustment during segmenter training. 
The following features must be taken into account during training:

 explosive ordnance are a minority class in the data set, which leads to class imbalance;

 one of the models should have high sensitivity and low specificity, the other one should 
have medium sensitivity and high specificity, while the models have a dozen architecture 
and learning method.

Taking into account these conditions, the work uses two approaches to training segmenters.In both 
cases, the same loss function is used – the binary weighted cross-entropy:

LWBCE=−E [W 1 ∙ y pred ] ∙ log( y pred)+W 0 ∙(1− y true) ∙ log(1−y pred) , (6)

where w1,  w0   are the weights of  positive and negative class correspondingly,  ypred – is  the 
predicted value,  ytrue– is the label value.

When training a sensitive segmenter, more aggressive parameters - w1 = 0.8, w0 = 0.2 - are used, 
which results in sensitivity loss, but in turn increases the recall. The model training is performed 
on an unbalanced dataset using batch-normalization.
When training a more specific classifier, less aggressive weights are used - w1 = 0.6, w0 = 0.4 - which 
increases  the  precision  of  this  classifier.  However,  during  training,  resampling  is  used,  which 
ensures the presence of explosive ordnance in 50% of the samples in the batch. This method of  
resampling  balances  the  training  and  allows  to  achieve  high  accuracy  and  specificity  for  the 
validator sensor. 

When training neural networks, the Adam optimizer is used, the learning rate parameter is set to 
0.001 with a stepwise decay and a minimum value of 0.0001.



7. Results

The  verification  of  the  applied  method  was  carried  out  by  analyzing  the  effectiveness  of  the 
application of the intelligent system based on experimental data. The experiment was conducted 
using two agents: a drone with a multispectral camera and a cart with an infrared camera.
Data for the experiment were collected in the Khmelnytskyi region. TM-62 mine simulators were 
installed on the site with a total area of 0.5 square kilometers. When the mines were installed, two 
possible configurations were considered: installation directly on the surface and installation at a 
depth of up to 10 centimeters. After installation, an unmanned aerial vehicle with a multispectral 
camera was flown over, followed by a tour of places with known mine installations using a cart  
with an infrared camera. The collection was carried out in the summer, in warm (up to +23 degrees  
Celsius per day), sunny weather, which improves the quality of data collected using an infrared 
camera. The grass cover was present, partially disturbed at the place where the mines were placed.
Two types of cameras were used for data collection – the multispectral camera built into the Mavic 
3M drone captures 5 multispectral channels and the visible spectrum. The flight was carried out at 
a height of 10 meters above the surface level.  For the ground drone, a ZH20T thermal camera 
mounted on a cart was used. The height of the camera during filming was up to 20 centimeters. To 
capture footage,  the camera must be directed perpendicular to the surface of  the earth,  which  
makes navigation difficult.

Figure 4: Landmine imagery collection area

Pseudolabeling significantly increases the number of labeled samples without using a large 
number of resources for labeling. As a result of marking, it was found that the marking efficiency 
strongly depends on the features of the sensor. Thus, multispectral data contains several channels, 
which makes spectral consistency an effective metric, while infrared data contains only 1 channel, 
which  significantly  reduces  the  effectiveness  of  the  consistency  metric  and  requires  a  higher 
threshold CT. The results of the pseudolabels used when initializing the segmenters are shown in 
Table 1.



Table 1
Pseudolabeling results

Dataset Labeled Unlabeled Pseudolabeled

Multispectral 20 84 67 (79%)

Infrared 30 375 206 (55%)

After  pseudolabeling,  models  were  trained  in  cross-validation  mode,  with  a  90-10%  split  into 
training and validation datasets. The confusion matrices of the segmentators are presented in Table 
2, and the general learning metrics are presented in Table 3.

Table 2
Confusion Matricies (Full datasets)

Multispectral Positive Negative

True 10 69

False 8 0

Infrared

True 26 206

False 3 1

Table 3
Training metrics(Validation Only)

Type Recall Precision Rand IoU

Multispectral 1.0 0.694 0.893 0.8385

Infrared 0.92 0.93 0.961 0.948

Overall,  the approach works well,  however semi-supervised learning could be tuned further. In 
table 2, it can be seen that the validator agent has 1 false negative, which is not acceptable for real-
world condition.  This  false-negative  was traced to  a  blurry image in  the  vicinity  of  a  labeled 
landmine, which was not properly labeled in the frame. This issue was resolved by just removing 
the blurry iamge from a training set, however to adapt the method to the fluctuations in the input 
data either a regularization or data filtering techniques should be explored further.

Conclusions

The  proposed  method  allows  to  train  two  classifiers  using  the  unified  framework.  The  semi-
supervised methodology boosts sample size by ~3 times for datasets used in the study. Achieved 
results are in line with state-of-the-art methods and provides high recall and moderate precision at 
0.694, which is further refined through the verification agent to achieve 0.93 precision.



The proposed method, however, is vulnerable to noise in the data which creates challenges during 
the semi-supervised learning. As such,  future research will  be focused on stabilizing the semi-
supervised learning either by adding extra filters to the input data to detect, remove or pre-process  
low-quality samples or use regularization to ensure stable learning.
Future research will be focused on improving upon two key parts of the proposed method, namely 
semi-supervised  learning  for  pseudolabeling  and  sensitivity  training  for  different  agents, 
Pseudolabeling part struggles with rapid shifts of the scene, especially if motion blur is introduced. 
Adding regularization parameter should stabilize the learning and improve generalization of the 
sime-supervised  step.   When  it  comes  to  the  sensitivity  training  for  different  agents,  current  
approach is able to utilize the same network architecture for both agents, with sensitivity tuning 
for  each  agent  independently.  This  leads  to  longer  training  time,  which  could  be  reduced  by 
adjusting training routine to re-use weights learned by one of the agents to train a second agent.

Declaration on Generative AI

The author(s) have not employed any Generative AI tools.
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